
Prof. Niessner

Advanced
Deep Learning

for Computer Vision

1Prof. Niessner

Prof. NiessnerProf. Niessner

The Team

2

Website
https://niessnerlab.org/

Prof. Dr. Matthias
Niessner

Tutors

Ziya
Erkoç

Lei
Li

David
Rozenberszki

Lecturers

Lukas
Höllein

https://niessnerlab.org/

Prof. Niessner

Visual Computing & AI Group at TUM

Photorealistic AI Avatars NeRFs / 3D Gaussians 3D Semantics / Reconstruction

https://niessnerlab.org/publications.html
https://twitter.com/MattNiessner

https://niessnerlab.org/publications.html
https://twitter.com/MattNiessner

Prof. Niessner

Visual Computing & AI Group at TUM

4
https://niessnerlab.org/publications.html
https://twitter.com/MattNiessner

MeshGPT: 3D Mesh Generation SceneTex: 3D Scene Texturing

https://niessnerlab.org/publications.html
https://twitter.com/MattNiessner

Prof. Niessner

Prof. Dr. Laura
Leal-Taixé (now at Nvidia)

History of the Lecture
• Follow up on Introduction to Deep Learning (I2DL)

– https://niessner.github.io/I2DL/
– Many ADL4CV iterations

• Together with Dynamic Vision and Learning Group

– https://dvl.in.tum.de/

5

https://niessner.github.io/I2DL/
https://dvl.in.tum.de/

Prof. Niessner

Basics of DL

6

Prof. Niessner

AI vs ML vs DL

7

Artificial Intelligence

Machine Learning

Deep
Learning

• Deep Learning
– ML-methods

leveraging neural
networks
• Fit non-linear

function to training
set through
optimization

• “Hope” that we
generalize to
unseen training
samples

Prof. Niessner

What we assume you know
• Linear Algebra & Programming!

• Basics from the Introduction to Deep Learning lecture
– https://niessner.github.io/I2DL/

• PyTorch (can use TensorFlow…)

• You already trained several models + you know how to
debug problems, observe training curves, prepare
training/validation/test data

8

https://niessner.github.io/I2DL/

Prof. Niessner

What is a neural
network?

9

Prof. Niessner

Neural network
• Linear score function 𝑓 = 𝑊𝑥

10

On CIFAR-10

On ImageNet
Credit: Li/Karpathy/Johnson

Prof. Niessner

Neural network
• Linear score function 𝑓 = 𝑊𝑥

• Neural network is a nesting of ‘functions’
– 2-layers: 𝑓 = 𝑊2max(0,𝑊1𝑥)

– 3-layers: 𝑓 = 𝑊3max(0,𝑊2max(0,𝑊1𝑥))

– 4-layers: 𝑓 = 𝑊4 tanh (W3, max(0,𝑊2max(0,𝑊1𝑥)))

– 5-layers: 𝑓 = 𝑊5𝜎(𝑊4 tanh(W3, max(0,𝑊2max(0,𝑊1𝑥))))

– … up to hundreds of layers

11

Prof. Niessner

Neural network

12

2-layer network: 𝑓 = 𝑊2max(0,𝑊1𝑥)

𝑥
ℎ𝑊1

128 × 128 = 16384 1000

𝑓𝑊2

10

1-layer network: 𝑓 = 𝑊𝑥

𝑥
𝑊

128 × 128 = 16384

𝑓

10

Prof. Niessner

Neural network

13

Credit: Li/Karpathy/Johnson

Prof. Niessner

Loss functions

14

Prof. Niessner

Neural networks

15

Loss
(Softmax,

Hinge)

Prediction

• What is the shape of this function?

Prof. Niessner

Loss functions
• Softmax loss function

• Hinge Loss (derived from the Multiclass SVM loss)

16

Evaluate the ground
truth score for the
image

Prof. Niessner

Loss functions
• Softmax loss function

– Optimizes until the loss is zero

• Hinge Loss (derived from the Multiclass SVM loss)

– Saturates whenever it has learned a class “well
enough”

17

Prof. Niessner

Activation functions

18

Prof. Niessner

Sigmoid
Forward

19

Saturated
neurons kill the
gradient flow

Prof. Niessner

tanh

20

Zero-
centered

Still saturates

Still saturates

LeCun 1991

Prof. Niessner

Rectified Linear Units (ReLU)

21

Large and
consistent
gradients

Does not saturateFast convergence

What happens if a
ReLU outputs zero?

