

Neural Radiance Fields (NeRF)

Prof. Niessner

Capturing Reality

The first photograph in Germany was taken in 1837 - Frauenkirche in Munich.

The photo is only 4 x 4cm large and was taken by Franz von Kobell, two years earlier than previously assumed.

Capturing Reality

First self-portrait Cornelius 1839

First Movie - Muybridge 1878

Prof. Niessner

Capturing Reality – in 3D

Building Rome in a Day, Agarwal et al. ICCV 2009

Capturing Reality – in 3D

Google Earth 2016~

Capturing Reality – in 3D

Neural Radiance Fields (NeRF), Mildenhall et al., ECCV 2020

Prof. Niessner

NeRF Problem Statement

Input: A set of calibrated RGB images

Output:

A 3D scene representation that renders novel views

Three Key Components

Neural Volumetric 3D Scene Representation Differentiable Volumetric Rendering Function Optimization via Analysis-by-Synthesis

Objective: Synthesize all input views

ightarrow The color emitted by every point is composited to render a pixel

Neural Volumetric Rendering

computing color along rays through 3D space

What color is this pixel?

Neural Volumetric Rendering

continuous, differentiable rendering model without concrete ray/surface intersections

Neural Volumetric Rendering

using a neural network as a scene representation, rather than a voxel grid of data

Camera with known intrinsics and extrinsics. e.g., from Structure from Motion (SfM)

distance along the ray

Volumetric Formulation for NeRF

Scene is a cloud of tiny colored particles

Volumetric Formulation for NeRF

What does it mean for a ray to "hit" the volume?

This notion is *probabilistic*: chance that ray hits a particle in a small interval around t is $\sigma(t)dt$. σ is called the "volume density"

Probabilistic Interpretation

To determine if t is the first hit along the ray, need to know T(t): the probability that the ray makes it through the volume up to t. T(t) is called "transmittance"

Probabilistic Interpretation

The product of these probabilities tells us how much you see the particles at *t*: $P[\text{first hit at } t] = P[\text{no hit before } t] \times P[\text{hit at } t]$ $= T(t)\sigma(t)dt$

Calculating Transmittance T given σ

If σ is known, T can be computed... How?

Calculating Transmittance T given σ

 σ and T are related by the probabilistic fact that $P[\text{no hit before } t + dt] = P[\text{no hit before } t] \times P[\text{no hit at } t]$ $T(t + dt) = T(t) \times (1 - \sigma(t)dt)$

Solve for T

$$T(t+dt) = T(t)(1-\sigma(t)dt)$$

Taylor expansion for $T \Rightarrow T(t) + T'(t)dt = T(t) - T(t)\sigma(t)dt$

Rearrange
$$\Rightarrow \frac{T'(t)}{T(t)}dt = -\sigma(t)dt$$

Integrate $\Rightarrow \log T(t) = -\int_{t_0}^t \sigma(s)ds$
Exponentiate $\Rightarrow T(t) = \exp\left(-\int_{t_0}^t \sigma(s)ds\right)$

Prof. Niessner

PDF for Ray Termination

Finally, we can write the probability that a ray terminates at **t** as a function of only sigma:

P[first hit at t] = P[no hit before $t] \times P[$ hit at t]

 $= T(t)\sigma(t)dt$ $= \exp\left(-\int_{t_0}^t \sigma(s)ds\right)\sigma(t)dt$

Expected Value of Color along Ray

This means the expected color returned by the ray will be

 $\int_{t_0}^{t_1} T(t) \sigma(t) \mathbf{c}(t) dt$

Note the nested integral!

Approximating the nested Integral

We use quadrature to approximate the nested integral, splitting the ray up into n segments with endpoints $\{t_1, t_2, ..., t_{n+1}\}$ with lengths $\delta_i = t_{i+1} - t_i$

Approximating the nested Integral

Approximation with quadrature rule is described in [Max, N 1995] Optical models for direct volume rendering

Resulting Estimate of the Volume Rendering Integral Rendering model for ray $\mathbf{r}(t) = \mathbf{o} + t\mathbf{d}$:

 t_1

àmera

 T_i

differentiable w.r.t. ${f c},\sigma$

How much light is blocked earlier along ray:

$$T_i = \prod_{j=1}^{i-1} (1 - \alpha_j)$$

 $\mathbf{c} \approx \sum_{i=1}^{n} T_i \alpha_i \mathbf{c}_i$

How much light is contributed by ray segment *i*:

$$\alpha_i = 1 - \exp(-\sigma_i \delta_i)$$

Prof. Niessner

 t_{n+1}

3D Volume

Rendering weight PDF is important

Remember, expected color is equal to

$$\int T(t)\sigma(t)\mathbf{c}(t)dt \approx \sum_{i} T_{i}\alpha_{i}\mathbf{c}_{i}$$

 $T(t)\sigma(t)$ and $T_i\alpha_i$ are "rendering weights" — probability distribution along the ray (continuous and discrete, respectively)

Rendering weight is not just 3D function

Rendering weight is not just 3D function

Rendering weights are not a 3D function — depends on ray, because of transmittance!

