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3D Gaussian 
Splatting (3DGS)
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Introduction

2



Prof. Niessner

Motivation
Reconstructing the 3D world from images or videos.
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Desirable characteristics 3D Representations

1. Accurate

2. Fast

3. Memory Efficient

4. Practical (i.e., easy to 
integrate in frameworks)
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PSNR comparable to MipNeRF360.
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Many implementations on 
different Graphics frameworks. 
Format: easy to standardize (.ply).

100+ fps & trains in less than 1h.

Renders on mobile devices 
( < 6GB VRAM).
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3D Gaussian Splatting Results

5[Kerbl & Kopanas ‘23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering
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Background –
Point-Based Graphics
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Traditional Point-Based Graphics
Surface Splatting [Zwicker et al. 
2001] using Elliptical Weighted 
Average (EWA)

1. Considers oriented points 
(surfels) as discrete samples of 
a texture function on a surface
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Object Space
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Traditional Point-Based Graphics
Surface Splatting [Zwicker et al. 
2001] using Elliptical Weighted 
Average (EWA)

2. A Gaussian reconstruction 
kernel is used to recover a 
continuous signal.
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Object Space
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Traditional Point-Based Graphics
Surface Splatting [Zwicker et al. 
2001] using Elliptical Weighted 
Average (EWA)

3. Such that we can sample it in 
screen space.
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Object Space

Image / Screen Space
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Traditional Point-Based Graphics
Important outcomes of Surface Splatting:
• Moving camera closer, scales the points so the 

objects have no holes.
• Slanted normals appear as ellipses, so we can create 

better edges.
• Each sample can be processed independently.
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Recent Advances in Point Clouds
Differentiable Surface Splatting [Yifan et al. 2019] 
showed that this process is end-to-end differentiable
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3D Gaussian 
Splatting (3DGS)
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3D Gaussian Splatting

13
[Kerbl et al 2023, Siggraph] 3D Gaussian Splatting for Real-time Radiance Field Rendering
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Surface Splatting vs. Volume Splatting
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Surface Splatting vs. Volume Splatting
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Top-Down View Top-Down View

[Zwicker1 ‘01] / [Yifan ‘19] 

How to blend points in screen space:

[Zwicker2 ‘01] / [Kerbl & Kopanas ‘23]

[Zwicker1 ‘01] Surface Splatting
[Yifan ‘19] Differentiable Surface Splatting for Point-Based Geometry Proccessing
[Zwicker2 ‘01] EWA Volume Splatting
[Kerbl & Kopanas ‘23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering
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Surface Splatting vs. Volume Splatting

How to blend points in screen space:

16

[Zwicker2 ‘01] / [Kerbl & Kopanas ‘23]

Top-Down ViewTop-Down View

[Zwicker1 ‘01] / [Yifan ‘19] 

[Zwicker1 ‘01] Surface Splatting
[Yifan ‘19] Differentiable Surface Splatting for Point-Based Geometry Proccessing
[Zwicker2 ‘01] EWA Volume Splatting
[Kerbl & Kopanas ‘23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering

Opacity for each 
point, allows to let 
points disappear.
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Surface Splatting vs. Volume Splatting

How to blend points in screen space:

17

[Zwicker2 ‘01] / [Kerbl & Kopanas ‘23]

Top-Down View

Opacity for each 
point, allows to let 
points disappear.

Screenshot from NeRF [Mildenhall ‘20]
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Surface Splatting vs. Volume Splatting
What are the benefits of 3D Gaussians?

Initialization:
• No Multi-View-Stereo needed  SfM points (no normals) 

are enough
• Start with isotropic Gaussians

Quality:
• Complicated geometry (i.e., thin structures, vegetation etc.) 

are more volumetric than surface-like
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How are 3D Gaussians rendered?
1. Sort: globally based on depth
2. Splat: compute the shape of the Gaussian after 

projection
3. Blend: alpha composite
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position covariance

spherical harmonics

opacity

Parameters per Gaussian:



Prof. Niessner

Optimization
How can we optimize a covariance matrix?
Problem: Not all symmetric matrices are covariance 
matrices. Gradient updates can easily make them invalid.

20
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Optimization
How can we optimize a covariance matrix?
Problem: Not all symmetric matrices are covariance 
matrices. Gradient updates can easily make them invalid.

Solution: For any rotation and scale this is a valid 
covariance matrix. 

21
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Optimization
How can we optimize a covariance matrix?
Problem: Not all symmetric matrices are covariance 
matrices. Gradient updates can easily make them invalid.