Dead ReLU

Prof. Niessner

Maxout units

22

Generalization
of ReLUs

Linear
regimes

Does not
die

Does not
saturate

Increase of the number of parameters

Prof. Niessner

Optimization

23

Prof. Niessner

Gradient Descent for Neural Networks

24

𝑥0

𝑥1

𝑥2

ℎ0

ℎ1

ℎ2

ℎ3

𝑦0

𝑦1

𝑡0

𝑡1

𝑦𝑖 = 𝐴(𝑏1,𝑖 +෍

𝑗

ℎ𝑗𝑤1,𝑖,𝑗)ℎ𝑗 = 𝐴(𝑏0,𝑗 +෍

𝑘

𝑥𝑘𝑤0,𝑗,𝑘)

𝐿𝑖 = 𝑦𝑖 − 𝑡𝑖
2

𝛻𝑤,𝑏𝑓𝑥,𝑡 (𝑤) =

𝜕𝑓

𝜕𝑤0,0,0
…
…
𝜕𝑓

𝜕𝑤𝑙,𝑚,𝑛
…
…
𝜕𝑓

𝜕𝑏𝑙,𝑚

Just simple: 𝐴 𝑥 = max(0, 𝑥)

Prof. Niessner

Stochastic Gradient Descent (SGD)
𝜃𝑘+1 = 𝜃𝑘 − 𝛼𝛻𝜃𝐿(𝜃

𝑘 , 𝑥{1..𝑚}, 𝑦{1..𝑚})

𝛻𝜃𝐿 =
1

𝑚
σ𝑖=1
𝑚 𝛻𝜃𝐿𝑖

Note the terminology: iteration vs epoch

25

𝑘 now refers to 𝑘-th iteration

𝑚 training samples in the current batch

Gradient for the 𝑘-th batch

Prof. Niessner

Gradient Descent with Momentum
𝑣𝑘+1 = 𝛽 ⋅ 𝑣𝑘 + 𝛻𝜃𝐿(𝜃

𝑘)

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

Exponentially-weighted average of gradient
Important: velocity 𝑣𝑘 is vector-valued!

26

Gradient of current minibatch
velocity

accumulation rate
(‘friction’, momentum)

learning rate
velocitymodel

Prof. Niessner

Gradient Descent with Momentum

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅ 𝑣𝑘+1

27

Step will be largest when a sequence of
gradients all point to the same direction

Fig. credit: I. Goodfellow

Hyperparameters are 𝛼, 𝛽
𝛽 is often set to 0.9

Prof. Niessner

RMSProp

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖

Hyperparameters: 𝛼, 𝛽, 𝜖

28

Typically 10−8Often 0.9

Element-wise multiplication

Needs tuning!

Prof. Niessner

RMSProp

29

X-direction
Small gradients

Y
-D

ire
ct

io
n

La
rg

e
g

ra
d

ie
nt

s

Fig. credit: A. Ng

𝑠𝑘+1 = 𝛽 ⋅ 𝑠𝑘 + (1 − 𝛽)[𝛻𝜃𝐿 ∘ 𝛻𝜃𝐿]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝛻𝜃𝐿

𝑠𝑘+1 + 𝜖We’re dividing by square gradients:
- Division in Y-Direction will be large
- Division in X-Direction will be small

(uncentered) variance of gradients
-> second momentum

Can increase learning rate!

Prof. Niessner

Adaptive Moment Estimation (Adam)
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
𝑚𝑘+1

𝑣𝑘+1+𝜖

30

First momentum:
mean of gradients

Second momentum:
variance of gradients

Prof. Niessner

Adam
Combines Momentum and RMSProp

𝑚𝑘+1 = 𝛽1 ⋅ 𝑚
𝑘 + 1 − 𝛽1 𝛻𝜃𝐿 𝜃𝑘

𝑣𝑘+1 = 𝛽2 ⋅ 𝑣
𝑘 + (1 − 𝛽2)[𝛻𝜃𝐿 𝜃𝑘 ∘ 𝛻𝜃𝐿 𝜃𝑘]

𝜃𝑘+1 = 𝜃𝑘 − 𝛼 ⋅
ෝ𝑚𝑘+1

ො𝑣𝑘+1+𝜖

31

𝑚𝑘+1 and 𝑣𝑘+1 are initialized with zero
-> bias towards zero

Typically, bias-corrected moment updates

ෝ𝑚𝑘+1 =
𝑚𝑘

1 − 𝛽1

ො𝑣𝑘+1 =
𝑣𝑘

1 − 𝛽2

Prof. Niessner

Convergence

32

Prof. Niessner

Training NNs

33

Prof. Niessner

Importance of Learning Rate

34

Prof. Niessner

Over- and Underfitting

35

Figure extracted from Deep Learning by Adam Gibson, Josh Patterson, O‘Reily Media Inc., 2017

