

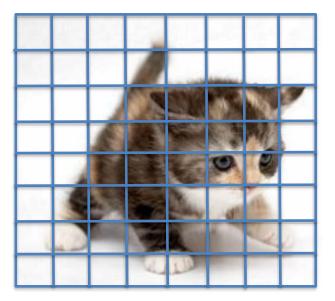
Neural Fields

Prof. Niessner

Images

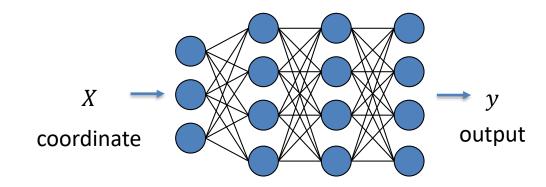
- Array of pixels
- x,y coordinates
- Maps to RGB value

 $Image(x, y) \rightarrow RGB$



MLPs

- MLP(x) > y
- X = coordinates (e.g., pixel or 3d coordinates)

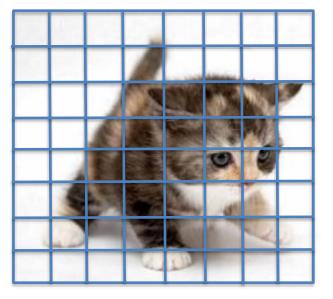


MLP <-> Image

• MLP can fit to image

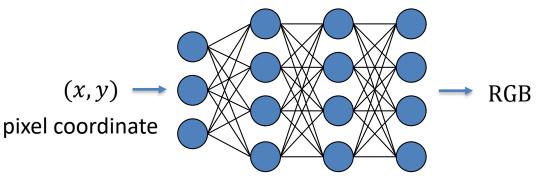
Image $(x, y) \rightarrow \text{RGB}$ MLP $(x, y) \rightarrow \text{RGB}$

$$\theta^* = \underset{\forall i,j}{\operatorname{argmin}} ||\operatorname{MLP}_{\theta}(x_i, y_i) - \operatorname{Image}(x, y)|$$



MLP as Datastructure

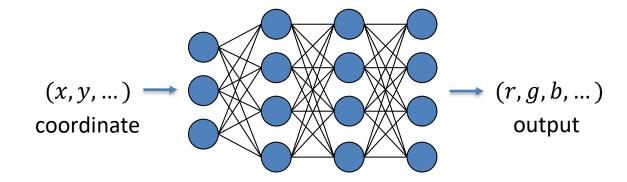
• Why do that?



- What if x,y coordinates are fractional?
- Smoothness / interpolation properties of MLP!

MLP as Datastructure

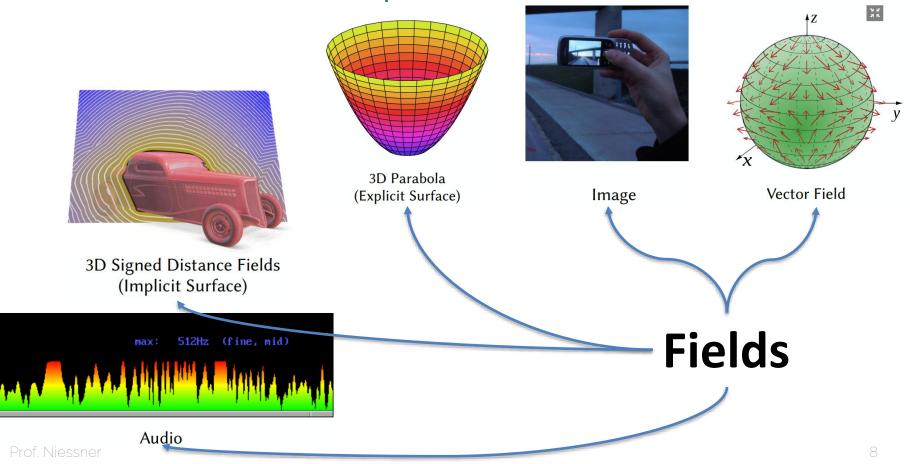
• Works in arbitrary dimensions



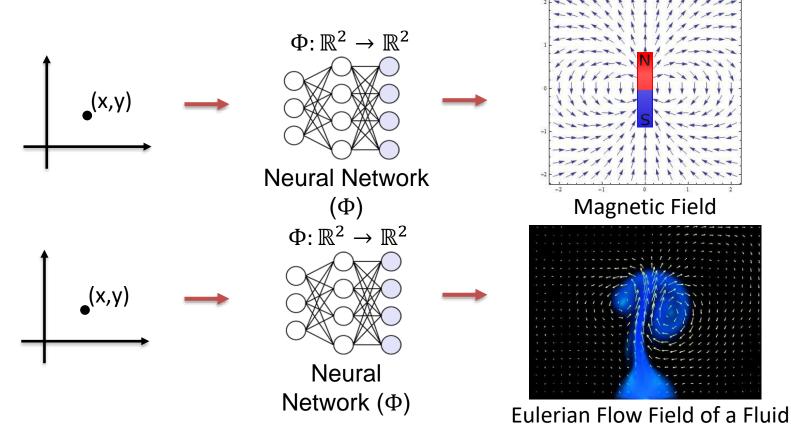
- Sparse encoding of signal!
- Shifts capacity where it needs it (based on optimization)