Solution: For any rotation and scale this is a valid 
covariance matrix. 
R does not optimize well  use quaternions.
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Optimization
Now, we’re ready to optimize:
1. Initialize isotropic 3D Gaussians to SfM points.
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Optimization
Now, we’re ready to optimize:
1. Initialize isotropic 3D Gaussians to SfM points.
2. Run SVD to optimize 3D Gaussian parameters.

Compare rendered images with target images:
• L1 Color Loss
• Structural Dissimilarity Measure D-SSIM (= 1 – SSIM)
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Optimization

25

Not enough
Gaussians to
represent structure
realistically.
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Optimization
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Not enough
Gaussians to
represent structure
realistically.

 Densification of
3D Gaussians in 
needed.
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Densification
Increase the number of points where necessary:
• Points with high positional gradients correspond to 

regions that are not well reconstructed yet.
• Add more Gaussians - Densify these regions.
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2 Ways of Densification

28

 Increase 
total volume of 
the system and 
number of 
Gaussians

 Conserve
total volume of 
the system but 
increase number 
of Gaussians

[Kerbl & Kopanas ‘23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering
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Pruning
Idea: Prune unneeded Gaussians, but how to identify
them?

Simple, but effective approach:
• Reset opacity to small value every 3000 iterations.
• Prune Gaussians whose opacity remains below a 

threshold.
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Results with Densification and Pruning

30

Poorly
reconstructed
areas have
disappeared. 
Enough Gaussians
to represent
structure
realistically.
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Results with Densification and Pruning
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w/o Densification and Pruning 3D Gaussian Splatting



Prof. Niessner

How to get to 100+ fps?
Using the GPU efficiently:
1. Tiling: Split the image in 16x16 Tiles – helps threads to 

work collaboratively.
2. Single global sort: GPU sorts millions of primitives 

fast.
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Summary - 3D Gaussian Pipeline

i.e., Densification
and Pruning of

Gaussian primitives

[Kerbl & Kopanas ‘23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering
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Evaluation

34
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Evaluation
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Full training
Early 5min stop

 3DGS reaches comparable quality to MipNeRF360 at 2000x faster
rendering and 70x faster optimization.
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Limitations
1. Handcrafted heuristics for densification and pruning.
2. Popping artifacts because of the mean-based 

sorting.
3. Representation size:

a. 3DGS: 350 - 700MB ( 3-6M of Gaussians )
b. INGP: 15 - 50MB
c. MipNeRF360: 8.6MB
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Dynamic 3D 
Gaussians

37
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Dynamic Setting
Challenge: The dynamic setting is highly
underconstrained. 

 Good priors are needed.
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Dynamic Gaussian Splatting exploded!

~50 papers in the first 7 months!
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Dynamic 3DGS Approaches - Overview

We differentiate:
• Generic approaches suitable for any type of scene

– Dynamic 3D Gaussians
• Approaches for heads

– Gaussian Avatars
– Neural Parametric Gaussian Avatars
– Avat3r

• Approaches for humans
– Animatable Gaussians

40

per-scene

per-scene

generalization

per-scene

per-scene
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Dynamic 3D Gaussians: Tracking by 
Persistent Dynamic View Synthesis

41[Luiten ‘23] Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis
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Good data is essential for per-scene 
dynamic 3DGS

Multi view input videos are needed.

42

Panoptic Studio
31 cameras, each
150 frames at 30fps

[Luiten ‘23] Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis
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Making 3D Gaussians move
Gaussian parameters that
are fixed over time
• Scale
• Color
• Opacity

 Optimized on the first
frame.

43[Luiten ‘23] Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis

Gaussian parameters that
change over time
• 3D position
• 3D rotation

 Optimized for each
timestep relative to the
previous.
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Physically-Based Priors as Regularizers