Prof. Niessner

Over- and Underfitting

36

Source: http://srdas.github.io/DLBook/ImprovingModelGeneralization.html

Prof. Niessner

Basic recipe for machine learning
• Split your data

37

Find hyperparameters

20%

train testvalidation

20%60%

Prof. Niessner

Basic recipe for machine learning

38

Prof. Niessner

Regularization

39

Prof. Niessner

Regularization
• Any strategy that aims to

40

Lower
validation error

Increasing
training error

Prof. Niessner

Data augmentation

41Krizhevsky 2012

Prof. Niessner

Early stopping
• Training time is also a hyperparameter

42

Overfitting

Prof. Niessner

Dropout
• Disable a random set of neurons (typically 50%)

43Srivastava 2014

F
o

rw
ard

Prof. Niessner

How to deal with
images?

44

Prof. Niessner

Using CNNs in Computer Vision

45Credit: Li/Karpathy/Johnson

Prof. Niessner

Image filters
• Each kernel gives us a different image filter

46

Input
Edge detection
−1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen
0 −1 0
−1 5 −1
0 −1 0

Box mean
1

9

1 1 1
1 1 1
1 1 1

Gaussian blur
1

16

1 2 1
2 4 2
1 2 1

Prof. Niessner

Convolutions on RGB Images

47

32

32

3

3
5

5

32 × 32 × 3 image (pixels 𝑥)

5 × 5 × 3 filter (weights 𝑤)

1

28

28

activation map
(also feature map)

Convolve

slide over all spatial locations 𝑥𝑖
and compute all output 𝑧𝑖 ;
w/o padding, there are
28 × 28 locations

Prof. Niessner

Convolution Layer

48

32

32

3

32 × 32 × 3 image

5
28

28

activation maps

Convolve

Let’s apply **five** filters,
each with different weights!

Convolution “Layer”

Prof. Niessner

CNN Prototype
ConvNet is concatenation of Conv Layers and activations

49

32

32

3

28

28

5

24

24

8

Conv +
ReLU

Conv +
ReLU

Conv +
ReLU

12

5 filters
5 × 5 × 3

8 filters
5 × 5 × 5

12 filters
5 × 5 × 8

Input Image

20

Prof. Niessner

CNN learned filters

50

Prof. Niessner

Pooling Layer: Max Pooling

51

3 1 3 5

6 0 7 9

3 2 1 4

0 2 4 3

6 9

3 4

Single depth slice of input

Max pool with
2 × 2 filters and stride 2

‘Pooled’ output

Prof. Niessner

Classic CNN
architectures

52

Prof. Niessner

LeNet
• Digit recognition: 10 classes

• Conv -> Pool -> Conv -> Pool -> Conv -> FC
• As we go deeper: Width, height Number of filters

53

60k parameters

Prof. Niessner

AlexNet

• Softmax for 1000 classes

54

[Krizhevsky et al. 2012]

Prof. Niessner

VGGNet
• Striving for simplicity

• CONV = 3x3 filters with stride 1, same convolutions

• MAXPOOL = 2x2 filters with stride 2

55

[Simonyan and Zisserman 2014]

Prof. Niessner

VGGNet

56

Conv=3x3,s=1,same
Maxpool=2x2,s=2

Still very common: VGG-16

Prof. Niessner

ResNet

57

[He et al. 2015]

Prof. Niessner

ResNet

• Xavier/2 init by He et al.
• Xavier/2 initialization
• SGD + Momentum (0.9)
• Learning rate 0.1, divided by 10 when plateau
• Mini-batch size 256
• Weight decay of 1e-5
• No dropout

58

[He et al. 2015]

Prof. Niessner

ResNet
• If we make the network deeper, at some point

performance starts to degrade

• Too many parameters,
the optimizer cannot
properly train the network

59

Prof. Niessner

ResNet
• If we make the network deeper, at some point

performance starts to degrade

60

Prof. Niessner

Inception layer

61

Prof. Niessner

GoogLeNet: using the inception layer

62

[Szegedy et al. 2014]

Inception block

Prof. Niessner

CNN Architectures

63

Prof. Niessner

Transformers

64

Prof. Niessner

Transformers

65

Multi-Head
Attention on the
“encoder”

Fully connected
layer

Masked Multi-
Head Attention
on the “decoder”

Prof. Niessner

Multi-Head Attention

66

Intuition: Take the query Q, find the most similar
key K, and then find the value V that
corresponds to the key.