Neural Fields

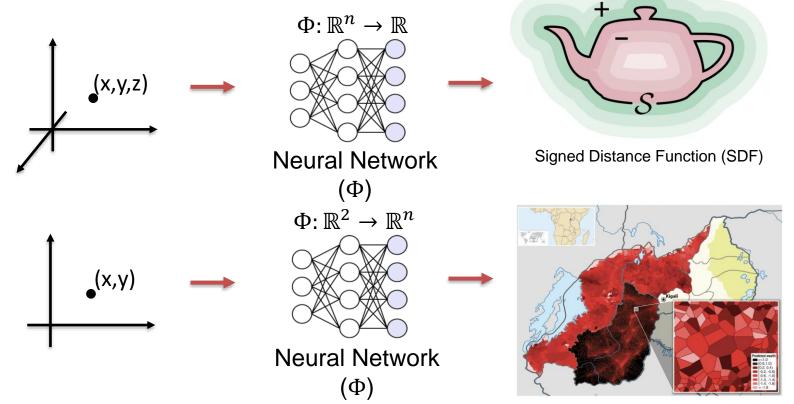
Example of fields



What are neural fields?



What are neural fields?



Geospatial Data [Blumenstock et al. 2015]

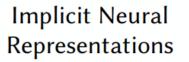
Prof. Niessner

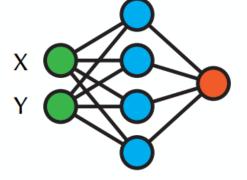
Definitions

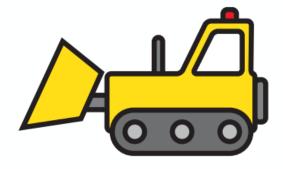
Definition 1: A field is a quantity defined for all spatial and / or temporal coordinates.

Definition 2: A *neural field* is a field that is parameterized fully or in part by a neural network.

Related Terminology & Misnomers







Coordinate-based Neural Networks

NeRFs

= Neural Radiance Fields

Neural **Radiance** Field is a type of neural field (see a detailed NeRF lecture in the next course!)

Implicit vs Explicit

• Remember, mathematically:

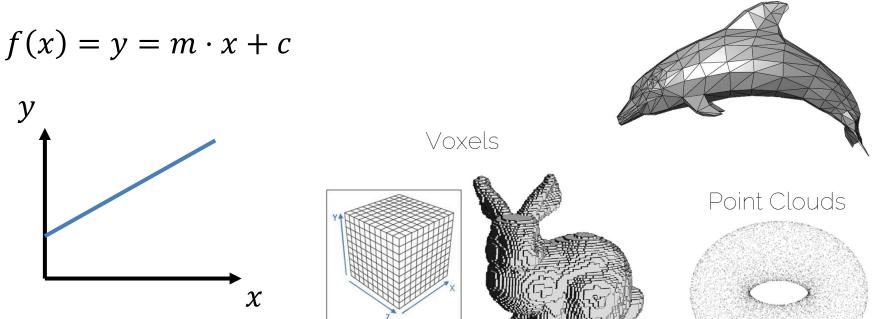
- Explicit function: f(x) = y
- Implicit function: $x^2 + y^2 1 = 0$

Implicit (Surfaces)

- Implicit form: $f(x, y, z): \mathbb{R}^3 \to \mathbb{R}$
- Surface is defined by the level set of the tri-variate scalar function f(x, y, z) = c
- Example: Hesse normal form $f(x, y, z) = \left(\begin{pmatrix} x \\ y \\ z \end{pmatrix} - \vec{p} \right) \cdot \vec{n} = 0$

Explicit (Surfaces)

• Explicit form:



Polygonal Meshes

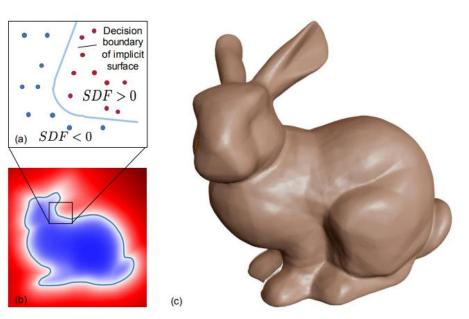
Signed Distance Fields

Signed Distance Fields (SDFs)

SDF(x) = D

x denotes any point sampled in 3D space. D is distance value from **x** to the surface.

D > 0 indicates x is outside of the shape
D < 0 indicates x is inside of the shape
D = 0 indicates the zero-level set (i.e., x is located on the surface.)



Signed Distance Fields vs Occupancy

ann()

Truncated Signed Distance Fields (TSDFs)

Occupancy Fields

$$TSDF(\mathbf{x}) = max(-1, min(1, \frac{SDF(\mathbf{x})}{t}))$$

$$Occ(x) = \mathbf{1}[SDF(x) \le 0]$$

$$TSDF(\mathbf{x}) = \begin{bmatrix} SDF(x) / t & -t < D < t \\ 1 & D > t \end{bmatrix} \xrightarrow{Occ}(\mathbf{x}) = \begin{bmatrix} 1 & SDF(x) <= 0 \\ 0 & SDF(x) > 0 \end{bmatrix}$$

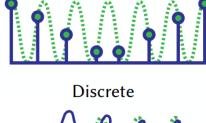
Why Neural Fields

There are many types of signals in natural world.

