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Visual Computing & AI Group at TUM
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Prof. Niessner

Prof. Dr. Laura 
Leal-Taixé (now at Nvidia)

History of the Lecture
• Follow up on Introduction to Deep Learning (I2DL)

– https://niessner.github.io/I2DL/
– Many ADL4CV iterations

• Together with Dynamic Vision and Learning Group

– https://dvl.in.tum.de/
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https://niessner.github.io/I2DL/
https://dvl.in.tum.de/
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Basics of DL 
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AI vs ML vs DL
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Artificial Intelligence

Machine Learning

Deep
Learning

• Deep Learning
– ML-methods 

leveraging neural 
networks
• Fit non-linear 

function to training 
set through 
optimization

• “Hope” that we 
generalize to 
unseen training 
samples
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What we assume you know
• Linear Algebra & Programming!

• Basics from the Introduction to Deep Learning lecture
– https://niessner.github.io/I2DL/

• PyTorch (can use TensorFlow…)

• You already trained several models + you know how to 
debug problems, observe training curves, prepare 
training/validation/test data
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https://niessner.github.io/I2DL/
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What is a neural 
network?
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Neural network
• Linear score function 𝑓 = 𝑊𝑥

10

On CIFAR-10

On ImageNet
Credit: Li/Karpathy/Johnson
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Neural network
• Linear score function 𝑓 = 𝑊𝑥

• Neural network is a nesting of ‘functions’
– 2-layers: 𝑓 = 𝑊2max(0,𝑊1𝑥)

– 3-layers: 𝑓 = 𝑊3max(0,𝑊2max(0,𝑊1𝑥))

– 4-layers: 𝑓 = 𝑊4 tanh (W3, max(0,𝑊2max(0,𝑊1𝑥)))

– 5-layers: 𝑓 = 𝑊5𝜎(𝑊4 tanh(W3, max(0,𝑊2max(0,𝑊1𝑥))))

– … up to hundreds of layers 
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Neural network
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2-layer network: 𝑓 = 𝑊2max(0,𝑊1𝑥)

𝑥
ℎ𝑊1

128 × 128 = 16384 1000

𝑓𝑊2

10

1-layer network: 𝑓 = 𝑊𝑥

𝑥
𝑊

128 × 128 = 16384

𝑓

10
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Neural network
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Credit: Li/Karpathy/Johnson



Prof. Niessner

Loss functions
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Neural networks

15

Loss 
(Softmax, 

Hinge)

Prediction

• What is the shape of this function?
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Loss functions
• Softmax loss function

• Hinge Loss (derived from the Multiclass SVM loss)

16

Evaluate the ground 
truth score for the 
image
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Loss functions
• Softmax loss function

– Optimizes until the loss is zero

• Hinge Loss (derived from the Multiclass SVM loss)

– Saturates whenever it has learned a class “well 
enough”

17
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Activation functions
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Sigmoid
Forward
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Saturated 
neurons kill the 
gradient flow
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tanh

20

Zero-
centered

Still saturates

Still saturates

LeCun 1991
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Rectified Linear Units (ReLU)

21

Large and 
consistent 
gradients

Does not saturateFast convergence

What happens if a 
ReLU outputs zero?

Dead ReLU
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Maxout units

22

Generalization 
of ReLUs

Linear 
regimes

Does not 
die

Does not 
saturate

Increase of the number of parameters
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Optimization
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Gradient Descent for Neural Networks

24
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Just simple: 𝐴 𝑥 = max(0, 𝑥)



Prof. Niessner

Stochastic Gradient Descent (SGD)
𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿(𝜃

𝑘 , 𝑥{1..𝑚}, 𝑦{1..𝑚})

𝛻𝜃𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜃𝐿𝑖

Note the terminology: iteration vs epoch

25

𝑘 now refers to 𝑘-th iteration 

𝑚 training samples in the current batch

Gradient for the 𝑘-th batch 
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Gradient Descent with Momentum
𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿(𝜃

𝑘)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Exponentially-weighted average of gradient
Important: velocity 𝑣𝑘 is vector-valued!