Rendering weight PDF is important – Depth

We can use this distribution to compute expectations for other quantities, e.g. "expected depth":

$$\overline{t} = \sum_{i} T_i \alpha_i t_i$$

This is often how people visualise NeRF depth maps.

Alternatively, other statistics like median can be used.

Rendering weight PDF is important – Depth

Median depth

Prof. Niessner

Volume Rendering other Quantities

This idea can be used for any quantity we want to "volume render" into a 2D image. If **v** lives in 3D space (semantic features, normal vectors, etc.)

 $\sum_{i} T_i \alpha_i \mathbf{v}_i$

can be taken per-ray to produce 2D output images.

Density as Geometry

Normal vectors (from analytic gradient of density)

ightarrow The color emitted by every point is composited to render a pixel

NeRF Results

Supervision of Neural Fields
Representation in NeRFs

• Input Domain [See detailed intro in the following course]

Representation in NeRFs

• Output Domain

General Architectures

A forward pass What we want to reconstruct: Radiance Field Spatial **(R,G,B, σ)** for all points x, y, z, [t], ... *Density value $\sigma \in$ Temporal Or Signed Distance / [0,1]. . . . Occupancy Field / ... Signed distance /Occupancy /... **Reconstruction Domain** Coordinate Sampling Neural Network for all points

If have 2D supervision

If have 2D supervision

If have 3D supervision

Back to NeRFs

MLPs are not required...

Yu et al. "Plenoxels: Radiance Fields without Neural Networks" CVPR 2022

But MLPs are convenient

Prof. Niessner

NeRF Challenges

Relaxing the Assumptions

- Unknown or inaccurate camera poses
- Dynamic scene
- Dynamic lighting
- Generalization

Camera Pose Optimization

Small noise in the camera can be made robust by also optimizing the camera

Camera Pose Optimization

Small noise in the results can be improved:

Optimizing poses from scratch is still challenging.

Lin et al. "BARF: Bundle-Adjusting Neural Radiance Fields" ICCV 2021 Wang et al. "NeRF--: Neural Radiance Fields Without Known Camera Parameters" 2021

Relaxing the Assumptions

- Unknown or inaccurate camera poses
- Dynamic scene
- Dynamic lighting
- Generalization

Simple baseline for adding time

$(x, y, z, \theta, \phi, t) \longrightarrow \bigcap_{F_{\Omega}} \longrightarrow (r, g, b, \sigma)$

Hard without simultaneous multiple view!

Through a deformation network

Still very under constrained

Pumarola et al. "D-NeRF: Neural Radiance Fields for Dynamic Scenes" CVPR 2021 Park et al. "Nerfies: Deformable Neural Radiance Fields" ICCV 2021 Tretschk et al. "Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synthesis of a Dynamic Scene From Monocular Video" ICCV 2021 Park et al. "A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields" ACM Trans. Graph. 2021

In-the-wild monocular capture still hard:

train view Nerfies

Pumarola et al. "D-NeRF: Neural Radiance Fields for Dynamic Scenes" CVPR 2021 Gao et al. "Monocular Dynamic View Synthesis: A Reality Check" NeurIPS 2022 Park et al. "Nerfies: Deformable Neural Radiance Fields" ICCV 2021

Prof. Niessner

Using prior knowledge about the deformations (e.g., human body model) helps to better constrain the problem:

Weng et al. "HumanNeRF: Free-viewpoint Rendering of Moving People from Monocular Video" CVPR 2021

Gafni et al. "NeRFace: Dynamic Neural Radiance Fields for Monocular 4D Facial Avatar Reconstruction

Relaxing the Assumptions

- Unknown or inaccurate camera poses
- Dynamic scene
- Dynamic lighting
- Generalization

Appearance Changes

- Exposure differences
- Lighting changes (day, night)
- Clouds passing by

Martin-Brualla et al. "NeRF in the Wild Neural Radiance Fields for Unconstrained Photo Collections" CVPR 2021

N-dim vector optimized *per* image: "Auto-Decoding" i.e. GLO: Generative Latent Optimization [<u>Bojanowski et al.</u> [CML 2018]