Natural Signals:

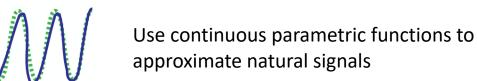
Continuous

Sampled Signals:



Neural

Neural Fields:



Prof. Niessner

Overfitting vs Generalization

Overfitting vs Generalization

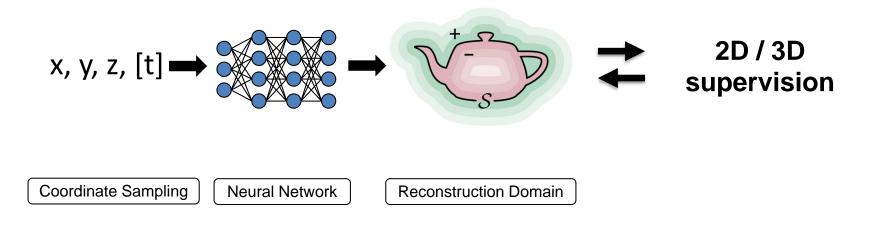
• Overfitting as a goal

• Overfitting as a debugging tool

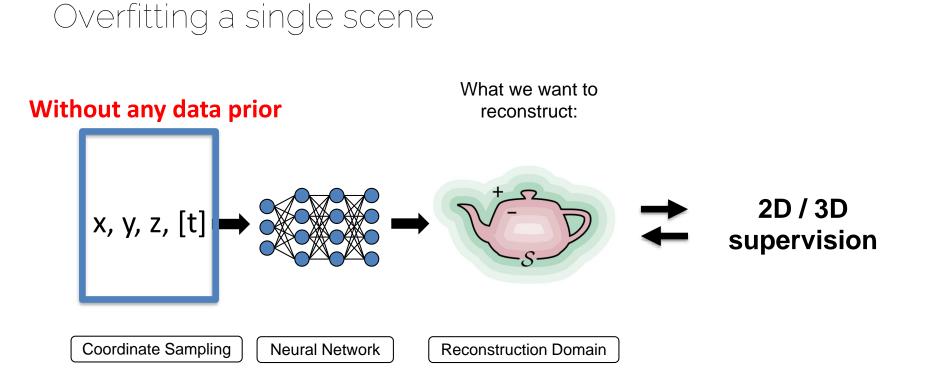
• Overfitting as an artifact

Overfitting a single scene

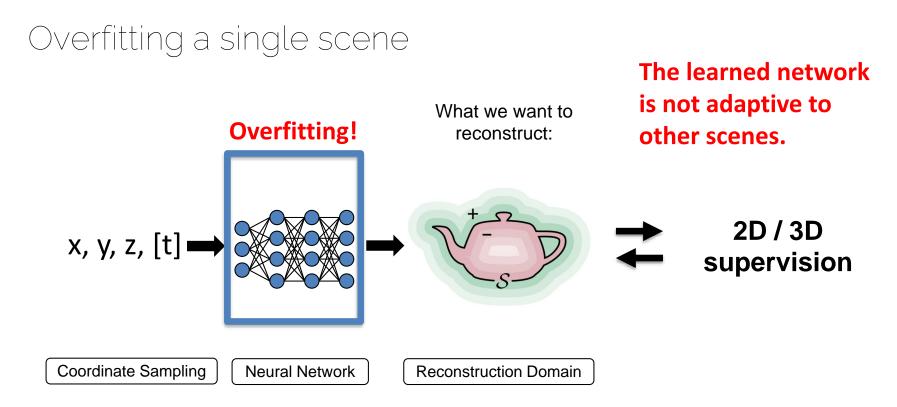
What we want to reconstruct:



Overfitting



Overfitting



Example: Scene Representation Networks

Overfitting a single scene from multi-view images

Input:

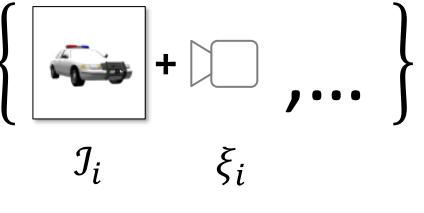
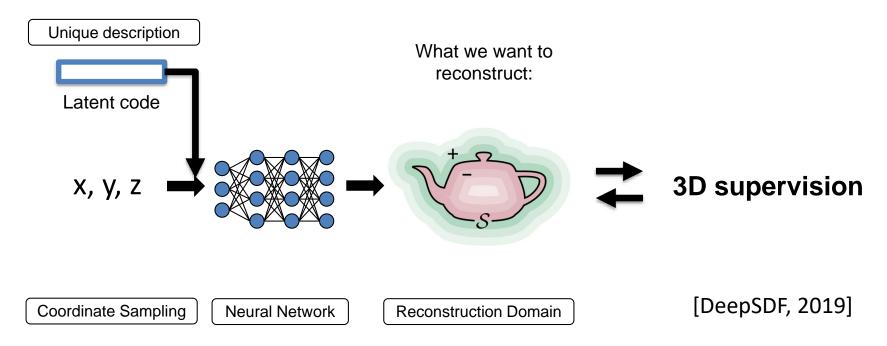
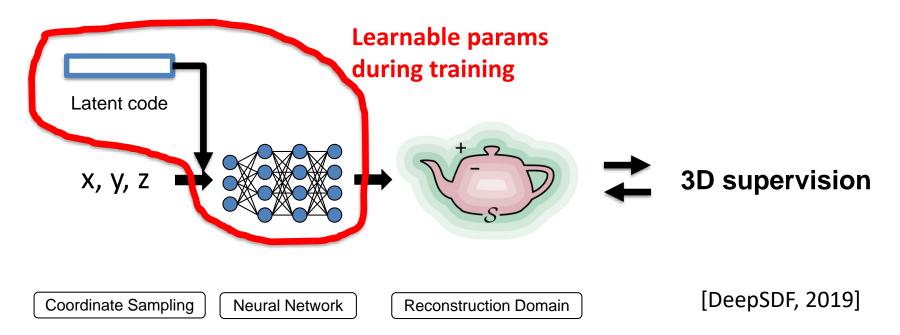