In other words, learn V, K, Q where:
V – here is a bunch of interesting things.
K – here is how we can index some things.
Q – I would like to know this interesting thing.

Loosely connected to Neural Turing Machines
(Graves et al.).

Prof. Niessner

Multi-Head Attention

67

Attention 𝑄, 𝐾, 𝑉 = softmax
𝑄𝐾𝑇

𝑑𝑘
𝑉

Multiply queries
with keys

To train them well, divide by , “probably” because for
large values of the key’s dimension, the dot product grows
large in magnitude, pushing the softmax function into regions
where it has extremely small gradients.

Index the values
via a differentiable
operator.

𝑑𝑘

Get the values

Prof. Niessner

How to train your
neural network?

68

Prof. Niessner

Setup Visualizations
• Always visualize train and

validation loss curves.

• Check data loading and augmentation by visualizing
samples.

69

Prof. Niessner

Setup Visualizations
• TensorBoard is easy to setup

• And provides an easy-to-use
interface for visualizing image
batches, metrics, histograms,
videos …

70

https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html
https://www.tensorflow.org/tensorboard/

https://pytorch.org/docs/stable/tensorboard.
html?highlight=summarywriter#

https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html
https://www.tensorflow.org/tensorboard/
https://pytorch.org/docs/stable/tensorboard.html?highlight=summarywriter

Prof. Niessner

Is data loading correct?
• Data output (target): overfit to single training sample

(needs to have 100% because it just memorizes input)
– It’s irrespective of input !!!

• Data input: overfit to a handful (e.g., 4) training samples
– It’s now conditioned on input data

71

Prof. Niessner

Overfitting curves

72

1 sample

4 samples

Loss goes to 0

Prof. Niessner

Debugging: overfitting -> generalization

• Move from overfitting to a hand-full of samples
– 5, 10, 100, 1000…
– At some point, we should see generalization

• Apply common sense: can we overfit to the current
number of samples?

• Always be aware of network parameter count!

73

Prof. Niessner

Check timings
• How long does each iteration take?

– Get precise timings!!!
– If an iteration takes > 500ms, things get dicey…

• Where is the bottleneck: data loading vs backprop?
– Speed up data loading: smaller resolutions, compression,

train from SSD – e.g., network training is good idea
– Speed up backprop

• Estimate total timings: how long until you see some pattern?
How long till convergence?

74

Prof. Niessner

Network architecture
• 100% mistake so far: “let’s use super big network and

train for two weeks and we see where we stand.”
[because we desperately need those 2%...]

• Start with simplest network possible: rule of thumb
divide #layers you started with by 5.

• Get debug cycles down – ideally, minutes!!!

75

Prof. Niessner

Debugging
• Need train/val/test curves

– Evaluation needs to be consistent!
– Numbers need to be comparable

• Only make one change at a time
– “I’ve added 5 more layers and double the training

size, and now I also trained 5 days longer” – it’s
better, but WHY?

76

Prof. Niessner

Overfitting
• ONLY THINK ABOUT THIS ONCE YOUR TRAINING LOSS

GOES DOWN AND YOU CAN OVERFIT!

• Typically try this order:
• Network too big – makes things also faster 
• More regularization; e.g., weight decay
• Not enough data - makes things slower!
• Dropout - makes things slower!
• Guideline: make training harder -> generalize better

77

Prof. Niessner

Severe overfitting!

78

 Try smaller network size, data augmentations, regularizations.

Training loss

Validation loss

Prof. Niessner

Moderate overfitting

79

Training loss

Validation loss

Prof. Niessner

No overfitting

80

Training loss

Validation loss

Prof. Niessner

Pushing the limits!
• PROCEED ONLY IF YOU GENERALIZE AND YOU ADDRESSED

OVERFITTING ISSUES!

• Bigger network -> more capacity, more power - needs also
more data!

• Better architecture -> ResNet is typically standard, but
InceptionNet architectures perform often better (e.g.,
InceptionNet v4, XceptionNet, etc.)

• Schedules for learning rate decay
• Class-based re-weighting (e.g., give under-represented classes

higher weight)
• Hyperparameter tuning: e.g., grid search; apply common sense!

