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Neural Radiance 
Fields (NeRF)
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Capturing Reality
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The first photograph in Germany was 
taken in 1837 - Frauenkirche in Munich.

The photo is only 4 x 4cm large and 
was taken by Franz von Kobell, two 
years earlier than previously assumed.
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Capturing Reality
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First self-portrait Cornelius 1839

First Movie - Muybridge 1878
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Capturing Reality – in 3D
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Building Rome in a Day, Agarwal et al. ICCV 2009 
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Capturing Reality – in 3D
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Google Earth 2016~
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Capturing Reality – in 3D
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Neural Radiance Fields (NeRF), Mildenhall et al., ECCV 2020
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NeRF Problem Statement
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Input:
A set of calibrated RGB images

Output:
A 3D scene representation that 

renders novel views
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Three Key Components
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Neural Volumetric 3D
Scene Representation

Differentiable Volumetric
Rendering Function

Optimization via
Analysis-by-Synthesis

Objective: Synthesize
all input views



Prof. Niessner

Representing a 3D Scene as a 
continuous 5D Function
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 The color emitted by every point is composited to render a pixel
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Neural Volumetric Rendering

What color is this pixel?

computing color 
along rays through 3D 

space
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Neural Volumetric Rendering
continuous, differentiable 
rendering model without 

concrete ray/surface 
intersections
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Neural Volumetric Rendering
using a neural network as 
a scene representation, 

rather than a voxel grid of 
data

Scene 
properties

(𝑥, 𝑦, 𝑧)
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Calculating Points along a Camera
Ray
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Scalar 𝑡 controls 
distance along the ray

Camera with known intrinsics and extrinsics, 
e.g., from Structure from Motion (SfM)
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Volumetric Formulation for NeRF
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Scene is a cloud of tiny colored particles
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Volumetric Formulation for NeRF
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If a ray traveling through the scene 
hits a particle at distance 𝑡 along 
the ray, we return its color 𝐜(𝑡)

Camera

Ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝
𝐜(𝑡)

𝑡
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What does it mean for a ray to “hit” 
the volume?
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This notion is probabilistic: chance that ray hits 
a particle in a small interval around 𝑡 is 𝜎(𝑡)𝑑𝑡.
𝜎 is called the “volume density”

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡𝑡
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Probabilistic Interpretation
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To determine if 𝑡 is the first hit along the 
ray, need to know 𝑇(𝑡): the probability that 
the ray makes it through the volume up to 𝑡.
𝑇(𝑡) is called “transmittance”

𝑃[no hits before 𝑡] = 𝑇(𝑡)

𝑡
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Probabilistic Interpretation
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The product of these probabilities tells us how much you 
see the particles at 𝑡:
𝑃[first hit at 𝑡] = 𝑃[no hit before 𝑡] × 𝑃[hit at 𝑡]
= 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡𝑡

𝑃[no hits before 𝑡] = 𝑇(𝑡)
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Calculating Transmittance 𝑇 given 𝜎
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If 𝜎 is known, 𝑇 can be computed… How?

𝑡

𝑃[no hits before 𝑡] = 𝑇(𝑡)
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Calculating Transmittance 𝑇 given 𝜎
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𝜎 and 𝑇 are related by the probabilistic fact that
𝑃 no hit before 𝑡 + 𝑑𝑡 = 𝑃 no hit before 𝑡 × 𝑃 no hit at 𝑡

𝑇 𝑡 + 𝑑𝑡 = 𝑇(𝑡) × (1 − 𝜎(𝑡)𝑑𝑡)

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡𝑡

𝑃[no hits before 𝑡] = 𝑇(𝑡)
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Solve for 𝑇
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Taylor expansion for 𝑇 ⇒ 𝑇(𝑡) + 𝑇′(𝑡)𝑑𝑡 = 𝑇(𝑡) − 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

𝑇(𝑡 + 𝑑𝑡) = 𝑇(𝑡)(1 − 𝜎(𝑡)𝑑𝑡)

Rearrange ⇒
𝑇′(𝑡)

𝑇(𝑡)
𝑑𝑡 = −𝜎(𝑡)𝑑𝑡

Integrate ⇒ log𝑇(𝑡) = −∫𝑡0
𝑡
𝜎(𝑠)𝑑𝑠

Exponentiate ⇒ 𝑇(𝑡) = exp −∫𝑡0
𝑡
𝜎(𝑠)𝑑𝑠
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PDF for Ray Termination
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Finally, we can write the probability that a ray terminates at 𝑡 as a 
function of only sigma: 

𝑃[first hit at 𝑡] = 𝑃[no hit before 𝑡] × 𝑃[hit at 𝑡]

