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Images
• Array of pixels
• x,y coordinates
• Maps to RGB value
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𝐼𝑚𝑎𝑔𝑒 𝑥, 𝑦 → 𝑅𝐺𝐵
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MLPs
• MLP(x) - > y
• X = coordinates (e.g., pixel or 3d coordinates)
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𝑋

coordinate

𝑦

output
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MLP <-> Image
• MLP can fit to image
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𝜃∗ = argmin
∀𝑖,𝑗

| MLP𝜃 𝑥𝑖 , 𝑦𝑖 − Image 𝑥, 𝑦 |

Image 𝑥, 𝑦 → RGB

MLP 𝑥, 𝑦 → RGB
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MLP as Datastructure
• Why do that?

• What if x,y coordinates are fractional?
• Smoothness / interpolation properties of MLP!
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(𝑥, 𝑦)

pixel coordinate

RGB
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MLP as Datastructure
• Works in arbitrary dimensions

• Sparse encoding of signal!
• Shifts capacity where it needs it (based on optimization)
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(𝑥, 𝑦, … )

coordinate

(𝑟, 𝑔, 𝑏, … )

output
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Neural Fields
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Example of fields
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Fields
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What are neural fields?

Magnetic Field
Neural Network 

(Φ)

Φ:ℝ2 → ℝ2

(x,y)

Eulerian Flow Field of a Fluid 
[Koldora CC]

Neural 

Network (Φ)

Φ:ℝ2 → ℝ2

(x,y)



Prof. Niessner

What are neural fields?

Geospatial Data
[Blumenstock et al. 2015]

Neural Network 

(Φ)

Φ:ℝ2 → ℝ𝑛

(x,y)

Signed Distance Function (SDF)Neural Network 

(Φ)

Φ:ℝ𝑛 → ℝ

(x,y,z)
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Definitions

Definition 1: A field is a quantity defined for all spatial and 
/ or temporal coordinates.

Definition 2: A neural field is a field that is parameterized 
fully or in part by a neural network. 
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Related Terminology & Misnomers
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= Neural Radiance Fields

Neural Radiance Field is a type of neural field
(see a detailed NeRF lecture in the next course!)
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Implicit vs Explicit

• Remember, mathematically:

– Explicit function: 𝑓 𝑥 = 𝑦

– Implicit function:  𝑥2 + 𝑦2 − 1 = 0
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Implicit (Surfaces)
• Implicit form:

• Surface is defined by the level set of the tri-variate 
scalar function

• Example: Hesse normal form
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𝑓 𝑥, 𝑦, 𝑧 : ℝ3 → ℝ

𝑓 𝑥, 𝑦, 𝑧 = 𝑐

𝑓 𝑥, 𝑦, 𝑧 =
𝑥
𝑦
𝑧

− Ԧ𝑝 ⋅ 𝑛 = 0

𝑛

Ԧ𝑝

+

−

𝑓 is also called Signed Distance Function (SDF)
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Explicit (Surfaces)
• Explicit form:
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𝑓 𝑥 = 𝑦 = 𝑚 ⋅ 𝑥 + 𝑐

𝑥

𝑦

Point Clouds

Voxels

Polygonal Meshes
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Signed Distance Fields
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Signed Distance Fields (SDFs)

SDF(x) = D

x denotes any point sampled in 3D space.
D is distance value from x to the surface.

