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What is “3D”?

Prof. Niessner 2

Parametric Surfaces

Point Clouds Voxels

Implicit Surfaces

Polygonal Meshes



3D Tasks

3



Tasks: 3D Classification

Class from 3D model (e.g., obtained with Kinect Scan)

[Maturana et al. 15] & [Qi et al. 16] 3D vs Multi-viewProf. Niessner 4



Tasks: 3D Semantic Segmentation

[Dai et al. 17] ScanNet

1500 densely annotated 3D scans; 2.5 mio RGB-D frames
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Tasks: 3D Detection / Instance Segmentation 

Prof. Niessner 6[Hou et al. 19] 3D-SIS



Generative 3D Tasks

Prof. Niessner

Parametric Surfaces

Point Clouds

Implicit Surfaces

Polygonal Meshes



Volumetric Grids
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Volumetric Grids
Volumetric Data Structures

– Occupancy grids
– Ternary grids

– Distance Fields
– Signed Distance fields

(binary) Voxel Grid

Prof. Niessner 9



Volumetric Grids
• 3D Convolutions

– Direct extension of 2D convolutions

• Often: occupancy grid, signed/unsigned distance fields

• Operate on regular grid structures
– Get neighborhood structures and spatial propagation
– Well-defined pooling and unpooling for hierarchical processing
– Cubic growth in memory
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Object Classification /w 3DCNNs

Prof. Niessner 11

3D CNN Object
Classification Architecture

[Qi et al.. 17] 3D CNNs



ScanNet: Semantic Segmentation in 3D

[Dai et al. 17] ScanNetProf. Niessner 12



ScanNet: Sliding Window

[Dai et al. 17] ScanNetProf. Niessner 13



Generative Tasks: 3D Shape Completion

[Dai et al. 17] CNNCompleteWorks with 32 x 32 x 32 voxels…Prof. Niessner 14



SurfaceNet: Stereo Reconstruction

Run on 32 x 32 x 32 blocks -> takes forever…

[Ji et al. 17] SurfaceNetProf. Niessner 15



ScanComplete: Fully Convolutional
Train on crops of scenes

Test on entire scenes

[Dai et al. 18] ScanCompleteProf. Niessner 16



[Dai et al. 18] ScanComplete

Dependent Predictions:
Autoregressive Neural Networks

Prof. Niessner 17



[Dai et al. 18] ScanComplete

Spatial Extent: Coarse-to-Fine 
Predictions
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ScanComplete: Fully Convolutional

[Dai et al. 18] ScanComplete

Input Partial Scan Completed Scan
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Conclusion so far

• Volumetric grids are easy and naturally extend 2D 
CNNs and other concepts
– Encode free space
– Encode distance fields

– Need a lot of memory
– Need a lot of processing time
– But can be used sliding window or fully-conv.

Prof. Niessner 20



Conclusion so far

Surface occupancy gets smaller with higher resolutions

Prof. Niessner 21
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Volumetric 
Hierarchies
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Discriminative Tasks
Structure is 
known in advance!

OctNet: Learning Deep 3D Representations at High Resolutions (CVPR 2017)
O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis (SIG17)

State of the art is somewhere here…

Prof. Niessner 23

https://arxiv.org/abs/1611.05009
https://arxiv.org/abs/1611.05009
https://wang-ps.github.io/O-CNN.html
https://wang-ps.github.io/O-CNN.html
https://wang-ps.github.io/O-CNN.html
https://wang-ps.github.io/O-CNN.html
https://wang-ps.github.io/O-CNN.html


Generative Tasks
Need to infer structure!

Octree Generating Networks: Efficient Convolutional Architectures for High-resolution Outputs
OctNetFusion: Learning Depth Fusion from Data (that one not end to end)

Pretty interesting: they have 
end-to-end method: i.e.,split 
voxels that are partially 
occupied
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https://lmb.informatik.uni-freiburg.de/Publications/2017/TDB17b/
https://lmb.informatik.uni-freiburg.de/Publications/2017/TDB17b/
https://lmb.informatik.uni-freiburg.de/Publications/2017/TDB17b/
https://arxiv.org/abs/1704.01047
https://arxiv.org/abs/1704.01047


Conclusion so far

• Hierarchies
– are great for reducing memory and runtime
– Comes at a performance hit

– Easier for discriminative tasks when structure is known

Prof. Niessner 25



Multi-view
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Multiple Views: Classification
• RGB images from fixed views around object: 

– view pooling for classification (only RGB; no spatial corr. )