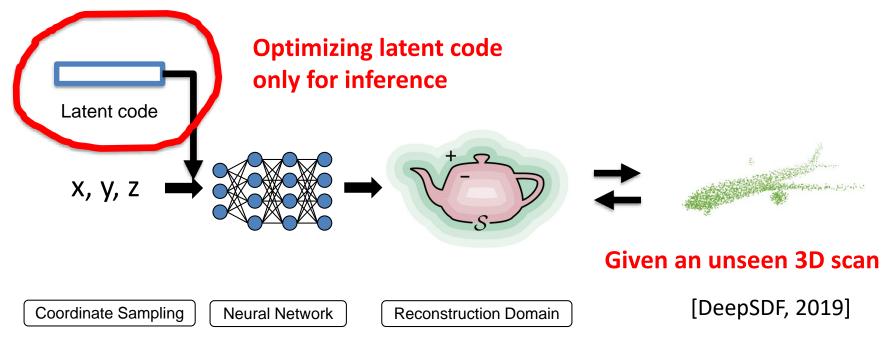
Image Camera parameter

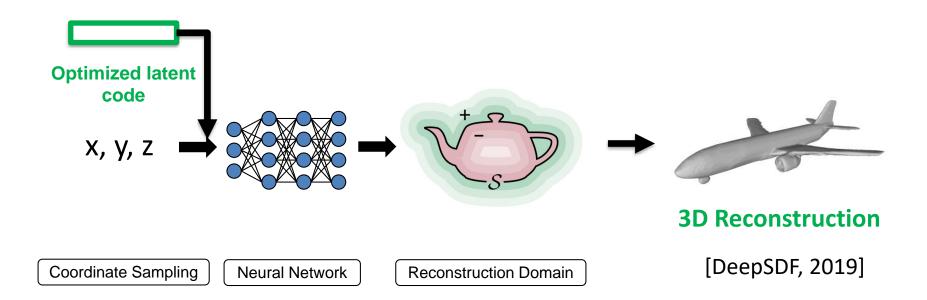
[Sitzmann et al, 2020]

Prof. Niessner



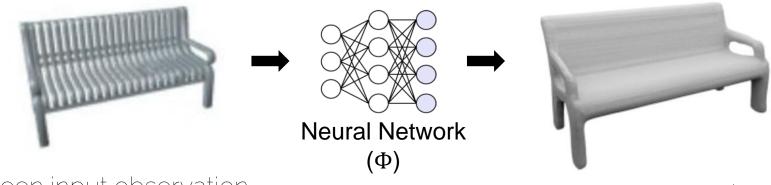






How to generalize?

What is generalization?



Reconstruction

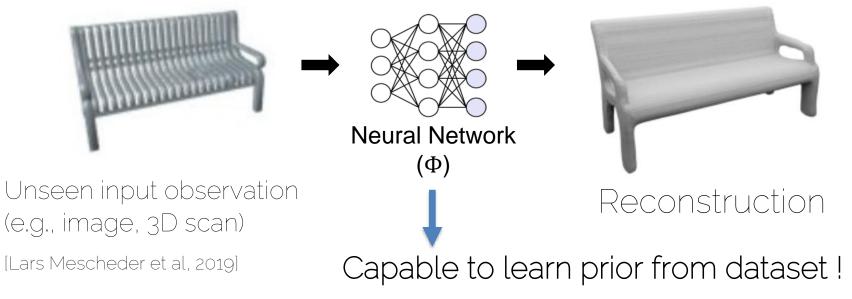
Unseen input observation (e.g., image, 3D scan)

[Lars Mescheder et al, 2019]

Prof. Niessner

How to generalize?