= exp −∫𝑡0
𝑡
𝜎(𝑠)𝑑𝑠 𝜎(𝑡)𝑑𝑡

= 𝑇(𝑡)𝜎(𝑡)𝑑𝑡

𝑃[hit at 𝑡] = 𝜎(𝑡)𝑑𝑡𝑡

𝑃[no hits before 𝑡] = 𝑇(𝑡)
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Expected Value of Color along Ray
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This means the expected color returned by the ray will be 

∫𝑡0
𝑡1
𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡

Note the nested integral!
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Approximating the nested Integral

26

𝑡𝑁

𝑡1

𝑡𝑛+1

𝑡𝑖

𝛿𝑖

We use quadrature to approximate the nested integral, 
splitting the ray up into 𝑛 segments with endpoints 𝑡1, 𝑡2, … , 𝑡𝑛+1
with lengths 𝛿𝑖 = 𝑡𝑖+1 − 𝑡𝑖
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Approximating the nested Integral
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Approximation with quadrature rule is described in 
[Max, N 1995] Optical models for direct volume rendering

𝑡𝑁

𝐜𝑖 , 𝜎𝑖

𝑡𝑖

We assume volume density and color 
are roughly constant within each interval. 
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Resulting Estimate of the Volume 
Rendering Integral

Rendering model for ray 𝐫(𝑡) = 𝐨 + 𝑡𝐝:

How much light is blocked earlier along ray:

How much light is contributed by ray segment i:

28

colors
weights

𝐜 ≈ ∑
𝑖=1

𝑛

𝑇𝑖𝛼𝑖𝐜𝑖

𝑇𝑖 = ∏
𝑗=1

𝑖−1

(1 − 𝛼𝑗)

𝛼𝑖 = 1 − exp(−𝜎𝑖𝛿𝑖)

differentiable w.r.t. 𝐜, 𝜎

3D Volume

𝑡𝑁

Camera

Ray

𝑡𝑛+1

𝑡1 𝑇𝑖

𝛼𝑖

𝑡𝑖
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Rendering weight PDF is important
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Remember, expected color is equal to

∫ 𝑇(𝑡)𝜎(𝑡)𝐜(𝑡)𝑑𝑡 ≈ ∑
𝑖
𝑇𝑖𝛼𝑖𝐜𝑖

𝑇(𝑡)𝜎(𝑡) and 𝑇𝑖𝛼𝑖 are “rendering weights” — probability distribution 
along the ray (continuous and discrete, respectively)



Prof. Niessner

Rendering weight is not just 3D function
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3D volume

𝑡𝑁

Camera

Ray

Rendering weights are not a 3D function —
depends on ray, because of transmittance!
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Rendering weight is not just 3D function
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3D volume

Rendering weights are not a 3D function —
depends on ray, because of transmittance!

Camera

Ray
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Rendering weight PDF is important –
Depth
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We can use this distribution to compute expectations for other 
quantities, e.g. “expected depth”:

𝑡 = ∑
𝑖
𝑇𝑖𝛼𝑖𝑡𝑖

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like median can be used.
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Rendering weight PDF is important –
Depth

33

33

Mean depth Median depth
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Volume Rendering other Quantities
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This idea can be used for any quantity we want to “volume render” into a 
2D image. If 𝐯 lives in 3D space (semantic features, normal vectors, etc.)

∑
𝑖
𝑇𝑖𝛼𝑖𝐯𝑖

can be taken per-ray to produce 2D output images.
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Density as Geometry
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Normal vectors (from analytic gradient of density)
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Representing a 3D Scene as a 
continuous 5D Function
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 The color emitted by every point is composited to render a pixel
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NeRF Results

37
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Supervision of 
Neural Fields

38
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Representation in NeRFs
• Input Domain
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(x, y, z, θ, φ) for every point sampled in a ray

Spatial
Coordinates

View
Direction

[See detailed intro in the following course]
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Representation in NeRFs
• Output Domain
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(R,G,B, σ)
RGB color +
Density value ∈ [0,1]

(x, y, z, θ, φ)

Spatial
Coordinates

View
Direction

Neural Network
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General Architectures
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Coordinate Sampling Neural Network

Spatial

Temporal

t

yx

z

A forward pass

x, y, z,
[t], …

What we want to 
reconstruct:

Radiance Field

Reconstruction Domain

Or Signed Distance / 

Occupancy Field / …

(R,G,B, σ) for all 
points
*Density value σ ∈
[0,1]

Signed distance
/Occupancy
/…
for all points
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If have 2D supervision
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What we want to 
reconstruct:

What we can 
measure:

The bridge:

forward maps

Supervision

Depth Normal

RGB Image

Sensor DomainCoordinate Sampling

Spatial

Temporal

t

yx

z

Neural Network Forward Map

Volume Rendering

Sphere Tracing

Radiance Field

Reconstruction Domain

Signed Distance Field

Reconstruction Domain Forward Map Sensor Domain

Training process
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If have 2D supervision
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What we want to 
reconstruct:

What we can 
measure:

The bridge:

forward maps

Supervision

Depth Normal

RGB Image

Sensor DomainCoordinate Sampling

Spatial

Temporal

t

yx

z

Neural Network Forward Map

Volume Rendering

Sphere Tracing

Radiance Field

Reconstruction Domain

Signed Distance Field

Reconstruction Domain Forward Map Sensor Domain

Training process

The forward 

map is usually a 

neural renderer
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If have 3D supervision
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What we want to 
reconstruct:

What we have:The bridge:

forward maps

Supervision

Coordinate Sampling

Spatial

Temporal

t

yx

z

Neural Network Forward Map

Volume Rendering

Sphere Tracing

Radiance Field

Reconstruction Domain

Signed Distance Field

Reconstruction Domain Forward Map Sensor Domain

෡𝟏 Ground-truth 

3D field

Training process
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Back to NeRFs
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MLPs are not required…
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Yu et al. “Plenoxels: Radiance Fields without Neural Networks“ CVPR 2022
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But MLPs are convenient
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Feature grid

Position

View direction

Appearance embedding

Time MLP
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NeRF Challenges

48
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Relaxing the Assumptions
• Unknown or inaccurate camera poses
• Dynamic scene
• Dynamic lighting
• Generalization

49
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Camera Pose Optimization
Small noise in the camera can be made robust by also 
optimizing the camera

50

Camera

So far we’ve been 
optimizing this

Also do backdrop on 
the camera parameters
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Camera Pose Optimization
Small noise in the results can be improved:

Optimizing poses from scratch is still challenging. 
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Noisy Camera from IMU/Lidar Result with Camera Optimization

Lin et al. ”BARF: Bundle-Adjusting Neural Radiance Fields” ICCV 2021
Wang et al. “NeRF--: Neural Radiance Fields Without Known Camera Parameters” 2021
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Relaxing the Assumptions
• Unknown or inaccurate camera poses
• Dynamic scene
• Dynamic lighting
• Generalization

52
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Dynamic Novel View Synthesis
Simple baseline for adding time

Hard without simultaneous multiple view!

53
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Dynamic Novel View Synthesis
Through a deformation network

Still very under constrained

54

Deformation network NeRF

Canonical
coordinate frame

Pumarola et al. ”D-NeRF: Neural Radiance Fields for Dynamic Scenes” CVPR 2021
Park et al. “Nerfies: Deformable Neural Radiance Fields” ICCV 2021
Tretschk et al. “Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synthesis of a Dynamic Scene From Monocular Video” ICCV 2021
Park et al. “A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields” ACM Trans. Graph. 2021
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Dynamic Novel View Synthesis

In-the-wild monocular capture still hard: 

55

Pumarola et al. ”D-NeRF: Neural Radiance Fields for Dynamic Scenes” CVPR 2021
Gao et al. “Monocular Dynamic View Synthesis: A Reality Check” NeurIPS 2022
Park et al. “Nerfies: Deformable Neural Radiance Fields” ICCV 2021
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Dynamic Novel View Synthesis
Using prior knowledge about the deformations (e.g., 
human body model) helps to better constrain the
problem:

56

Weng et al. ”HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular Video” CVPR 2021
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Dynamic Novel View Synthesis
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Gafni et al. ”NeRFace: Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction
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Relaxing the Assumptions
• Unknown or inaccurate camera poses
• Dynamic scene
• Dynamic lighting
• Generalization

58
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Appearance Changes
• Exposure differences
• Lighting changes (day, night)
• Clouds passing by

59

Martin-Brualla et al. ”NeRF in the Wild Neural Radiance Fields for Unconstrained Photo Collections” CVPR 2021
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Appearance Embedding
Pretty robust solution:
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N-dim vector optimized per image: “Auto-Decoding” 
i.e. GLO: Generative Latent Optimization [Bojanowski et al. ICML 2018]

Appearance embedding

Martin-Brualla et al. ”NeRF in the Wild Neural Radiance Fields for Unconstrained Photo Collections” CVPR 2021

https://arxiv.org/search/stat?searchtype=author&query=Bojanowski,+P
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Appearance Embedding Interpolation
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Martin-Brualla et al. ”NeRF in the Wild Neural Radiance Fields for Unconstrained Photo Collections” CVPR 
2021
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Relaxing the Assumptions
• Unknown or inaccurate camera poses
• Dynamic scene
• Dynamic lighting
• Generalization

