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Neural Radiance
-lelds (NeRF)




The first photograph in Germany was
taken in 1837 - Frauenkirche in Munich,

The photo is only 4 x 4cm large and
was taken by Franz von Kobell, two
years earlier than previously assumed.
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Capturing Reality

St L i
First Movie - Muybridge 1878

First self-portrait Cornelius 1839
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Capturing Reality - In 3D

Bullding Rome in a Day, Agarwal et al. ICCV 2009
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Capturing Reality — in 3D

Neural Radiance Fields (NeRF), Mildenhall et al., ECCV 2020



NeRF Problem Statement

INnput: Output:
A set of calibrated RGB images A 3D scene representation that
renders novel views

Prof. Niessner



Three Key Components
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Representing a 3D Scene as a
continuous 5D Function

()C y,Z,Q ¢)_>III_>(7' g,b O')

Spatlal ||||| utput Output
location direction Q Gc:-lor density
MLP
9 layers,

256 channels
-2 The color emitted by every point Is composited to render a pixel
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Rendering

computing color
along rays through 3D
space

L —

What color is this pixel?
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Volumetric

continuous, differentiable
rendering model without
concrete ray/surface
iNntersections
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Neural

using a neural network as

a scene representation,

rather than a voxel grid of
data

scene
oroperties




Calculating Points along a Camera
Ray

O
O

O
o o +.td

\

O Scalar t controls

| - - distance along the ray
Camera with known Intrinsics and extrinsics,

e g., from Structure from Motion (5fM)



Volumetric Formulation for NeRF

-

Scene is a cloud of tiny colored particles



Volumetric Formulation for NeRF

c(t) Rayr(t) =o+td

Camera |
f a ray traveling through the scene

nits a particle at distance t along
the ray, we return its color ¢(t)

Prof. Niessner
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What does it mean for a ray to "hit’
the volume?

P[nit at t] = o(t)dt

This notion Is probabilistic: chance that ray hits
a particle in a small interval around t is a(t)dt.
o Is called the 'volume density’

Prof. Niessner



Probabilistic Interpretation

P[no hits before t] = T(t)

To determine If t Is the first hit along the
ray, need to know T(t): the probability that
the ray makes it through the volume up to t.
T(t) is called 'transmittance’

Prof. Niessner



Probabilistic Interpretation

P[no hits before t] = T(t)
P[nit at t] = a(t)dt

The product of these probabilities tells us how much you
see the particles at t

P[first hit at t] = P[no hit before t] X P[Nit at t]
=T(t)o(t)dt



Calculating Transmittance T given o

P[no hits before t] = T(t) : '/

f o Is known, T can be computed.. How?




Calculating Transmittance T given o

P[no hits before t] = T(t)
P[nit at t] = a(t)dt

o and T are related by the probabilistic fact that
P[no nit before t + dt] = P[no nhit before t] X P[no hit at t]
T(t+dt) =T(t) X (1 —o(t)dt)



Solve for T

T(t + dt) = T(t)(1 — a(t)dt)

TaylorexpansionforT = T(t) + T'(t)dt = T(t) — T(t)o(t)dt

' ..
Rearrange = 0 dt = —oa(t)dt

ntegrate = logT(t) = —fttoa(s)ds

=xponentiate = T(t) = exp (—fttoa(s)ds)



PDF for Ray Termination

P[no hits before t] = T(t)
P[nit at t] = o(t)dt

Finally, we can write the probability that a ray terminates at t as a
function of only sigma:
P[first hit at t] = P[no nit before t] x P[Nit at t]

= T(t)o(t)dt

= exp (—ftt)a(s)ds) o(t)dt



-xpected Value of Color along Ray

This means the expected color returned by the ray will be

INIGEGEGL:

Note the nested integral!



Approximating the nested Integral

4

We use quadrature to approximate the nested integral,
splitting the ray up Into n segments with endpoints {ty, ty, ..., th+1}
with lengths 8; =t — t;
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Approximating the nested Integral

Ci, 0;

We assume volume density and color
‘ are roughly constant within each interval

Approximation with guadrature rule is described in
[IMax, N 1995] Optical models for direct volume rendering

Prof. Niessner 27



Resulting Estimate of the Volume
Rendering Integral

Rendering model for ray r(t) = o + td

| differentiable wrt ¢,0 ———y
™~ colors
™~ welghts

How much light is blocked earlier along ray: t 3D Volume

i—1

T; = 1—a;
l jl;ll( 2 ‘Camera

How much lignt is contributed by ray segment
a; =1 — exp(—0;0;)

Prof Niessner



Rendering weight PDF Is important

Remember, expected color is equal to
JT(®o®)c@®)dt = ¥T;a;c;
i

T(t)o(t) and T;a; are ‘rendering welghts' — probability distrioution
along the ray (continuous and discrete, respectively)



Rendering weight is not just 3D function

Ray

3D volume

Rendering weights are not a 3D function —
Camera depends on ray, because of transmittance!

