Neural Flelds



Images

« Array of pixels

* Xy Ccoordinates |

« Maps to RGB value

Image(x,y) - RGB




ML Ps

o MLPX) ->v
« X =coordinates (e.g., pixel or 3d coordinates)
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MLP <->Image

« MLP can fit to iImage

Image(x,y) - RGB

MLP(x,y) —» RGB

6* = argmin ||[MLPg (x;, v;) — Image(x, y)||
Vi,j

Prof. Niessner



MLP as Datastructure
¢ Why do that?

7O

X OO
— /) \Y) \Y) —
€%) APV PV RGB
/‘ NN

| ’ OOK
pixel coordinate \\”/}A\\”M

« What If Xy coordinates are fractional?
« Smoothness / Interpolation properties of MLP



MLP as Datastructure

o \Worksin arbitrary dimensions

(X,y, ) — — (T',g,b,...)

coordinate output

e Sparse encoding of signal
e Shifts capacity where it needs it (based on optimization)



Neural Flelds



3D Parabola
(Explicit Surface) Image Vector Field

3D Signed Distance Fields
(Implicit Surface)
Fields




Neural
Network (®)

Eulerian Flow Field of a Fluid

[Koldora CC]



What are neural fields?

.(lelz) w—

v

.(XIY) —

v

Neural Network

(P)

Geospatial Data
[Blumenstock et al. 2015]



Definitions

Definition 1. A field is a quantity defined for all spatial and
/ or temporal coordinates.

Definition 2: A neural field is a field that Is parameterized
fully or in part by a neural network.



Related Terminology & Misnomers

Oy #>

Implicit Neural Coordinate-based
Representations Neural Networks

NeRFs

= Neural Radiance Fields

Neural Radiance Field is a type of neural field
(see a detailed NeRF lecture in the next course!)



Implicit vs Explicit

« Remember, mathematically

— Explicit function: f(x) =y
— Implicit function: x2+y2—-1=0



Implicit (Surfaces)

e |mplicit form: 7.2 RS > R

* Surface is defined by the level set of the tri-varate
scalar function 17
f(x; Y, Z) =C

+
o Example Hesse normal form ’
X
f(x,y,z)=<<y>—ﬁ> =0 _
Z

f is also called Signed Distance Function (SDF)




t (Surfaces)

ICl

=]l

It form:

=XPll
f)=y

m-x+c




Signed Distance Fields

Signed Distance Fields (SDFs)

S & or'® Decision

___ boundary

e of implicit

° surface

SDF(x) =D waf o N
x denotes any point sampled in 3D space. @l SR

D is distance value from x to the surface.

D > 0 indicates x is outside of the shape
D < 0 indicates x is inside of the shape

D = 0 indicates the zero-level set (i.e., x is
located on the surface.)

()



Signed Distance Flelds vs Occupancy

Truncated Signed Distance Fields (TSDFs)

SDF(x)

TSDF(x) = maz(—1,min(1, 7

)

- SDF(x) /t —-t<D<t

TSDF(x) = - 1 D>t

- -1 D<-t

Occupancy Fields

Occ(x) = 1[SDF(x) <0

Occ(x) = {

1

0

SDF(x) <=0

SDF(x) > 0



Why Neural Flelds

There are many types of signals in natural world

Natural Signals: V\/\/\/\/\/

Continuous

Discrete

Use continuous parametric functions to
approximate natural signals

Neural Fields:

Neural



Overfitting vs
Generalization



Overfitting vs Generalization

« Overfitting as a goal
o Qverfitting as a debugging tool

« Overfitting as an artifact



Overfitting

Overfitting a single scene

What we want to
reconstruct:

- — 2D / 3D

X, Y1 2, [t]-’ Y. <€ suypervision

[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ]




Overfitting

Overfitting a single scene

] ] What we want to
Without any data prior reconstruct:

2D /3D
X, Y,z [t] yt« ‘\ﬁ - < supervision

[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ]




Overfitting

Overfitting a single scene
The learned network

What we want to is not adaptive to
Overfitting! reconstruct: other scenes.