26

Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel
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Gradient Descent with Momentum

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

27

Step will be largest when a sequence of 
gradients all point to the same direction

Fig. credit: I. Goodfellow

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9



Prof. Niessner

RMSProp

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖

28

Typically 10−8Often 0.9

Element-wise multiplication

Needs tuning!
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RMSProp
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Small gradients
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Fig. credit: A. Ng

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

(uncentered) variance of gradients 
-> second momentum

Can increase learning rate!
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Adaptive Moment Estimation (Adam)
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘 ]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝑚𝑘+1

𝑣𝑘+1+𝜖

30

First momentum: 
mean of gradients

Second momentum: 
variance of gradients
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Adam
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘 ]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
ෝ𝑚𝑘+1

ො𝑣𝑘+1+𝜖

31

𝑚𝑘+1 and 𝑣𝑘+1 are initialized with zero
-> bias towards zero

Typically, bias-corrected moment updates

ෝ𝑚𝑘+1 =
𝑚𝑘

1 − 𝛽1

ො𝑣𝑘+1 =
𝑣𝑘

1 − 𝛽2
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Convergence
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Training NNs
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Importance of Learning Rate
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Over- and Underfitting
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Figure extracted from Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017 
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Over- and Underfitting
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Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html
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Basic recipe for machine learning
• Split your data

37

Find hyperparameters

20%

train testvalidation

20%60%
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Basic recipe for machine learning

38
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Regularization
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Regularization
• Any strategy that aims to

40

Lower 
validation error

Increasing 
training error
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Data augmentation

41Krizhevsky 2012
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Early stopping
• Training time is also a hyperparameter

42

Overfitting
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Dropout
• Disable a random set of neurons (typically 50%)

43Srivastava 2014

F
o

rw
ard
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How to deal with 
images?

44
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Using CNNs in Computer Vision

45Credit: Li/Karpathy/Johnson
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Image filters
• Each kernel gives us a different image filter

46

Input
Edge detection
−1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen
0 −1 0
−1 5 −1
0 −1 0

Box mean
1

9

1 1 1
1 1 1
1 1 1

Gaussian blur
1

16

1 2 1
2 4 2
1 2 1
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Convolutions on RGB Images

47

32

32

3

3
5

5

32 × 32 × 3 image (pixels 𝑥)

5 × 5 × 3 filter (weights 𝑤)

1

28

28

activation map
(also feature map)

Convolve

slide over all spatial locations 𝑥𝑖
and compute all output 𝑧𝑖 ;
w/o padding, there are 
28 × 28 locations
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Convolution Layer

48

32

32

3

32 × 32 × 3 image

5
28

28

activation maps

Convolve

Let’s apply **five** filters,
each with different weights!

Convolution “Layer”
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CNN Prototype
ConvNet is concatenation of Conv Layers and activations

49

32

32

3

28

28

5

24

24

8

Conv +
ReLU

Conv +
ReLU

Conv +
ReLU

12

5 filters
5 × 5 × 3

8 filters
5 × 5 × 5

12 filters
5 × 5 × 8

Input Image

20
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CNN learned filters

50
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Pooling Layer: Max Pooling

51

3 1 3 5

6 0 7 9

3 2 1 4

0 2 4 3

6 9

3 4

Single depth slice of input

Max pool with
2 × 2 filters and stride 2

‘Pooled’ output
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Classic CNN 
architectures

52
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LeNet
• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, height         Number of filters

53

60k parameters
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AlexNet

• Softmax for 1000 classes

54

[Krizhevsky et al. 2012]
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VGGNet
• Striving for simplicity

• CONV = 3x3 filters with stride 1, same convolutions

• MAXPOOL = 2x2 filters with stride 2

55

[Simonyan and Zisserman 2014]
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VGGNet

56

Conv=3x3,s=1,same
Maxpool=2x2,s=2

Still very common: VGG-16
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ResNet

57

[He et al. 2015]
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ResNet

• Xavier/2 init by He et al.
• Xavier/2 initialization
• SGD + Momentum (0.9)
• Learning rate 0.1, divided by 10 when plateau
• Mini-batch size 256
• Weight decay of 1e-5
• No dropout

58

[He et al. 2015]
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ResNet
• If we make the network deeper, at some point 

performance starts to degrade

• Too many parameters, 
the optimizer cannot 
properly train the network

59
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ResNet
• If we make the network deeper, at some point 

performance starts to degrade

60
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Inception layer

61
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GoogLeNet: using the inception layer

62

[Szegedy et al. 2014]

Inception block
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CNN Architectures

63
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Transformers

64
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Transformers

65

Multi-Head 
Attention on the 
“encoder”

Fully connected 
layer

Masked Multi-
Head Attention 
on the “decoder”
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Multi-Head Attention

66

Intuition: Take the query Q, find the most similar 
key K, and then find the value V that 
corresponds to the key.