Martin-Brualla et al. "NeRF in the Wild Neural Radiance Fields for Unconstrained Photo Collections" CVPR 2021 of. Niessner

Appearance Embedding Interpolation

Martin-Brualla et al. "NeRF in the Wild Neural Radiance Fields for Unconstrained Photo Collections" CVPR Prof. NP95her

Relaxing the Assumptions

- Unknown or inaccurate camera poses
- Dynamic scene
- Dynamic lighting
- Generalization

Generalization - Few-shot NeRF

• One-shot (single-view): pixelNeRF Input View W (x,d) \rightarrow (RGB σ) (x,d) \rightarrow (RGB σ)

3 input views: pixelNeRF NeRF

- Few-shot (3~10 views): pixelNeRF, MVSNet, ...
- Challenging for predicting completely unseen real scenes

Yu et al. "pixelNeRF: Neural Radiance Fields from One or Few Images" CVPR 2021 Chen et al. "MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo" ICCV 2021

NeRF vs 3D Meshes

[Neural Radiance Fields]

Reconstruction:

- Optimization-based
- Need good gradients
- Not just surface rep!

vs [3D Meshes]

Rendering:

- Need only surface
- Fast access / efficient
- No gradients needed

What's beyond NeRF?

3D Gaussian Splatting

Fig. 2. Optimization starts with the sparse SfM point cloud and creates a set of 3D Gaussians. We then optimize and adaptively control the density of this set of Gaussians. During optimization we use our fast tile-based renderer, allowing competitive training times compared to SOTA fast radiance field methods. Once trained, our renderer allows real-time navigation for a wide variety of scenes.

3D Gaussian Splatting

[Kerbl et al 2023, Siggraph] 3D Gaussian Splatting for Real-time Radiance Field Rendering

Prof. Niessner

Reading Homework

- [Mildenhall et al. 2020] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis
 - <u>https://arxiv.org/pdf/2003.08934.pdf</u>
- [Müller at al. 2022] Instant Neural Graphics Primitives with a Multiresolution Hash Encoding
 - <u>https://arxiv.org/pdf/2201.05989.pdf</u>
- [Kerbl et al 2023, Siggraph] 3D Gaussian Splatting for Real-time Radiance Field Rendering

<u>https://arxiv.org/pdf/2308.04079.pdf</u>

[Mildenhall et al. 2020] NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

- Volume rendering
 - [Max, N 1995] Optical models for direct volume rendering
- Positional encoding
 - [Tancik at al. 2020] Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains

- NeRF compression techniques, fast NeRFs
 - [Lui et al. 2020] Neural Sparse Voxel Fields
 - [Yu et al. 2022] Plenoxels: Radiance Fields without Neural Networks
 - [Sun et al. 2022] Direct Voxel Grid Optimization: Super-fast Convergence for Radiance Fields Reconstruction
 - [Chen et al. 2022] TensoRF Tensorial Radiance Fields
 - [Müller et al. 2022] Instant Neural Graphics Primitives with a Multiresolution Hash Encoding

- NeRF for unbounded scenes
 - [Barron et al. 2022] Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields
- NeRF with unknown camera poses
 - [Lin et al. 2021] BARF: Bundle-Adjusting Neural Radiance Fields
 - [Wang et al. 2021] NeRF--: Neural Radiance Fields
 Without Known Camera Parameters

- Dynamic NeRFs
 - [Pumarola et al. 2021] D-NeRF: Neural Radiance Fields for Dynamic Scenes
 - [Park et al. 2021] Nerfies: Deformable Neural Radiance Fields
 - [Tretschk et al. 2021] Non-Rigid Neural Radiance Fields: Reconstruction and Novel View Synthesis of a Dynamic Scene From Monocular Video
 - [Park et al. 2021] A Higher-Dimensional Representation for Topologically Varying Neural Radiance Fields
 - [Gao et al. 2022] Monocular Dynamic View Synthesis: A Reality Check

- NeRF with appearance embedding
 - [Martin-Brualla et al. 2021] NeRF in the Wild Neural Radiance Fields for Unconstrained Photo Collections
- Generalizable NeRFs, few-shot NeRFs
 - [Yu et al. 2021] pixelNeRF: Neural Radiance Fields from One or Few Images
 - [Chen et al. 2021] MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo

Thanks for watching!
Some Slides adapted from...

- NeRF Tutorial ECCV 2022, Matt Tancik, Ben Mildenhall, Pratul Srinivasan, Jon Barron, Angjoo Kanazawa
 - <u>https://sites.google.com/berkeley.edu/nerf-</u> <u>tutorial/home</u>