—) 2D / 3D

X, ¥, Z, [t] <€ suypervision

[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ]




Example: Scene Representation Networks

Overfitting a single scene from multi-view images

Input: vt |t
’ o000
J; $i
Image Camera parameter

[Sitzmann et al, 2020]
F, £ v



Fitting more scenes

DeepSDF: Each scene should have a unigue description

[ Unique description ]

What we want to
reconstruct:

+
-—) @ :: 3D supervision
S

[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ] [DeepSDF, 2019]

Latent code

\'N //N\/
( W\
& 40; /0N

X, Y2
)‘\”f ASA




Fitting more scenes

DeepSDF: Each scene should have a unigue description

Learnable params
during training

+
@ :: 3D supervision
S

[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ] [DeepSDF, 2019]

Latent code

Shoxiou.
Kool

X, Y2 4
A




Fitting more scenes

DeepSDF: Each scene should have a unigue description

Optimizing latent code

— only for inference

Latent code

X, Y, 2

Given an unseen 3D scan

[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ] [DeepSDF, 2019]




Fitting more scenes

DeepSDF: Each scene should have a unigue description

Optimized latent
code

+
7o =
X, ¥, 2 S0 = @ -
»‘”"\ "‘
S

[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ] [DeepSDF, 2019]

3D Reconstruction




How to generalize?

What Is generalization?

Neural Network

(P)

Unseen input observation

| Reconstruction
(e.g. iImage, 3D scan)

[Lars Mescheder et al, 2019

Prof. Niessner
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How to generalize?

Able to infer from unseen input

Neural Network

(D)
Unseen input observation Deconstruction
(e.g. iImage, 3D scan) l
Lars Mescheder et al, 2019 Capable to learn prior from dataset !

rof, Niessne
Prof. Ni ner



Occupancy Network

Target: Learning the occupancy field of a shape conditioned on
different observations (e.g., images, point clouds)

Occupancy
Input Encoder  Network(®)

/condition

[Lars Mescheder et al, 2019



Occupancy Network

Target: Learning the occupancy field of a shape conditioned on
different observations (e.g., images, point clouds)

R ] "
‘ - - [ |
) Occupancy _
Input Encoder Global Network(®d) folp) =T »
/condition feature Output

[Lars Mescheder et al, 2019 X,y,Z € R3 fe(x,y,z) =0or1l

Prof. Niessner



Occupancy Network

R |
- |-
Input Encoder Global
/condition feature

X,y,Z € R3

Occupancy
Network(®)

When input = image, Encoder = ResNet

When input = point cloud, Encoder = PointNet

[Lars Mescheder et al, 2019
Prof. Niessner

fo(p) =7 o
Output

fo(x,y,2)=0o0r1




Occupancy Network

T g ]
) Occupancy
Input Encoder Global Network(d)
/condition feature
X,y,Z € R3 fo(x,y,2) =0 or 1

Occupancy Network: a fully-connected neural network with 5 ResNet blocks and
condition it on the input using conditional batch normalization.

[Lars Mescheder et al, 2019
|



TUTi

-ncodings and
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Input Encoding

Why input encoding (or positional encoding):

On the Spectral Bias of Neural Networks

Nasim Rahaman " '? Aristide Baratin*' Devansh Arpit' Felix Draxler’ Min Lin' Fred A. Hamprecht
Yoshua Bengio! Aaron Courville "

Abstract
Neural networks are known to be a class of highly
expressive functions able 10 fit even random input
output mappings with 100% accuracy. In this
work we present propertics of neural networks
that complement this aspect of expressivity. By
using tools from Fourier analysis, we highlight a
learning bias of deep networks towards low fre-
quency functions - i.c. functions that vary glob-
ally without local fluctuations ~ which manifests
itself as a frequency-dependent leaming speed.
Intuitively, this property is in line with the ob-
servation that over-parameterized networks pri-
oritize learning simple pattems that generalize
across data samples. We also investigate the role
of the shape of the data manifold by presenting
empirical and theoretical evidence that, somewhat
counter-intuitively, leaming higher frequencies
gets easier with increasing manifold complexity.

1. Introduction

The remarkable success of deep neural networks at general-
ing 1o natural data is at odds with the traditional notions of
model complexity and their empirically demonstrated ability
o fit arbitrary random data to perfect accuracy (Zhang et al.,
2017a; Arpit et al., 2017). This has prompled recent in-
vestigations of possible implicit regularization mechanisms
inherent in the leaming process which induce a bias towards
Tow complexity solutions (Neyshabur et al., 2014; Soudry
etal,, 2017; Poggio et al., 2018; Neyshabur et 017).