Multi-view Convolutional Neural Networks for 3D Shape Recognition Prof. Niessner 27

http://vis-www.cs.umass.edu/mvcnn/
http://vis-www.cs.umass.edu/mvcnn/
http://vis-www.cs.umass.edu/mvcnn/


Multiple Views: Segmentation

3D Shape Segmentation with Projective Convolutional Networks
 This one is interesting in a sense that it does 3D shape segmentation (only on CAD models)

 But it uses multi-view and has a spatial correlation on top of the mesh surface
Prof. Niessner 28

http://people.cs.umass.edu/~kalo/papers/shapepfcn/ShapePFCN.pdf


Fun thing…

Volumetric and Multi-View CNNs for Object Classification on 3D DataProf. Niessner 29



Hybrid: Volumetric + 
Multi-view
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avg class accuracy

geometry only 54.4

geometry + voxel colors 55.9

2D + 3D Semantic Segmentation

Resolution Mismatch!

[Dai & Niessner 18] 3DMVProf. Niessner 31



3D Volumetric + Multi-view

[Dai & Niessner 18] 3DMVProf. Niessner 32



3D Volumetric + Multi-view
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[Dai & Niessner 18] 3DMVProf. Niessner 33



3D Volumetric + Multi-view

[Dai & Niessner 18] 3DMVProf. Niessner 34



avg class accuracy

color only 58.2

geometry only 54.4

color+geometry 75.0

3D Volumetric + Multi-view

[Dai & Niessner 18] 3DMVProf. Niessner 35



avg class accuracy

color only 58.2

geometry only 54.4

color+geometry 75.0

3D Volumetric + Multi-view

[Dai & Niessner 18] 3DMVProf. Niessner 36



avg class accuracy

geometry only 54.4

color+geometry (1 views) 70.1

color+geometry (3 views) 73.0

color+geometry (5 views) 75.0

3D Volumetric + Multi-view

[Dai & Niessner 18] 3DMVProf. Niessner 37



3D Volumetric + Multi-view

…

[Dai & Niessner 18] 3DMVProf. Niessner 38



Conclusion so far

• Hybrid:
– Nice way to combine color and geometry
– Great performance (best so far for segmentation)

– End-to-end helps less than we hoped for
– Could be faster…

Prof. Niessner 40



Point Clouds
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Deep Learning on Point Clouds: PointNet

[Qi et al. 17] PointNetProf. Niessner 42



Deep Learning on Point Clouds: PointNet

[Qi et al. 17] PointNetProf. Niessner 43



PointNet++
Main idea

● Learn hierarchical representation of point cloud
● Apply multiple (simplified) PointNets at different locations and scales
● Each Scale: Furthest-Point Sampling -> Query Ball Grouping -> PointNet
● Multi-scale or Multi-resolution grouping for sampling density robustness

Evaluations: Classification, Part-Segmentation, Scene-Segmentation

[Qi et al. 17] PointNet++44



Point Convolutions
Main idea

● Transform points to continuous R3
representation (RBFs)

● Convolve in R3
● Restrict results to points

Uses Gaussian RBF representation.

Boils down to computing fixed weights for
convolution.

Don’t use real data as far as I know!

Point Convolutional NN by Extension Operators 
Matan Atzmon, Haggai Maron, Yaron Lipman (SIGGRAPH 2018)
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https://arxiv.org/abs/1803.10091


Point Transformer

46
[Zhao et al. 21] Point Transformer

https://arxiv.org/pdf/2012.09164 

https://arxiv.org/pdf/2012.09164


Conclusions so far

• PointNet variants:
– Train super fast (also testing)
– Can cover large spaces in one shot

– Cannot represent free space
– Performance (mostly) worse than pure volumetric
– Still lots of ongoing research!
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Point Sets (local)
RBF
       Point Convolutional NN by Extension Operators (SIGGRAPH 2018)
       Tangent Convolutions for Dense Prediction in 3D (CVPR 2018)

Nearest point neighborhoods
Dynamic edge-conditioned filters in convolutional neural networks on graphs (CVPR17)
3D Graph Neural Networks for RGBD Semantic Segmentation (ICCV17)
PPFNet: Global context aware local features for robust 3d point matching (CVPR18)
FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis (CVPR18)

Very interesting combination where convolutions are essentially over line segments in 
3D, and where both locations and are being optimized 

 https://arxiv.org/abs/1605.06240 
Idea is great, performance could be a bit better (probably hard to optimize)
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https://arxiv.org/abs/1803.10091
http://vladlen.info/papers/tangent-convolutions.pdf
https://arxiv.org/abs/1704.02901
https://arxiv.org/abs/1704.02901
https://arxiv.org/abs/1704.02901
http://www.cs.toronto.edu/~rjliao/papers/iccv_2017_3DGNN.pdf
https://arxiv.org/abs/1802.02669
https://arxiv.org/abs/1706.05206
https://arxiv.org/abs/1706.05206
https://arxiv.org/abs/1706.05206
https://arxiv.org/abs/1605.06240