D > 0 indicates x is outside of the shape
D < 0 indicates x is inside of the shape
D = 0 indicates the zero-level set (i.e., x is 
located on the surface.)
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Signed Distance Fields vs Occupancy
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Truncated Signed Distance Fields (TSDFs)

TSDF(x) =

SDF(x) / t

1

-1

–t < D < t

D > t

D < -t

Occupancy Fields

Occ(x) =
1

0

SDF(x) <= 0

SDF(x) > 0
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Why Neural Fields
There are many types of signals in natural world.
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Natural Signals:

Sampled Signals:

Neural Fields: Use continuous parametric functions to 
approximate natural signals 
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Overfitting vs 
Generalization
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Overfitting vs Generalization

• Overfitting as a goal

• Overfitting as a debugging tool

• Overfitting as an artifact

20



Prof. Niessner

Overfitting

21

Overfitting a single scene 

Coordinate Sampling Neural Network Reconstruction Domain

x, y, z, [t]

What we want to 
reconstruct:

2D / 3D 

supervision
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Overfitting

22

Overfitting a single scene 

Coordinate Sampling Neural Network Reconstruction Domain

x, y, z, [t]

What we want to 
reconstruct:

2D / 3D 

supervision

Without any data prior
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Overfitting
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Overfitting a single scene 

Coordinate Sampling Neural Network Reconstruction Domain

x, y, z, [t]

What we want to 
reconstruct:

2D / 3D 

supervision

Overfitting!

The learned network  
is not adaptive to 
other scenes.
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Example: Scene Representation Networks
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Overfitting a single scene from multi-view images 

[Sitzmann et al, 2020]

,… }{

ℐ𝑖 𝜉𝑖
Image Camera parameter

Input:
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Fitting more scenes
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DeepSDF: Each scene should have a unique description

Coordinate Sampling Neural Network Reconstruction Domain

x, y, z

What we want to 
reconstruct:

3D supervision

Latent code

[DeepSDF, 2019]

Unique description
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Fitting more scenes
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DeepSDF: Each scene should have a unique description

Coordinate Sampling Neural Network Reconstruction Domain

3D supervision

Latent code

[DeepSDF, 2019]

x, y, z

Learnable params
during training
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Fitting more scenes
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DeepSDF: Each scene should have a unique description

Coordinate Sampling Neural Network Reconstruction Domain

Latent code

[DeepSDF, 2019]

x, y, z

Optimizing latent code 
only for inference

Given an unseen 3D scan
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Fitting more scenes
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DeepSDF: Each scene should have a unique description

Coordinate Sampling Neural Network Reconstruction Domain

Optimized latent 
code

[DeepSDF, 2019]

x, y, z

3D Reconstruction
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How to generalize?
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What is generalization?

Unseen input observation
(e.g., image, 3D scan)

Neural Network 

(Φ)

Reconstruction

[Lars Mescheder et al, 2019]
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How to generalize?
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Capable to learn prior from dataset !

Unseen input observation
(e.g., image, 3D scan)

Neural Network 

(Φ)

Reconstruction

[Lars Mescheder et al, 2019]

Able to infer from unseen input
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Occupancy Network
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[Lars Mescheder et al, 2019]

Target: Learning the occupancy field of a shape conditioned on 
different observations (e.g., images, point clouds)

Input
/condition Output

Occupancy

Network(Φ)Encoder
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Occupancy Network
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[Lars Mescheder et al, 2019]

Target: Learning the occupancy field of a shape conditioned on 
different observations (e.g., images, point clouds)

Input
/condition Output

Occupancy

Network(Φ)Encoder

x,y,z ∈ R3

Global
feature

fθ(x,y,z) = 0 or 1
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Occupancy Network

[Lars Mescheder et al, 2019]

Input
/condition Output

Occupancy

Network(Φ)Encoder

x,y,z ∈ R3

Global
feature

fθ(x,y,z) = 0 or 1

When input = image, Encoder = ResNet

When input = point cloud, Encoder = PointNet
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Occupancy Network

[Lars Mescheder et al, 2019]

Input
/condition Output

Occupancy

Network(Φ)Encoder

x,y,z ∈ R3

Global
feature

fθ(x,y,z) = 0 or 1

Occupancy Network:  a fully-connected neural network with 5 ResNet blocks and 
condition it on the input using conditional batch normalization.

48
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Encodings and 
Activations

35
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Input Encoding
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Why input encoding (or positional encoding)?