81

Prof. Niessner

Bad signs…
• Train error doesn’t go down…
• Validation error doesn’t go down… (ahhh we don’t learn)
• Validation performs better than train… (trust me, this

scenario is very unlikely – unless you have a bug )
• Test on train set is different error than train… (forgot

dropout?)
• Often people mess up the last batch in an epoch…

• You are training set contains test data…
• You debug your algorithm on test data…

82

Prof. Niessner

“Most common” neural net mistakes
• you didn't try to overfit a single batch first.
• you forgot to toggle train/eval mode for the net.
• you forgot to .zero_grad() (in pytorch) before

.backward().
• you passed softmaxed outputs to a loss that expects

raw logits.
• you didn't use bias=False for your Linear/Conv2d

layer when using BatchNorm, or conversely forget to
include it for the output layer

83Credit: A. Karpathy

Prof. Niessner

Visualization and
Interpretability

84

Prof. Niessner

Visualization of ConvNets
• Visualization in Image Space
• Visualizing Importance (Occlusion Experiment)
• T-SNE Visualization

85

Visualization is a great way for debugging!

Prof. Niessner

Visualizing in the image space

86

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

• Pick a unit in layer 1.
• Find the 9 image patches in your dataset that

maximize the unit’s activation.

`

Prof. Niessner

Visualizing in the image space

87

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

`

Feature map 1, layer 1, 9 image
patches that provided the highest
activation

Prof. Niessner

Visualizing in the image space

88

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

`

Feature map 2, layer 1, 9 image
patches that provided the highest
activation

Prof. Niessner

Visualizing in the image space

89

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

Layer 1 Layer 2

Prof. Niessner

Visualizing in the image space

90

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

Zoom in, examples of Layer 2

Prof. Niessner

Visualizing in the image space

91

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

Zoom in, examples of Layer 5

Prof. Niessner

Visualizing in the image space

92

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

Zoom in, examples of Layer 5

Prof. Niessner

Visualizing
importance

93

Prof. Niessner

The occlusion experiment
• Block different parts of the image and see how the

classification score changes

94

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

DOG 0.96

Prof. Niessner

The occlusion experiment
• Block different parts of the image and see how the

classification score changes

95

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

DOG 0.95

DOG 0.35

The face of the
dog is more
important for
correct
classification

Prof. Niessner

The occlusion experiment
• Create a map, where each pixel represents the

classification probability if an occlusion square is
placed in that region

96

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

Prof. Niessner

The occlusion experiment

97

Zeiler and Fergus. „Visualizing and understanding convolutional neural networks“. ECCV 2014

Most important
pixels for
classification

Prof. Niessner

t-SNE

98

Prof. Niessner

Intuition
• We want to visualize the last FC layer of

AlexNet which dimension 4096

• We do a forward pass of all the images
and get their 4096 representations

99

Prof. Niessner

Intuition
• Nearest neighbor visualization

100Image credit: Fei-Fei, Yeung, Johnson

Prof. Niessner

Intuition
• How can I visualize these clusters in

feature space?

• Map high-dimensional embedding to 2D
map which preserves the pairwise distance
of the points

• This mapping is done by t-SNE

101Image credit: Fei-Fei, Yeung, Johnson

Prof. Niessner

t-SNE Visualization: MNIST

102

[van der Maaten et al.] t-SNE

Prof. Niessner

t-SNE Visualization: ImageNet

103

Prof. Niessner

t-SNE Visualization: ShapeNet

104

Prof. Niessner

When is t-SNE worth using?

• You can use it to debug your network

• Good for visualizing the clusters created by a Siamese
network

105

Prof. Niessner

Reading Homework
• [van der Maaten et al. 08] Visualizing Data using t-SNE

– https://www.jmlr.org/papers/volume9/vanderma
aten08a/vandermaaten08a.pdf

• TensorBoard Visualization
– https://pytorch.org/tutorials/recipes/recipes/tens

orboard_with_pytorch.html
– https://www.tensorflow.org/tensorboard/

106

https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
https://pytorch.org/tutorials/recipes/recipes/tensorboard_with_pytorch.html
https://www.tensorflow.org/tensorboard/

Prof. Niessner

Literature
• I2DL Lecture

– https://niessner.github.io/I2DL/

• Latest Research
– https://niessnerlab.org/publications.html

• Social Media
– How to start a research project:

https://twitter.com/MattNiessner/status/1441027241870118913
– Many good feeds for latest research papers

107

https://niessner.github.io/I2DL/
https://niessnerlab.org/publications.html
https://twitter.com/MattNiessner/status/1441027241870118913

Prof. Niessner

Thanks for watching!

108