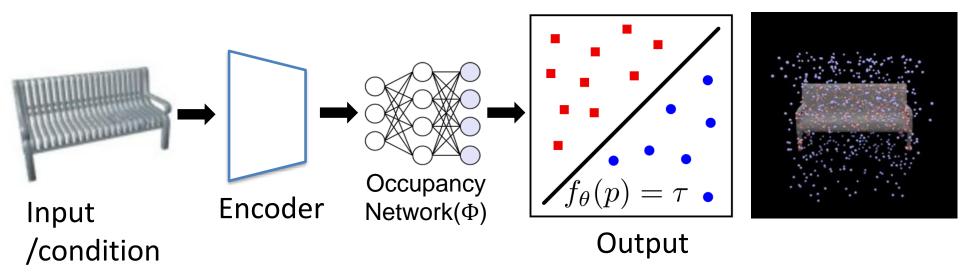
Able to infer from unseen input



Prof. Niessner

Occupancy Network

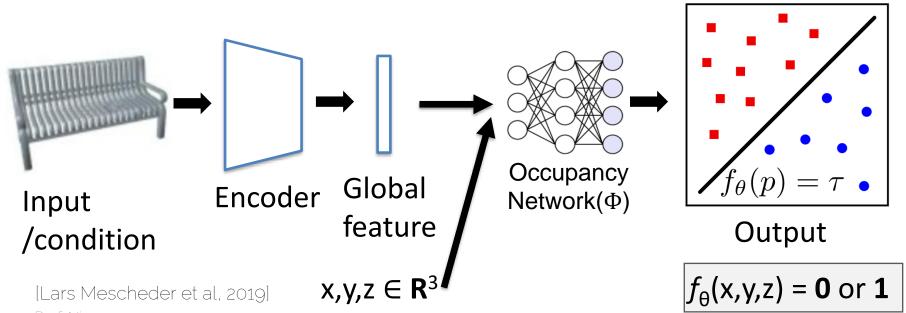
Target: Learning the occupancy field of a shape conditioned on different observations (e.g., images, point clouds)

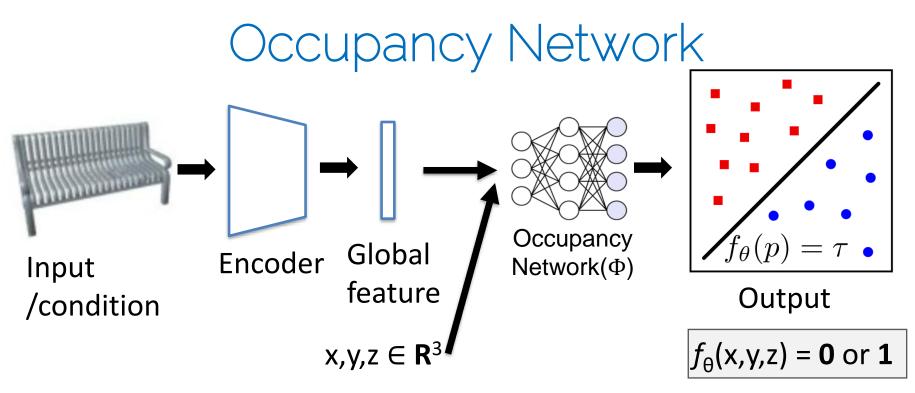


[Lars Mescheder et al, 2019] Prof. Niessner

Occupancy Network

Target: Learning the occupancy field of a shape conditioned on different observations (e.g., images, point clouds)

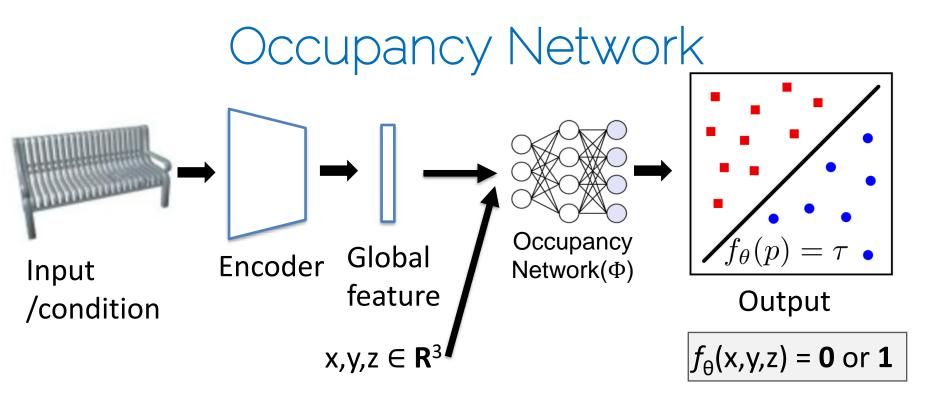




When *input* = *image*, *Encoder* = *ResNet*

When *input* = *point cloud*, *Encoder* = *PointNet*

[Lars Mescheder et al, 2019] Prof. Niessner



Occupancy Network: a fully-connected neural network with **5 ResNet blocks** and condition it on the input using **conditional batch normalization**.

[Lars Mescheder et al, 2019] Prof. Niessner

Encodings and Activations

Input Encoding

Why input encoding (or positional encoding)?

On the Spectral Bias of Neural Networks

Nasim Rahaman^{*12} Aristide Baratin^{*1} Devansh Arpit¹ Felix Draxler² Min Lin¹ Fred A. Hamprecht² Yoshua Bengio¹ Aaron Courville¹

Abstract

Neural networks are known to be a class of highly expressive functions able to fit even random input output mappings with 100% accuracy. In this work we present properties of neural networks that complement this aspect of expressivity. By using tools from Fourier analysis, we highlight a learning bias of deep networks towards low frequency functions - i.e. functions that vary globally without local fluctuations - which manifests itself as a frequency-dependent learning speed. Intuitively, this property is in line with the observation that over-parameterized networks prioritize learning simple patterns that generalize across data samples. We also investigate the role of the shape of the data manifold by presenting empirical and theoretical evidence that, somewhat counter-intuitively, learning higher frequencies gets easier with increasing manifold complexity.