Sparse Convolutions
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Sparse Convolutional Networks

Prof. Niessner 51
Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307 [Graham et al. 18]
3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

Regular, dense 3x3 Convolution
-> set of actives (non-zeros) grows rapidly
-> need a lot of memory
-> takes a long time for feature prop.

https://arxiv.org/abs/1706.01307
https://arxiv.org/abs/1706.01307


Sparse Convolutional Networks

Prof. Niessner 52
Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307 [Graham et al. 18]
3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

Dense

Sparse

https://arxiv.org/abs/1706.01307
https://arxiv.org/abs/1706.01307


Sparse Convolutional Networks

Prof. Niessner 53
Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307 [Graham et al. 18]
3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

Submanifold Sparse Conv:
-> set of active sites is unchanged
-> active sites look at active neighbors (green)
-> non-active sites (red) have no overhead

https://arxiv.org/abs/1706.01307
https://arxiv.org/abs/1706.01307


Sparse Convolutional Networks
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Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307 [Graham et al. 18]
3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

Submanifold Sparse Conv:
-> disconnected components do not communicate at first
-> although they will merge due to effect of stride, pooling, convs, etc.

from left: (i) an active point is highlighted; a convolution with stride 2 sees the green active sites (ii) and produces output (iii), 
'children' of hightlighted active point from (i) are highlighted; a submanifold sparse convolution sees the green active sites (iv) 
and produces output (v); a deconvolution operation sees the green active sites (vi) and produces output (vii).

https://arxiv.org/abs/1706.01307
https://arxiv.org/abs/1706.01307


Sparse Convolutional Networks

Prof. Niessner 55https://github.com/NVIDIA/MinkowskiEngine 

https://github.com/NVIDIA/MinkowskiEngine


Sparse Convolutional Networks

Prof. Niessner 56
Submanifold Sparse Convolutional Networks, https://arxiv.org/abs/1706.01307 [Graham et al. 18]
3D Semantic Segmentation with Submanifold Sparse Convolutional Networks

https://github.com/facebookresearch/SparseConvNet

https://arxiv.org/abs/1706.01307
https://arxiv.org/abs/1706.01307
https://github.com/facebookresearch/SparseConvNet


SparseConv Generators

Prof. Niessner 57



SparseConv Generators

[Dai et al.]: SGNN (CVPR’20)



SG-NN: Sparse Convs + Self-
Supervised

[Dai et al.]: SGNN (CVPR’20)



Self-Supervised Scan Completion
Depth Frames

[Dai et al.]: SGNN (CVPR’20)



Self-Supervised Scan Completion
Depth Frames

Target Scan

[Dai et al.]: SGNN (CVPR’20)



Self-Supervised Scan Completion
Depth Frames

Target Scan

[Dai et al.]: SGNN (CVPR’20)



Self-Supervised Scan Completion
Depth Frames

Target ScanInput Scan

[Dai et al.]: SGNN (CVPR’20)



Self-Supervised Scan Completion
Depth Frames

Target ScanInput Scan

Unobserved Space

Self-Supervision

[Dai et al.]: SGNN (CVPR’20)



Latent 3D Scene Diffusion

[Meng et al. 24]: Latent 3D Scene Diffusion



Latent 3D Scene Diffusion

[Meng et al. 24]: Latent 3D Scene Diffusion



Latent 3D Scene Diffusion

[Meng et al. 24]: Latent 3D Scene Diffusion



Latent 3D Scene Diffusion

[Meng et al. 24]: Latent 3D Scene Diffusion



Conclusions so far

• Spares (volumetric) Convs:
– Implemented with spatial hash function
– Features only around “surface”

– Require significantly less memory
– Allow for much higher resolutions
– It’s slower, but much higher accuracy

Prof. Niessner 69



3D Meshes
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3DMeshes
• Collection of vertices, edges, and faces
• Defines surface geometry

• Interpret meshes as graphs
• How to define a learnable operators / convs over a graph

Prof. Niessner 71



3DMeshes
• Graph Networks

– Message Passing
– Graph Convolutions

– Transformers?