In this work, we take a slightly shifted view on implicit
regularization by suggesting that low-complexity functions
are learned faster during training by gradient descent. We

“Equal contribution  'Mila, Quebec, Canada ‘fmage
Avalysis and Leaming Lab, Ruprecht-Karls-Universitit
Heidelberg, Germany.  Correspondence lo:  Nasim Ra.
baman  <nasimrahaman®live com>,  Aristide  Baratin
<aristide baratin@umontreal ca>, Devansh Arpit  <devan-
sharpit @ gmail com>

Proceedings of the 36" International Conference on Machine
Learning, Long Beach, Califoria, PMLR 97, 2019, Copyright
2019 by the suthoe(s).

expose this bias by taking a closer look at neural networks
through the lens of Fouricr analysis. While they can ap-
proximate arbitrary functions, we find that these networks
prioritize learning the low frequency modes, a phenomenon
we call the spectral bias. This bias manifests itself not just
in the process of learning, but also in the parameterization of
the model itself: in fact, we show that the lower frequency
components of trained networks are more robust to random
parameter perturbations. Finally, we also expose and ana-
lyze the rather intricate interplay between the spectral bias
ind the geometry of the data manifold by showing that high
frequencies get easier to learn when the data lies on a lower
dimensional manifold of complex shape embedded in the
input space of the model. We focus the discussion on net-
works with rectified linear unit (ReLU) activations, whose
continuous piece-wise linear structure enables an analytic
treatment.

Contributions

1. We exploit the continuous piecewise-linear structure

of ReLU networks to evaluate its Fourier spectrum
(Section 2)

2. We find empirical evidence of a spectral bias: i.e.
lower frequencies are learned first. We also show that
lower frequencies are more robust to random perturba-
tions of the network parameters (Section 3).

3. We study the role of the shape of the data manifold: we
show how complex manifold shapes can facilitate the
learning of higher frequencies and develop a theoretical
understanding of this behavior (Section 4).

2. Fourier analysis of ReLU networks

2.1. Preliminaries

Throughout the paper we call ‘ReLU network' a scalar func-

tion / : R +-» R defined by a neural network with L hidden

layers of widths dy, -~ d;. and a single output neuron

[m:('r"-‘wmr"h. ‘/“r')“x\ m

‘Code: hups:/igithub.conynssimeahaman/SpectralBias

Neural networks are biased to fit lower
frequency signals for generalization (mising
high dimensional details)

-> Involve input encoding to alleviate this issue
by lifting coordinates into higher dimensional
features.



Input Encoding
Positional Encodings

x) (y) (2) Y09 = 1 (%), Y2 () Y ()]

v(x) Yoi (x) = sin(2'™ '),

Spatial coordinates are embedded to higher dimension
with sinusoidal functions.

[Vaswani et al. 2017]

[ Neural Network ]




Input Encoding

More Positional Encodings:

1. Random Fourier Encodings [Tancik et al 2020

2. One-blob Encodings IMuller et al 2020

3. Super Gaussian Encodings [Ramasinghe et al 2021



Activation Functions
SIREN vs Rel LU

A) Network @ Derivatives
1@ 2 (")

=

7 .

é SIREN i idal activation f ti to fit
A uses sinusoidal activation functions to fi

7 \/ /\/ high-frequency signals.

[Sitzmann et al. 2021]



Activation Functions

More activation functions

[Ramasinghe et al. 2021]
‘ Activation (¢) Equation parameterized U v R1|R2 ‘
1, ifz>0
ReLU max(0, z) X et 0 x| x
0, otherwise
if 1, if
pReLU ¢ MT>0 v , #z>0 0 V| x
ar, otherwise a, otherwise
Sin sin(ax) v acos(ax) —a?sin(azx) vV
P 162 _8(ePr—1)e?
Tanh P X ﬁ(ezu-l) Eem‘*'l - X |V
. . 1 e® e —1)e*
el I LA -5 A M
: x e“(e®+x+1 e*((z—2)e* —2—2
SiLU 1 e X T - e X |V
SoftPlus <log(1 4+ ") v Trees [FE=s awi
2z
7).51-2 - 12 IEQ—BQ E_%
Gaussian e e v “ﬁﬁ a) 2 V|V
. 1 2022 202 (30222 -1
Quadratlc m v —m (a2$2+1); 'ars
Multi Quadrati S S ___a’z Z2ala®—a®
ulti Quadratic) 77— v (a2211) 3 (a22241)F v
JEd} JE3}
Laplacian e(#) v “flj‘ = V|V
—0.522 b *g—jg‘ b bx“?—a2)e_;_i§_
Super-Gaussian [e7 ez ] v — bre_2a — Vv
ExpSin gsinfex) v ae®" (") cos (az)|—a’e™™**) (sin (az) — cos” (az))| v | v/