1. Introduction

The remarkable success of deep neural networks at generalizing to natural data is at odds with the radiitional notions of model complexity and their empirically demonstrated ability to fit arbitrary random data to perfect accuracy (Zhang et al., 2017a, Arpit et al., 2017). This has prompted recent ininderest in the seming process which induce a has its towards low complexity solutions (Neyshabar et al., 2017). Solyabar et al., 2017; Pogot et al., 2018; Neyshabar et al., 2017).

In this work, we take a slightly shifted view on implicit regularization by suggesting that low-complexity functions are *learned faster* during training by gradient descent. We

¹Equal contribution ¹Mila, Quebec, Canada ²Image Analysis and Learning Lab, Ruprecht-Karls-Universitä Heidelberg, Germany. Correspondence to: Nasim Rahaman <nasim.rahaman@live.com>, Aristide Baratin <aristide.baratin@umontreal.ca>, Devansh Arpit (~devanshaprit@gmail.com>.

Proceedings of the 36th International Conference on Machine Learning, Long Beach, California, PMLR 97, 2019. Copyright 2019 by the author(s). expose this bias by taking a closer look at neural networks through the lens of Fourier analysis. While they can approximate arbitrary functions, we find that these networks prioritize learning the low frequency modes, a phenomenon we call the spectral bias. This bias manifests itself not just in the process of learning, but also in the parameterization of the model itself: in fact, we show that the lower frequency components of trained networks are more robust to random parameter perturbations. Finally, we also expose and analyze the rather intricate interplay between the spectral bias and the geometry of the data manifold by showing that high frequencies get easier to learn when the data lies on a lowerdimensional manifold of complex shape embedded in the input space of the model. We focus the discussion on networks with rectified linear unit (ReLU) activations, whose continuous piece-wise linear structure enables an analytic treatment

Contributions¹

- We exploit the continuous piecewise-linear structure of ReLU networks to evaluate its Fourier spectrum (Section 2).
- We find empirical evidence of a spectral bias: i.e. lower frequencies are learned first. We also show that lower frequencies are more robust to random perturbations of the network parameters (Section 3).
- 8. We study the role of the shape of the data manifold: we show how complex manifold shapes can facilitate the learning of higher frequencies and develop a theoretical understanding of this behavior (Section 4).

2. Fourier analysis of ReLU networks

2.1. Preliminaries

Throughout the paper we call 'ReLU network' a scalar function $f : \mathbb{R}^d \mapsto \mathbb{R}$ defined by a neural network with L hidden layers of widths $d_1, \cdots d_L$ and a single output neuron:

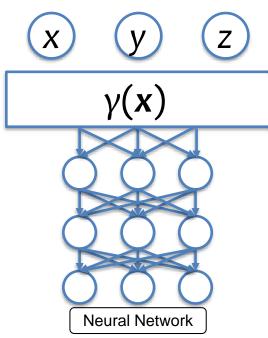
 $f(\mathbf{x}) = \left(T^{(L+1)} \circ \sigma \circ T^{(L)} \circ \cdots \circ \sigma \circ T^{(1)}\right)(\mathbf{x}) \quad (1)$ ¹Code: https://github.com/nasimrahaman/SpectralBias

Neural networks are biased to fit lower frequency signals for generalization (mising high dimensional details)

-> Involve input encoding to alleviate this issue by lifting coordinates into higher dimensional features.

Input Encoding

Positional Encodings



$$\gamma(\mathbf{x}) = [\gamma_1(\mathbf{x}), \gamma_2(\mathbf{x}), \dots, \gamma_m(\mathbf{x})]$$

$$\gamma_{(2i)}(x) = sin(2^{i-1}\pi x),$$

$$\gamma_{(2i+1)}(x) = cos(2^{i-1}\pi x)$$

Spatial coordinates are embedded to higher dimension with **sinusoidal functions**.

[Vaswani et al. 2017]

Input Encoding

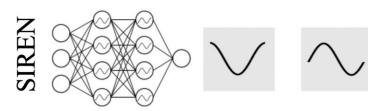
More Positional Encodings:

- 1. Random Fourier Encodings [Tancik et al. 2020]
- 2. One-blob Encodings [Müller et al. 2020]
- 3. Super Gaussian Encodings [Ramasinghe et al. 2021]

Activation Functions

SIREN VS ReLU





SIREN uses sinusoidal activation functions to fit high-frequency signals.