• MeshCNN, Spectral Graph Convolutions, Geodesic 
CNNs

Prof. Niessner 72



3D Meshes: MeshCNN

• A CNN for triangle meshes
• Define convolution and pooling operators on 

mesh edges
• Each edge has a feature 
• Each edge has four edge neighbors (from 2 

incident faces)
• Convolution filters applied to each edge 

feature and its 4 neighbors
• Pooling by edge-collapse

Machine Learning for 3D Geometry MeshCNN [Hanocka et al. ‘19]



Scan2Mesh: From Unstructured Range Scans to 3D 
Meshes

CVPR’19 [Dai and Niessner]: Scan2Mesh



Scan2Mesh: From Unstructured Range Scans to 3D 
Meshes

CVPR’19 [Dai and Niessner]: Scan2Mesh



Scan2Mesh: From Unstructured Range Scans to 3D 
Meshes

CVPR’19 [Dai and Niessner]: Scan2Mesh



PolyDiff: Generating 3D Meshes with Diffusion

arXiv’23 [Alliegro et al.]: PolyDiff



PolyDiff: Generating 3D Meshes with Diffusion

arXiv’23 [Alliegro et al.]: PolyDiff



Mesh Generation with Transformers

Prof. Niessner 79
arXiv’20 [Nash et al.]: PolyGen: An Autoregressive Generative Model of 3D Meshes



Mesh Generation with Transformers

Prof. Niessner 80
arXiv’20 [Nash et al.]: PolyGen: An Autoregressive Generative Model of 3D Meshes



MeshGPT

CVPR’24 [Siddiqui et al.]: MeshGPT

GPTs for Mesh Generation
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CVPR’24 [Siddiqui et al.]: MeshGPT

GPTs for Mesh Generation
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GPTs for Mesh Generation



G
ra

p
h

 C
o

n
vo

lu
ti

o
n

al
 E

n
co

d
e

r 

R
e

si
d

u
al

Q
u

a
n

ti
za

ti
o

n
 M

o
d

u
le

Se
qu

e
n

ce
 &

 F
la

tt
e

n

< 𝐒𝐎𝐒 >

< 𝐄𝐎𝐒 >

.

.

. G
P

T
-S

ty
le

 T
ra

ns
fo

rm
er

Face Graph 
+ 

Input 
Features

Stacked
Embeddings

.

.

.
Predicted

Codebook 
Indices

𝐂𝐄 𝐋𝐨𝐬𝐬

GT
Codebook 

Indices

CVPR’24 [Siddiqui et al.]: MeshGPT

MeshGPT: Inferencing the Transformer
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MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers



Generative 3D Mesh Approaches

• Scan2Mesh (Graph Network)
• PolyGen (Diffusion Model)
• PolyDiff (Transformer + PointerNetwork)
• MeshGPT (GPT-style Transformer)

Prof. Niessner 87



3D Datasets

88

(mostly indoor)



3D Shapes (Synthetic)
• ShapeNet 

– Main dataset, everyone uses it
– 55 classes (51.3k shapes); relatively uniform distribution 

but also mostly chairs; mediocre textures

• Objaverse (links only)
– 800k 3D shapes

• Objaverse-XL (links only)
– 10mio 3D shapes (pretty heterogeneous)

Prof. Niessner 89



3D Scenes (Synthetic)
• 3D-FRONT: 3D Furnished Rooms with Layouts and 

Semantics
– 18,797 rooms (mostly procedural geometry)
– 7,302 furniture objects
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3D Scenes
• ScanNet

– Kinect-style reconstructions; 1500 scenes; 2.5 mio views; 
semantic + instance annotations

Prof. Niessner 91
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3D Scenes
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http://www.scan-net.org/
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3D Scenes
• SceneNN 

– ScanNetStyle (100 scenes)
• Matterport3D

– 90 buildings
• ARKitScenes

– 1661 scenes
– Faro + iPhone (no labels)

• ScanNet++
– 450 3D indoor scenes
– Faro Scans 
– DSLR + iPhone
– Instance Labels

Many more….
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Important Concepts
• Regular Structures vs Irregular structures

– Convolutions, MLPs, Transformers, etc.

• Spatial data structures:
– Octress, Hashes, Hierarchies

• Pooling: 
– n->1 mappings (points, views, etc.)