Table 1: Comparison of existing activation functions (top block) against
the proposed activation functions (bottom block). The proposed activa-

tions and the sine activations fulfill R1 and R2, implying better suitability to
encode high-frequency signals.
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Hybrid Representations

o Uniform QGrids
)
) >
P
Q

Ray Query Point Feature Grid Interpolation Tiny Neural Network @&

[PIFu (Saito et al.), Neural Volumes (Lombardi et



Hybrid Representations

o Uniform QGrids Pros:

O O * Easy to implement
* Algorithmically fast access [O(1)]
* Established operations like convolutions

) * Simple topology

Cons:
) * Expensive in memory and bandwidth
/ * Limited by Nyquist

O O O O

@)
O

[PIFu (Saito et al.), Neural Volumes (Lombardi et
~al), etc]



Hybrid Representations

« Sparse Grids Pros:
~ o) * Memory Efficient
e Algorithmically efficient access [O(log(n))]
* GPU-compatible data structures
* Established operations like sparse 3D convs

)

Cons:

) * Need to manage a complex data structure

/ * Topology hard to generate (sparse grids)
e Still limited by Nyquist

O * Sparse support region (have undefined

points in space)

[DeeplS (Chabra et al.), NSVF (Liu et al.), NGLOD (Takikawa et al.), etc]

Prof. Niessne A4



Hybrid Representations

« Point Clouds Pros:
* Not limited by Nyquist
o o * Can be densely supported in space

* Expressive

Cons:
e Often needs complex data structures for

\0/1 fast access and interpolation

* Heavily affected by choice of kernel
Aggregate nearby points

feature with a kernel function

O

[Liu et al. 2019, LDIF (Genova et al.), 3DILG (Zhang et al.) etc]
Prof. Niessner



Hybrid Representations

Mesh Pros:

* Not limited by Nyquist
e Can use the rich sets of tools in mesh
processing

Cons:
* Is a mesh (difficult to process with NNs)
* Non-trivial data access especially in 3D

Interpolate nearby points on a
face.

[DefTet (Gao et al.), NeuralBody (Peng et al.), etc]

>SsSner



Hybrid Representations

« Multiplanar Images Pros:

* More compact than 3D dense grids
e Compatibility with 2D pipelines (2D CNNs)

Cons:
* Resolution bias on plane axis

Aggregate from projections
on multiple 2D feature planes.

[Convolutional OccNet (Peng et al), EG3D (Chan et al.), etc]
\



Hybrid Representations

« Multiresolution Images  pros:

0O O O O * Multiple streaming levels of detail (LOD)
e Stable training
* Wider support region

)

Cons:

* More memory
)/1 * More complexity

O O O O

[NGLOD (Takikawa et al.), ACORN (Lindell et al.), Instant-NGP (Muller et al.), etc]
Prof. Niessner



Hybrid Representations

More hybrid representations:
e Hasn Grids (instant-NGP (Muller et al)]
e COoaebooK Grids ivariable Bitrate Neural Fields (Takikawa et al)l

° BQUﬂdiﬂg Volume Hierarchies iNeural Scene Graphs (Ost et ab),
Object-Centric Neural Scenes (Guo et al.), etc]



Key Components in Architectures

4 N N h

Input Activation
Encoding Functions

Representations




TUTi

Thanks for watching!



Some Slides adapted from..

« CVPR 2022 Tutorial on Neural Fields in Computer Vision
o Tutorial on Neural Fields in Computer Vision

from Towakl Takikawa, NVIDIA / University of Toronto
e Prior-based Reconstruction of Neural Flelds

from Prof. Vincent Sitzmann, MIT