[Sitzmann et al. 2021]

Activation Functions

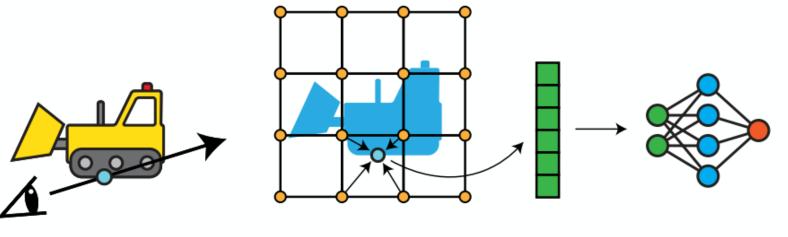
More activation functions

[Ramasinghe et al. 2021]

Activation (ψ)	Equation	parameterized	ψ'	$\psi^{\prime\prime}$	$\mathbf{R1}$	$\mathbf{R2}$
ReLU	$\max(0, x)$	×	$\begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{otherwise} \end{cases}$	0	x	×
PReLU	$\begin{cases} x, & \text{if } x > 0\\ ax, & \text{otherwise} \end{cases}$	\checkmark	$\begin{cases} 1, & \text{if } x > 0 \\ a, & \text{otherwise} \end{cases}$	0	~	×
Sin	$\sin(ax)$	\checkmark	$a\cos(ax)$	$-a^2\sin(ax)$	\checkmark	\checkmark
Tanh	$\frac{e^x - e^{-x}}{e^x + e^{-x}}$	×	$\frac{4\mathrm{e}^{2x}}{\left(\mathrm{e}^{2x}+1\right)^2}$	$-rac{8(\mathrm{e}^{2x}-1)\mathrm{e}^{2x}}{(\mathrm{e}^{2x}+1)^3}$	×	✓
Sigmoid	$\frac{1}{1+e^{-x}}$	×	$\frac{\mathrm{e}^x}{(\mathrm{e}^x+1)^2}$	$-\frac{(e^x-1)e^x}{(e^x+1)^3}$	×	\checkmark
SiLU	$\frac{x}{1+e^{-x}}$	×	$\frac{\frac{e^x}{(e^x+1)^2}}{\frac{e^x(e^x+x+1)}{(e^x+1)^2}}$	$-\frac{e^{e^{x}-1}e^{x}}{(e^{x}+1)^{a}} - \frac{e^{x}((x-2)e^{x}-x-2)}{(e^{x}+1)^{3}}}{(e^{e^{x}}x)^{a}} + \frac{e^{x}((x-2)e^{x}-x-2)}{(e^{e^{x}}x)^{a}}$	×	\checkmark
SoftPlus	$\frac{1}{a}\log(1+e^{ax})$	✓	$\frac{e^{cx^{1}}}{1+e^{cx}}$	$\frac{\frac{(e^{cx^{1/2}})}{(e^{cx}+1)^2}}{(e^{cx}+1)^2}$	✓	×
Gaussian	$e^{rac{-0.5x^2}{a^2}}$	\checkmark	$-\frac{xe^{-\frac{x^2}{2a^2}}}{a^2}$	$\frac{(x^2 - a^2)e^{-\frac{x^2}{2a^2}}}{a^2}$	~	\checkmark
Quadratic	$\frac{1}{1+(ax)^2}$	✓	$-\frac{\frac{a^2}{2a^2x}}{\frac{a^2x^2+1}{a^2x}}$	$\frac{2a^2 \left(3a^2 x^2 - 1\right)}{\left(a^2 x^2 + 1\right)^3}$	1	✓
Multi Quadratic	$\frac{1}{\sqrt{1+(ax)^2}}$	\checkmark	$-\frac{a^2x}{(a^2x^2+1)^{\frac{3}{2}}}$	$\frac{(a^2x^2+1)^3}{(a^2x^2-a^2)} \\ \frac{2a^4x^2-a^2}{(a^2x^2+1)^{\frac{5}{2}}} \\ \frac{e^{\frac{ x }{a}}}{a^2} $	~	✓
Laplacian	$e^{\left(\frac{- x }{a}\right)}$	\checkmark	$\frac{-\frac{a^2 x^2}{\left(a^2 x^2+1\right)^{\frac{3}{2}}}}{\frac{xe^{\frac{ x }{a}}}{a x }}$	$\frac{\frac{ x }{a}}{a^2}}{ba^2}$	~	✓
Super-Gaussian	$[e^{\frac{-0.5x^2}{a^2}}]^b$	\checkmark	$\frac{bxe^{-\frac{bx^2}{2a^2}}}{\sin(ax)^{a^2}}$	$\frac{b(bx^2-a^2)e^{-\frac{bx^2}{2a^2}}}{a^4}$	1	✓
ExpSin	$e^{-\sin(ax)}$	✓	$ae^{\sin(ax)}\cos(ax)$	$-a^{2}\mathrm{e}^{\sin(ax)}\left(\sin^{a^{4}}(ax) - \cos^{2}(ax)\right)$	\checkmark	\checkmark

Table 1: Comparison of existing activation functions (top block) against the proposed activation functions (bottom block). The proposed activations and the sine activations fulfill **R1** and **R2**, implying better suitability to encode high-frequency signals.