Prof Niessner



Rendering weight is not just 3D function

Camera

3D volume

Ray

Rendering weights are not a 3D function —
depends on ray, because of transmittance!
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Rendering weight PDF Is important -
Depth

We can use this distribution to compute expectations for other
guantities, e.g. ‘expected depth’

t = YT;a;t;
7

This Is often how people visualise NeRF depth maps.

Alternatively, other statistics like median can be used,



Rendering weight PDF Is important -

Mean depth Median depth



Volume Rendering other Quantities

This idea can be used for any quantity we want to "'volume render’ into a
2D image. If v lives in 3D space (semantic features, normal vectors, etc)

2Tia;v;
l

can be taken per-ray to produce 2D output images.
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Density as Geometry

Normal vectors (from analytic gradient of density)

35



Representing a 3D Scene as a
continuous 5D Function

()C y,Z,Q ¢)_>III_>(7' g,b O')

Spatlal ||||| utput Output
location direction Q Gc:-lor density
MLP
9 layers,

256 channels
-2 The color emitted by every point Is composited to render a pixel
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Supervision of
Neural Flelds




Representation in NeRFs

° |ﬂput DOmaiﬂ [See detailed intro in the following course]

, Y, Z, O, CI)) for every point sampled in a ray

Spatial View
Coordinates Direction



Representation in NeRFs

« Qutput Domain

= O~ (R,G,B, o)
RGB color +
Density value € [0,1]

Spatial View
Coordinates Direction

[ Neural Network ]




General Architectures

A forward pass

Spatial

NN
X O\ A oX X
Temporal XI y/ Z; ‘ 0 oo ‘,:
A VA
T [t ..

[ Coordinate Sampling ] [ Neural Network ]

What we want to
reconstruct:

Radiance Field

Or Signed Distance /
Occupancy Field / ...

-

[ Reconstruction Domain ]

(R,G,B, o) for all
points

*Density value ¢ €
[0,1]

Signed distance
/Occupancy

/...

for all points



Training process

z
Spatial
X
Temporal
———l oy,

N\
LaxlaX]

K S/
A5 =\ WY/

f have 2D supervision

5 |

Signed Distance Field

[ Coordinate Sampling ] [ Neural Network ] [ Reconstruction Domain ]

Volume Rendering

tayiz o g i{{:
/“1 } ~>
¢ \

Sphere Tracing

What we want to The bridge: What we can
reconstruct: forward maps measure:
Radiance Field

RGB Image

Depth Normal

[ Forward Map ]

Sensor Domain ]

‘ Supervision '



f have 2D supervision

Training process

z
Spatial
Y
X
Temporal
———l oy,

What we want to The bridge: What we can
reconstruct: forward maps measure:
Volume Rendering

Signed Distance Field

_—

[ Reconstruction Domain ]

(53
v 2 Wl

M2 o ol e

I~ paieh

The forward
map is usually a

neural renderer

e
e .

g 1

( | 7

[ Forward Map ]

RGB Image

Depth Normal

Sensor Domain ]

‘ Supervision '



f have 3D supervision

Training process

z
Spatial
N7\
X ‘ X7 NN
Temporal
M
t

What we want to
reconstruct:

The bridge:
forward maps

What we have:

Signed Distance Field

[ Coordinate Sampling ] [ Neural Network ]

[ Reconstruction Domain ]

Volume Rendering

[ Forward Map ]

Ground-truth
3D field

Sensor Domain ]

‘ Supervision '



Back to Ne
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MLPs are not required.

L, 833383388 o
g ( 206 206 @0 'amonics
v,» ~»'
‘ - ;
3 e
/ ©
° ° L S I
® b 3 o
Training v ..
Image ; i ;
a) Sparse Voxel Grid b) Trilinear Interpolation

......