Neural networks are biased to fit lower 
frequency signals for generalization (mising
high dimensional details)

-> Involve input encoding to alleviate this issue
by lifting coordinates into higher dimensional 
features. 
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Input Encoding
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Positional Encodings

x y z

γ(x)

Neural Network

Spatial coordinates are embedded to higher dimension
with sinusoidal functions.

[Vaswani et al. 2017]
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Input Encoding
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More Positional Encodings:
1. Random Fourier Encodings [Tancik et al. 2020]

2. One-blob Encodings  [Müller et al. 2020]

3. Super Gaussian Encodings  [Ramasinghe et al. 2021]
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Activation Functions
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[Sitzmann et al. 2021]

SIREN vs ReLU

SIREN uses sinusoidal activation functions to fit 
high-frequency signals.
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Activation Functions
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More activation functions [Ramasinghe et al. 2021]
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Hybrid 
Representations

41
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Hybrid Representations
• Uniform Grids

42
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Hybrid Representations
• Uniform Grids
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• Easy to implement 
• Algorithmically fast access [O(1)] 
• Established operations like convolutions 
• Simple topology 

Cons:
• Expensive in memory and bandwidth
• Limited by Nyquist
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Hybrid Representations
• Sparse Grids
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[DeepLS (Chabra et al.), NSVF (Liu et al.), NGLOD (Takikawa et al.), etc] 

• Memory Efficient 
• Algorithmically efficient access [O(log(n))] 
• GPU-compatible data structures 
• Established operations like sparse 3D convs

Cons:
• Need to manage a complex data structure 
• Topology hard to generate (sparse grids) 
• Still limited by Nyquist
• Sparse support region (have undefined 

points in space)
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Hybrid Representations

• Point Clouds
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[Liu et al. 2019, LDIF (Genova et al.), 3DILG (Zhang et al.) etc]

• Not limited by Nyquist
• Can be densely supported in space 
• Expressive 

Cons:
• Often needs complex data structures for 

fast access and interpolation 
• Heavily affected by choice of kernel 

Aggregate nearby points
feature with a kernel function
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Hybrid Representations

• Mesh
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[DefTet (Gao et al.), NeuralBody (Peng et al.), etc]

• Not limited by Nyquist
• Can use the rich sets of tools in mesh 

processing 

Cons:
• Is a mesh (difficult to process with NNs) 
• Non-trivial data access especially in 3D 

Interpolate nearby points on a 
face.
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Hybrid Representations

• Multiplanar Images
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[Convolutional OccNet (Peng et al), EG3D (Chan et al.), etc]

• More compact than 3D dense grids 
• Compatibility with 2D pipelines (2D CNNs)

Cons:
• Resolution bias on plane axis 

Aggregate from projections 
on multiple 2D feature planes.
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Hybrid Representations

• Multiresolution Images
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[NGLOD (Takikawa et al.), ACORN (Lindell et al.), Instant-NGP (Muller et al.), etc]

• Multiple streaming levels of detail (LOD) 
• Stable training 
• Wider support region 

Cons:
• More memory 
• More complexity 
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Hybrid Representations

More hybrid representations:
• Hash Grids [Instant-NGP (Muller et al.)]

• Codebook Grids [Variable Bitrate Neural Fields (Takikawa et al.)] 

• Bounding Volume Hierarchies [Neural Scene Graphs (Ost et al), 
Object-Centric Neural Scenes (Guo et al.), etc] 

…
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Key Components in Architectures
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Activation 
Functions

Input 
Encoding

Representations
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Thanks for watching!
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Some Slides adapted from…
• CVPR 2022 Tutorial on Neural Fields in Computer Vision
• Tutorial on Neural Fields in Computer Vision

from Towaki Takikawa, NVIDIA / University of Toronto

• Prior-based Reconstruction of Neural Fields
from Prof. Vincent Sitzmann, MIT
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