In other words, learn V, K, Q where:
V – here is a bunch of interesting things.
K – here is how we can index some things.
Q – I would like to know this interesting thing.

Loosely connected to Neural Turing Machines 
(Graves et al.).
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Multi-Head Attention

67

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

Multiply queries 
with keys

To train them well, divide by             , “probably” because for 
large values of the key’s dimension, the dot product grows 
large in magnitude, pushing the softmax function into regions 
where it has extremely small gradients. 

Index the values 
via a differentiable 
operator.

𝑑𝑘

Get the values
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How to train your 
neural network?

68



Prof. Niessner

Setup Visualizations
• Always visualize train and 

validation loss curves.

• Check data loading and augmentation by visualizing 
samples. 

69
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Setup Visualizations
• TensorBoard is easy to setup

• And provides an easy-to-use 
interface for visualizing image 
batches, metrics, histograms, 
videos …

70

https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html
https://www.tensorflow.org/tensorboard/

https://pytorch.org/docs/stable/tensorboard.
html?highlight=summarywriter#

https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html
https://www.tensorflow.org/tensorboard/
https://pytorch.org/docs/stable/tensorboard.html?highlight=summarywriter
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Is data loading correct?
• Data output (target): overfit to single training sample 

(needs to have 100% because it just memorizes input)
– It’s irrespective of input !!!

• Data input: overfit to a handful (e.g., 4) training samples
– It’s now conditioned on input data

71
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Overfitting curves

72

1 sample

4 samples

Loss goes to 0
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Debugging: overfitting -> generalization 

• Move from overfitting to a hand-full of samples
– 5, 10, 100, 1000…
– At some point, we should see generalization

• Apply common sense: can we overfit to the current 
number of samples?

• Always be aware of network parameter count!

73
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Check timings
• How long does each iteration take?

– Get precise timings!!!
– If an iteration takes > 500ms, things get dicey…

• Where is the bottleneck: data loading vs backprop?
– Speed up data loading: smaller resolutions, compression, 

train from SSD – e.g., network training is good idea
– Speed up backprop 

• Estimate total timings: how long until you see some pattern? 
How long till convergence?

74
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Network architecture
• 100% mistake so far: “let’s use super big network and 

train for two weeks and we see where we stand.” 
[because we desperately need those 2%...]

• Start with simplest network possible: rule of thumb 
divide #layers you started with by 5.

• Get debug cycles down – ideally, minutes!!!

75
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Debugging
• Need train/val/test curves

– Evaluation needs to be consistent!
– Numbers need to be comparable

• Only make one change at a time
– “I’ve added 5 more layers and double the training 

size, and now I also trained 5 days longer” – it’s 
better, but WHY?

76
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Overfitting
• ONLY THINK ABOUT THIS ONCE YOUR TRAINING LOSS 

GOES DOWN AND YOU CAN OVERFIT!

• Typically try this order:
• Network too big – makes things also faster 
• More regularization; e.g., weight decay
• Not enough data - makes things slower!
• Dropout - makes things slower!
• Guideline: make training harder -> generalize better

77
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Severe overfitting!

78

 Try smaller network size, data augmentations, regularizations. 

Training loss

Validation loss
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Moderate overfitting

79

Training loss

Validation loss
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No overfitting

80

Training loss

Validation loss
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Pushing the limits!
• PROCEED ONLY IF YOU GENERALIZE AND YOU ADDRESSED 

OVERFITTING ISSUES!

• Bigger network -> more capacity, more power - needs also 
more data!

• Better architecture -> ResNet is typically standard, but 
InceptionNet architectures perform often better (e.g., 
InceptionNet v4, XceptionNet, etc.)