Predicted
o | Color

ad_

Ray Distance

c¢) Volumetric Rendering

minimize L econ + ALTV
{0, @}

d) Optimization

Yu et al. "Plenoxels: Radiance Fields without Neural Networks" CVPR 2022
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But MLPs are convenient

Position —_—
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Relaxing the Assumptions

Unknown or inaccurate camera poses

Dynamic scene
Dynamic lighting
Generalization



Camera Pose Optimization

Small noise in the camera can be made robust by also
optimizing the camera

\So far we've been

optimizing this

Also do backdrop on
the camera parameters

Camera

rof, Niessne 50
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Camera Pose Optimization

Small noise in the results can be improved

Optimizing poses from scratch is still challenging.

Lin et al. 'BARF: Bundle-Adjusting Neural Radiance Fields' ICCV 2021

Prof Niessner Wang et al. 'NeRF-- Neural Radiance Fields Without Known Camera Parameters’ 2021 51



Relaxing the Assumptions

Unknown or inaccurate camera poses

Dynamic scene

Dynamic lighting
Generalization



Dynamic Novel View Synthesis

Simple baseline for adding time

(-xayaza 99 ¢9 ZL)_’III _’(’”ag,bao')
FQ

Hard without simultaneous multiple view!



Dynamic Novel View Synthesis

Through a deformation network

Deformation network NeRF

— i~ —MM—

(x,¥,2) (x,y,2) (r,g,b,0)

Canonical
coordinate frame

Still very under constrained

Pumarola et al. 'D-NeRF: Neural Radiance Fields for Dynamic Scenes’ CVPR 2021

Park et al. "Nerfies: Deformable Neural Radiance Fields" ICCV 2021

Tretschk et al. "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synthesis of a Dynamic Scene From Monocular Video™ ICCV 2021
Park et al. "A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields” ACM Trans, Graph. 2021

rof, Niessner 54



Dynamic Novel View Synthesis

©
‘Q

IN-the-wild monocular capture still hard:

train view

Pumarola et al. 'D-NeRF: Neural Radiance Fields for Dynamic Scenes’ CVPR 2021
Gao et al. "Monocular Dynamic View Synthesis: A Reality Check’ NeurlPS 2022
Prof Niessner Park et al. "‘Nerfies: Deformable Neural Radiance Fields" ICCV 2021



Dynamic Novel View Synthesis

Using prior knowledge about the deformations (eg.,
human body model) helps to better constrain the
oroblem:

‘ - 4 . ‘g‘ : VAt‘( . - |
Weng et al. 'HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular Video" CVPR 2021

of. Niessner



Dynamic Novel View Synthesis

= . r ) Background
e i by
Learnable Codes P
Background RHx32 S
N
SN
Pose R4*4 N
N
Intrinsics R3*3 o \ Dynamic Radiance
Viewing Ray Sampling

Field Network Volumetric Rendering
T Expression R7°
racked Face

Gafni et al. "NeRFace: Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction

Prof. Niessner
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Relaxing the Assumptions

Unknown or inaccurate camera poses
Dynamic scene

Dynamic lighting

Generalization



Appearance Changes

o Exposure differences
« Lighting changes (day, nignt)
e Clouds passing by

Martin-Brualla et al. '"NeRF in the Wild Neural Radiance Fields for Unconstrained Photo Collections” CVPR 2021



Appearance

-mbedding

Pretty robust solution:

Appearance embedding

N-dim vector optimized per image: "Auto-Decoding’
.e. GLO: Generative Latent Optimization [Bojanowski et al ICML 2018]

Martin-Brualla et al. "NeRF in the \Xild Neural Radiance Fields for Unconstrained Photo Collections” CVPR 2021

Prof. Niessner


https://arxiv.org/search/stat?searchtype=author&query=Bojanowski,+P

Appearance Embedding Interpolation

Martin-Brualla et al. '"NeRF in the Wild Neural Radiance Fields for Unconstrained Photo Collections” CVPR
Prof Ne&her



Relaxing the Assumptions

Unknown or inaccurate camera poses
Dynamic scene
Dynamic lighting

Generalization




Generalization - Few-shot NeRF

» One-shot (single-view): pixelNeRF 3 input views,
f pixelNeRF NeRF

,,,,,,,,,,
HY

Input View

CNN Encoder Target View

« Few-snot (3~10 views): pixelNeRF, MVSNet, .

|

AL QRN

« Challenging for predicting completely unseen real scenes

Yu et al "pixelNeRF: Neural Radiance Fields from One or Few Images’ CVPR 2021
Chen et al. 'MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo’ ICCV

Prof. Niessner 2021



NeRF vs 3D Meshes

[Neural Radiance Fields] vs [3D Meshes]
Reconstruction: Rendering:
- Optimization-based - Need only surface
- Need good gradients - Fast access / efficient