• Uniform Grids



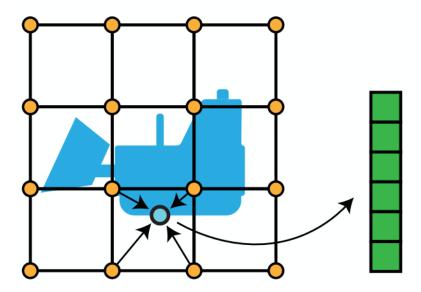
Ray Query Point

Feature Grid Interpolation

Tiny Neural Network 😊

[PIFu (Saito et al.), Neural Volumes (Lombardi et al.), etc]

• Uniform Grids



Pros:

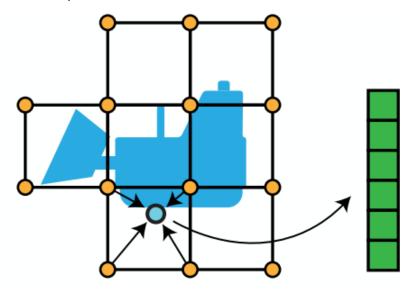
- Easy to implement
- Algorithmically fast access [O(1)]
- Established operations like convolutions
- Simple topology

Cons:

- Expensive in memory and bandwidth
- Limited by Nyquist

[PIFu (Saito et al.), Neural Volumes (Lombardi et al.), etc]

• Sparse Grids



Pros:

- Memory Efficient
- Algorithmically efficient access [O(log(n))]
- GPU-compatible data structures
- Established operations like sparse 3D convs

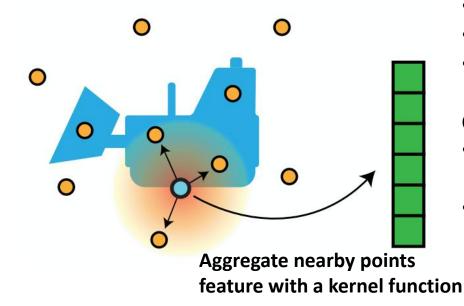
Cons:

- Need to manage a complex data structure
- Topology hard to generate (sparse grids)
- Still limited by Nyquist
- Sparse support region (have undefined points in space)

[DeepLS (Chabra et al.), NSVF (Liu et al.), NGLOD (Takikawa et al.), etc]

Prof. Niessner

• Point Clouds



Pros:

- Not limited by Nyquist
- Can be densely supported in space
- Expressive

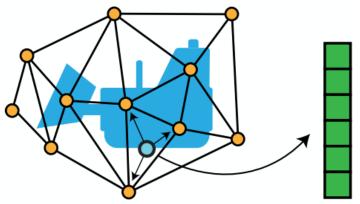
Cons:

- Often needs complex data structures for fast access and interpolation
- Heavily affected by choice of kernel

[Liu et al. 2019, LDIF (Genova et al.), 3DILG (Zhang et al.) etc]

Prof. Niessner

Mesh



Interpolate nearby points on a face.

Pros:

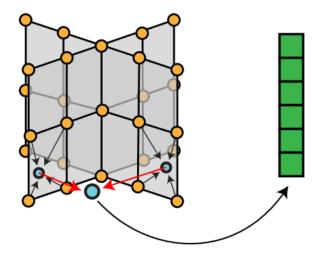
- Not limited by Nyquist
- Can use the rich sets of tools in mesh processing

Cons:

- Is a mesh (difficult to process with NNs)
- Non-trivial data access especially in 3D

[DefTet (Gao et al.), NeuralBody (Peng et al.), etc]

• Multiplanar Images



Pros:

- More compact than 3D dense grids
- Compatibility with 2D pipelines (2D CNNs)

Cons:

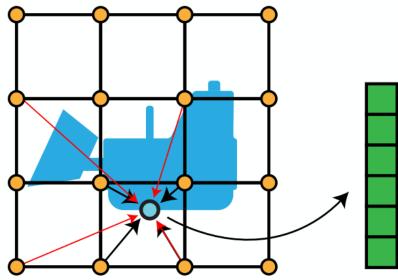
• Resolution bias on plane axis

Aggregate from projections on multiple 2D feature planes.

[Convolutional OccNet (Peng et al), EG3D (Chan et al.), etc]

Prof. Niessner

Multiresolution Images



Pros:

- Multiple streaming levels of detail (LOD)
- Stable training
- Wider support region

Cons:

- More memory
- More complexity

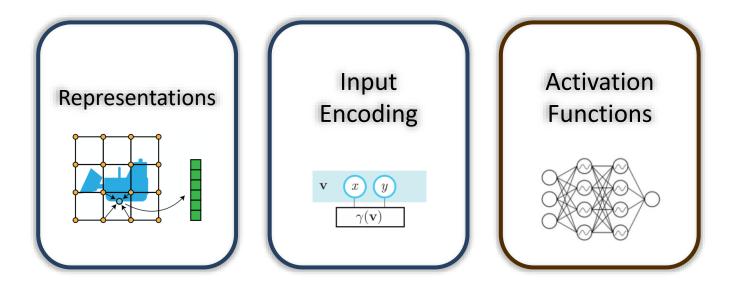
[NGLOD (Takikawa et al.), ACORN (Lindell et al.), Instant-NGP (Muller et al.), etc]

More hybrid representations:

- Hash Grids [Instant-NGP (Muller et al.)]
- Codebook Grids [Variable Bitrate Neural Fields (Takikawa et al.)]
- Bounding Volume Hierarchies [Neural Scene Graphs (Ost et al), Object-Centric Neural Scenes (Guo et al.), etc]

....

Key Components in Architectures



Thanks for watching!

Some Slides adapted from...

- CVPR 2022 Tutorial on Neural Fields in Computer Vision
- Tutorial on Neural Fields in Computer Vision

from <u>Towaki Takikawa, NVIDIA / University of Toronto</u>

• Prior-based Reconstruction of Neural Fields

from Prof. <u>Vincent Sitzmann, MIT</u>