• Schedules for learning rate decay
• Class-based re-weighting (e.g., give under-represented classes 

higher weight)
• Hyperparameter tuning: e.g., grid search; apply common sense!

81
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Bad signs…
• Train error doesn’t go down…
• Validation error doesn’t go down… (ahhh we don’t learn)
• Validation performs better than train… (trust me, this 

scenario is very unlikely – unless you have a bug )
• Test on train set is different error than train… (forgot 

dropout?)
• Often people mess up the last batch in an epoch…

• You are training set contains test data…
• You debug your algorithm on test data…

82
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“Most common” neural net mistakes
• you didn't try to overfit a single batch first. 
• you forgot to toggle train/eval mode for the net. 
• you forgot to .zero_grad() (in pytorch) before 

.backward(). 
• you passed softmaxed outputs to a loss that expects 

raw logits. 
• you didn't use bias=False for your Linear/Conv2d 

layer when using BatchNorm, or conversely forget to 
include it for the output layer

83Credit: A. Karpathy
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Visualization and 
Interpretability

84
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Visualization of ConvNets
• Visualization in Image Space
• Visualizing Importance (Occlusion Experiment)
• T-SNE Visualization

85

Visualization is a great way for debugging!
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Visualizing in the image space

86

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 

• Pick a unit in layer 1.
• Find the 9 image patches in your dataset that 

maximize the unit’s activation. 

`
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Visualizing in the image space

87

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 

`

Feature map 1, layer 1, 9 image 
patches that provided the highest 
activation
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Visualizing in the image space

88

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 

`

Feature map 2, layer 1, 9 image 
patches that provided the highest 
activation
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Visualizing in the image space

89

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 

Layer 1 Layer 2
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Visualizing in the image space

90

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 

Zoom in, examples of Layer 2
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Visualizing in the image space

91

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 

Zoom in, examples of Layer 5
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Visualizing in the image space

92

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 

Zoom in, examples of Layer 5
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Visualizing 
importance

93
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The occlusion experiment
• Block different parts of the image and see how the 

classification score changes

94

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 

DOG 0.96
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The occlusion experiment
• Block different parts of the image and see how the 

classification score changes

95

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 

DOG 0.95

DOG 0.35

The face of the 
dog is more 
important for 
correct 
classification
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The occlusion experiment
• Create a map, where each pixel represents the 

classification probability if an occlusion square is 
placed in that region

96

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 
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The occlusion experiment

97

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014 

Most important 
pixels for 
classification
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t-SNE

98
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Intuition
• We want to visualize the last FC layer of 

AlexNet which dimension 4096

• We do a forward pass of all the images 
and get their 4096 representations

99
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Intuition
• Nearest neighbor visualization

100Image credit: Fei-Fei, Yeung, Johnson



Prof. Niessner

Intuition
• How can I visualize these clusters in 

feature space?

• Map high-dimensional embedding to 2D 
map which preserves the pairwise distance 
of the points

• This mapping is done by t-SNE

101Image credit: Fei-Fei, Yeung, Johnson



Prof. Niessner

t-SNE Visualization: MNIST

102

[van der Maaten et al.] t-SNE
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t-SNE Visualization: ImageNet

103
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t-SNE Visualization: ShapeNet

104
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When is t-SNE worth using?

• You can use it to debug your network

• Good for visualizing the clusters created by a Siamese 
network

105



Prof. Niessner

Reading Homework
• [van der Maaten et al. 08] Visualizing Data using t-SNE

– https://www.jmlr.org/papers/volume9/vanderma
aten08a/vandermaaten08a.pdf

• TensorBoard Visualization
– https://pytorch.org/tutorials/recipes/recipes/tens

orboard_with_pytorch.html
– https://www.tensorflow.org/tensorboard/

106

https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html
https://www.tensorflow.org/tensorboard/
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Literature
• I2DL Lecture

– https://niessner.github.io/I2DL/

• Latest Research
– https://niessnerlab.org/publications.html

• Social Media
– How to start a research project: 

https://twitter.com/MattNiessner/status/1441027241870118913
– Many good feeds for latest research papers

107

https://niessner.github.io/I2DL/
https://niessnerlab.org/publications.html
https://twitter.com/MattNiessner/status/1441027241870118913
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Thanks for watching!

108