- Not just surface rep! - No gradients needed



What's beyond

Ne

_Q
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3D Gaussian Splatting

Camera | —»
/V Projection \
* e - / ‘\
NP Differentiable | —p
[ ]
veye T ¥ Initialization | —» . \ N Image

[ ]

Adapti A/
SfM Points 3D Gaussians Densi apC[ve |
ensity Contro —» Operation Flow ~ —» Gradient Flow

Fig. 2. Optimization starts with the sparse SfM point cloud and creates a set of 3D Gaussians. We then optimize and adaptively control the density of this set
of Gaussians. During optimization we use our fast tile-based renderer, allowing competitive training times compared to SOTA fast radiance field methods.
Once trained, our renderer allows real-time navigation for a wide variety of scenes.

[Kerbl et al 2023, Siggraphl 3D Gaussian Splatting for Real-time Radiance Field Rendering



3D Gaussian Sp attmg

> 3D Gaussians Camera Point view

¥ Metrics
57.56 (17.37 'ms)

VSync On

[Kerbl et al 2023, Siggraphl 3D Gaussian Splatting for Real-time Radiance Field Rendering




Reading Homework

o [Mildenhall et al 2020] NeRF: Representing Scenes as Neural
Radiance Fields for View Synthesis

— hittps.//arxiv.org/pdf /200308934 pdf

o [Muller at al 2022] Instant Neural Graphics Primitives with a
Multiresolution Hash Encoding

— hitps.//arxiv.org/pdf/2201. 05989 pdf

o [Kerbletal 2023, Siggrapnl 3D Gausslan Splatting for
Real-time Radiance Fleld Rendering

— hitps.//arxiv.org/pdf /2308 04079.pdf



https://arxiv.org/pdf/2003.08934.pdf
https://arxiv.org/pdf/2201.05989.pdf
https://arxiv.org/pdf/2308.04079.pdf

| Iterature

Mildenhall et al. 2020] NeRF: Representing Scenes as
Neural Radiance Fields for View Synthesis
« Volume rendering
— [Max, N 1995] Optical models for direct volume
rendering
« Positional encoding

— [Tancik at al. 2020] Fourier Features et Networks
_earn High Frequency Functions in Low Dimensional

Domains



| Iterature

NeRF compression technigues, fast NeRFs

Lul et al. 2020] Neural Sparse Voxel Flelds

Yu et al. 2022] Plenoxels: Radiance Fields without Neural
Networks

Sun et al 2022] Direct Voxel Grid Optimization: Super-fast
Convergence for Radiance Fields Reconstruction

(Chen et al. 2022] TensoRF Tensorial Radiance Fields

Muller et al. 2022] Instant Neural Graphics Primitives with
a Multiresolution Hash Encoding



| Iterature

« NeRF for unbounded scenes

— [Barron et al. 2022] Mip-NeRF 360 Unbounded Anti-
Allased Neural Radiance Flelds

o NeRF with unknown camera poses

— [Linet al 2021] BARF: Bundle-Adjusting Neural
Radiance Flelds

— [Wang et al. 2021] NeRF-- Neural Radiance Fields
Without Known Camera Parameters



| Iterature

Dynamic NeRFs

[Pumarola et al. 2021 D-NeRF: Neural Radiance Fields for
Dynamic scenes

Park et al. 2021] Nerfies: Deformable Neural Radiance Fields

[ Tretschk et al. 2021] Non-Rigid Neural Radiance Fields,
Reconstruction and Novel View Synthesis of a Dynamic Scene
~rom Monocular Video

[Park et al. 20211 A Higher-Dimensional Representation for
Topologically Varying Neural Radiance Fields

|Gao et al. 2022] Monocular Dynamic View Synthesis: A Reality
Check



| Iterature

« NeRF with appearance embedding

— [Martin-Brualla et al. 2021] NeRF in the Wild Neural
Radiance Fields for Unconstrained Photo Collections

e Generalizable NeRFs, few-shot NeRFEs

— [Yu et al 2021 pixelNeRF: Neural Radiance Fields
from One or Few Images

— [Chen et al 2021] MVVSNeRF: Fast Generalizable

Radlance Field Reconstruction from Multl-View
Stereo



TUTi

Thanks for watching!



Some Slides adapted from..

o NeRF Tutorial ECCV 2022, Matt Tancik, Ben
Mildenhall, Pratul Srinivasan, Jon Barron, Angjoo
Kanazawa

— nhttps.//sites.goodle.com/berkeley.edu/nert-

tutorial/nome



https://sites.google.com/berkeley.edu/nerf-tutorial/home