• Local rigidity prior

• Local rotational-similarity prior

• Long-term local isometry prior

44[Luiten ‘23] Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis



CVPR’24 [Qian et al.] GaussianAvatars

FLAME 
tracking

input video

setup local coordinate system for 
each triangle

𝑻triangle 
position

𝑹triangle 
rotation

𝑘triangle 
scaling

①

assign a 3D Gaussian at the 
center of each triangle

𝑖3D Gaussian 
parent triangle

𝛼3D Gaussian
opacity

𝒉3D Gaussian
SH coefficients

②

shift and scale 3D Gaussians 
during optimization

𝒔3D Gaussian 
local scaling

3D Gaussian 
local position

𝝁

𝒓3D Gaussian
local rotation③

apply adaptive density control 
with binding inheritance

④

Controllable Avatars



Controllable Avatars

CVPR’24 [Qian et al.] GaussianAvatars



Controllable Avatars

CVPR’24 [Qian et al.] GaussianAvatars



Controllable Avatars

CVPR’24 [Qian et al.] GaussianAvatars



Controllable Avatars

CVPR’24 [Qian et al.] GaussianAvatars



With NPHM Base Model

SIGGRAPH Asia’24 [Giebenhain et al.]: Neural Parametric Gaussian Avatars



3DGS + NPHM Base Model

SIGGRAPH Asia’24 [Giebenhain et al.]: Neural Parametric Gaussian Avatars



a) NPHM Tracking

Method Overview

SIGGRAPH Asia’24 [Giebenhain et al.]: Neural Parametric Gaussian Avatars



a) NPHM Tracking

b) Cycle-Consistency Distillation

Canonical Space

Method Overview

SIGGRAPH Asia’24 [Giebenhain et al.]: Neural Parametric Gaussian Avatars



a) NPHM Tracking

b) Cycle-Consistency Distillation

Canonical Space

c) Neural Parametric Gaussian Avatars
Canonical Gaussians Deformed

Gaussians

Method Overview

SIGGRAPH Asia’24 [Giebenhain et al.]: Neural Parametric Gaussian Avatars



a) NPHM Tracking

b) Cycle-Consistency Distillation

Canonical Space

c) Neural Parametric Gaussian Avatars

: per Gaussian features
: Gaussian centerd) Dynamics

Canonical Gaussians Deformed
Gaussians

Method Overview

SIGGRAPH Asia’24 [Giebenhain et al.]: Neural Parametric Gaussian Avatars



a) NPHM Tracking

b) Cycle-Consistency Distillation

Canonical Space

c) Neural Parametric Gaussian Avatars

: per Gaussian features
: Gaussian centerd) Dynamics

Canonical Gaussians Deformed
Gaussians

Rendering

3DGS

C
N

N

Method Overview

SIGGRAPH Asia’24 [Giebenhain et al.]: Neural Parametric Gaussian Avatars
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Animatable Gaussians

59[Li et al. ‘24] Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling
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Animatable Gaussians

60[Li et al. ‘24] Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling
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Animatable Gaussians

61[Li et al. ‘24] Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling

Animated with novel motion sequence
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Generalizable 3D Head Avatars

arXiv’25 [Kirschstein et al.] Avat3r



Generalizable 3D Head Avatars

arXiv’25 [Kirschstein et al.] Avat3r



Avat3r
Large Animatable Reconstruction Model

for High-fidelity 3D Head Avatars
Tobias Kirschstein1,2 - Javier Romero2 - Artem Sevastopolsky1,2 - Matthias Nießner1 - Shunsuke Saito2

1Technical University of Munich 2Meta Reality Labs



4 phone images

arXiv’25 [Kirschstein et al.] Avat3r



Avat3r

Zero-shot 3D facial animation
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Summary: NeRF, 
3DGS, etc.

67
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Textured Meshes vs NerRFs/3D Gaussians

[Mildenhall et al. 20]: NeRF
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Textured Meshes vs NerRFs/3D Gaussians

Reconstruction:
- Optimization-based
- Need good gradients
- Not just surface rep!

Rendering:
- Need only surface
- Fast access / efficient
- No gradients needed

[Neural Radiance Fields] [3D Meshes][3D Gaussians]
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Reading Homework
• [Kerbl & Kopanas et al. 2023] 3D Gaussian Splatting for 

Real-Time Radiance Field Rendering
– https://repo-sam.inria.fr/fungraph/3d-gaussian-

splatting/3d_gaussian_splatting_low.pdf

70

https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/3d_gaussian_splatting_low.pdf
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Literature
• [Kerbl & Kopanas et al. 2023] 3D Gaussian Splatting for 

Real-Time Radiance Field Rendering
• [Zwicker et al. 2001] Surface Splatting
• [Yifan et al. 2019] Differentiable Surface Splatting for 

Point-based Geometry Processing
• [Luiten 2023] Dynamic 3D Gaussians: Tracking by 

Persistent Dynamic View Synthesis
• [Qian et al. 2024] GaussianAvatars
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Literature
• SIGGRAPH Asia’24 [Giebenhain et al.]: Neural Parametric 

Gaussian Avatars
• [Kirschstein et al. 2025] Avat3r
• [Li et al. 2024] Animatable Gaussians: Learning Pose-

dependent Gaussian Maps for High-fidelity Human 
Avatar Modeling
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Thanks for watching!
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Some Slides adapted from…
• 3D Gaussian Splatting Tutorial 3DV 2024, Georgios 

Kopanas, Bernhard Kerbl, Antoine Guédon and 
Jonathon Luiten

74