• Architecture vs Loss formulation
– Transformer, Diffusion

Prof. Niessner 94



Next Lectures

• Neural Scene Representations

• Neural Fields

• Neural Radiance Fields (NeRF)

Prof. Niessner 95



Thanks and 
Questions


	Slide 1: 3D Deep Learning 
	Slide 2: What is “3D”?
	Slide 3: 3D Tasks
	Slide 4: Tasks: 3D Classification
	Slide 5: Tasks: 3D Semantic Segmentation
	Slide 6: Tasks: 3D Detection / Instance Segmentation 
	Slide 7: Generative 3D Tasks
	Slide 8: Volumetric Grids
	Slide 9: Volumetric Grids
	Slide 10: Volumetric Grids
	Slide 11: Object Classification /w 3DCNNs
	Slide 12: ScanNet: Semantic Segmentation in 3D
	Slide 13: ScanNet: Sliding Window
	Slide 14: Generative Tasks: 3D Shape Completion
	Slide 15: SurfaceNet: Stereo Reconstruction
	Slide 16: ScanComplete: Fully Convolutional
	Slide 17: Dependent Predictions: Autoregressive Neural Networks
	Slide 18: Spatial Extent: Coarse-to-Fine Predictions
	Slide 19: ScanComplete: Fully Convolutional
	Slide 20: Conclusion so far
	Slide 21: Conclusion so far
	Slide 22: Volumetric Hierarchies
	Slide 23: Discriminative Tasks
	Slide 24: Generative Tasks
	Slide 25: Conclusion so far
	Slide 26: Multi-view
	Slide 27: Multiple Views: Classification
	Slide 28: Multiple Views: Segmentation
	Slide 29: Fun thing…
	Slide 30: Hybrid: Volumetric + Multi-view
	Slide 31: 2D + 3D Semantic Segmentation
	Slide 32: 3D Volumetric + Multi-view
	Slide 33: 3D Volumetric + Multi-view
	Slide 34: 3D Volumetric + Multi-view
	Slide 35: 3D Volumetric + Multi-view
	Slide 36: 3D Volumetric + Multi-view
	Slide 37: 3D Volumetric + Multi-view
	Slide 38: 3D Volumetric + Multi-view
	Slide 40: Conclusion so far
	Slide 41: Point Clouds
	Slide 42: Deep Learning on Point Clouds: PointNet
	Slide 43: Deep Learning on Point Clouds: PointNet
	Slide 44: PointNet++
	Slide 45: Point Convolutions
	Slide 46: Point Transformer
	Slide 47: Conclusions so far
	Slide 49: Point Sets (local)
	Slide 50: Sparse Convolutions
	Slide 51: Sparse Convolutional Networks
	Slide 52: Sparse Convolutional Networks
	Slide 53: Sparse Convolutional Networks
	Slide 54: Sparse Convolutional Networks
	Slide 55: Sparse Convolutional Networks
	Slide 56: Sparse Convolutional Networks
	Slide 57: SparseConv Generators
	Slide 58: SparseConv Generators
	Slide 59: SG-NN: Sparse Convs + Self-Supervised
	Slide 60: Self-Supervised Scan Completion
	Slide 61: Self-Supervised Scan Completion
	Slide 62: Self-Supervised Scan Completion
	Slide 63: Self-Supervised Scan Completion
	Slide 64: Self-Supervised Scan Completion
	Slide 65: Latent 3D Scene Diffusion
	Slide 66: Latent 3D Scene Diffusion
	Slide 67: Latent 3D Scene Diffusion
	Slide 68: Latent 3D Scene Diffusion
	Slide 69: Conclusions so far
	Slide 70: 3D Meshes
	Slide 71: 3DMeshes
	Slide 72: 3DMeshes
	Slide 73: 3D Meshes: MeshCNN
	Slide 74: Scan2Mesh: From Unstructured Range Scans to 3D Meshes
	Slide 75: Scan2Mesh: From Unstructured Range Scans to 3D Meshes
	Slide 76: Scan2Mesh: From Unstructured Range Scans to 3D Meshes
	Slide 77: PolyDiff: Generating 3D Meshes with Diffusion
	Slide 78: PolyDiff: Generating 3D Meshes with Diffusion
	Slide 79: Mesh Generation with Transformers
	Slide 80: Mesh Generation with Transformers
	Slide 81: GPTs for Mesh Generation
	Slide 82: GPTs for Mesh Generation
	Slide 83: GPTs for Mesh Generation
	Slide 84: MeshGPT: Inferencing the Transformer
	Slide 85: MeshGPT: Inferencing the Transformer
	Slide 86
	Slide 87: Generative 3D Mesh Approaches
	Slide 88: 3D Datasets
	Slide 89: 3D Shapes (Synthetic)
	Slide 90: 3D Scenes (Synthetic)
	Slide 91: 3D Scenes
	Slide 92: 3D Scenes
	Slide 93: 3D Scenes
	Slide 94: Important Concepts
	Slide 95: Next Lectures
	Slide 96: Thanks and Questions