62
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Generalization - Few-shot NeRF
• One-shot (single-view): pixelNeRF

63

NeRFpixelNeRF

Yu et al. ”pixelNeRF: Neural Radiance Fields from One or Few Images” CVPR 2021
Chen et al. “MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo” ICCV 
2021

• Few-shot (3~10 views): pixelNeRF, MVSNet, …

• Challenging for predicting completely unseen real scenes

3 input views:
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NeRF vs 3D Meshes
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What’s beyond 
NeRF?

65
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3D Gaussian Splatting

66
[Kerbl et al 2023, Siggraph] 3D Gaussian Splatting for Real-time Radiance Field Rendering
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3D Gaussian Splatting
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[Kerbl et al 2023, Siggraph] 3D Gaussian Splatting for Real-time Radiance Field Rendering
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Reading Homework
• [Mildenhall et al. 2020] NeRF: Representing Scenes as Neural 

Radiance Fields for View Synthesis
– https://arxiv.org/pdf/2003.08934.pdf

• [Müller at al. 2022] Instant Neural Graphics Primitives with a 
Multiresolution Hash Encoding
– https://arxiv.org/pdf/2201.05989.pdf

• [Kerbl et al 2023, Siggraph] 3D Gaussian Splatting for 
Real-time Radiance Field Rendering
– https://arxiv.org/pdf/2308.04079.pdf

68

https://arxiv.org/pdf/2003.08934.pdf
https://arxiv.org/pdf/2201.05989.pdf
https://arxiv.org/pdf/2308.04079.pdf
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Literature
[Mildenhall et al. 2020] NeRF: Representing Scenes as 
Neural Radiance Fields for View Synthesis
• Volume rendering

– [Max, N 1995] Optical models for direct volume 
rendering

• Positional encoding
– [Tancik at al. 2020] Fourier Features Let Networks 

Learn High Frequency Functions in Low Dimensional 
Domains

69
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Literature
• NeRF compression techniques, fast NeRFs

– [Lui et al. 2020] Neural Sparse Voxel Fields
– [Yu et al. 2022] Plenoxels: Radiance Fields without Neural 

Networks
– [Sun et al. 2022] Direct Voxel Grid Optimization: Super-fast 

Convergence for Radiance Fields Reconstruction
– [Chen et al. 2022] TensoRF Tensorial Radiance Fields
– [Müller et al. 2022] Instant Neural Graphics Primitives with 

a Multiresolution Hash Encoding

70
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Literature
• NeRF for unbounded scenes

– [Barron et al. 2022] Mip-NeRF 360: Unbounded Anti-
Aliased Neural Radiance Fields

• NeRF with unknown camera poses
– [Lin et al. 2021] BARF: Bundle-Adjusting Neural 

Radiance Fields
– [Wang et al. 2021] NeRF--: Neural Radiance Fields 

Without Known Camera Parameters

71



Prof. Niessner

Literature
• Dynamic NeRFs

– [Pumarola et al. 2021] D-NeRF: Neural Radiance Fields for 
Dynamic Scenes

– [Park et al. 2021] Nerfies: Deformable Neural Radiance Fields
– [Tretschk et al. 2021] Non-Rigid Neural Radiance Fields: 

Reconstruction and Novel View Synthesis of a Dynamic Scene 
From Monocular Video

– [Park et al. 2021] A Higher-Dimensional Representation for 
Topologically Varying Neural Radiance Fields

– [Gao et al. 2022] Monocular Dynamic View Synthesis: A Reality 
Check

72
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Literature
• NeRF with appearance embedding

– [Martin-Brualla et al. 2021] NeRF in the Wild Neural 
Radiance Fields for Unconstrained Photo Collections

• Generalizable NeRFs, few-shot NeRFs
– [Yu et al. 2021] pixelNeRF: Neural Radiance Fields 

from One or Few Images
– [Chen et al. 2021] MVSNeRF: Fast Generalizable 

Radiance Field Reconstruction from Multi-View 
Stereo

73
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Thanks for watching!
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Some Slides adapted from…
• NeRF Tutorial ECCV 2022, Matt Tancik, Ben 

Mildenhall, Pratul Srinivasan, Jon Barron, Angjoo
Kanazawa
– https://sites.google.com/berkeley.edu/nerf-

tutorial/home

75

https://sites.google.com/berkeley.edu/nerf-tutorial/home

