

# 3D Gaussian Splatting (3DGS)

Prof. Niessner



## Introduction

### Motivation

#### Reconstructing the 3D world from images or videos.







Prof. Niessner

### Desirable characteristics 3D Representations

1. Accurate PSNR comparable to MipNeRF360.

2. Fast 100+ fps & trains in less than 1h.

3. Memory Efficient Renders on mobile devices (<6GB VRAM).

4. Practical (i.e., easy to integrate in frameworks)

Many implementations on different Graphics frameworks. Format: easy to standardize (.ply).

### 3D Gaussian Splatting Results



[Kerbl & Kopanas '23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering



## Background – Point-Based Graphics

Surface Splatting [Zwicker et al. 2001] using Elliptical Weighted Average (EWA)



1. Considers oriented points (surfels) as discrete samples of a texture function on a surface

Surface Splatting [Zwicker et al. 2001] using Elliptical Weighted Average (EWA)



2. A Gaussian reconstruction kernel is used to recover a continuous signal.

Surface Splatting [Zwicker et al. 2001] using Elliptical Weighted Average (EWA)

3. Such that we can sample it in screen space.



Important outcomes of Surface Splatting:

- Moving camera closer, scales the points so the objects have no holes.
- Slanted normals appear as ellipses, so we can create better edges.
- Each sample can be processed independently.





### Recent Advances in Point Clouds

Differentiable Surface Splatting [Yifan et al. 2019] showed that this process is end-to-end differentiable

#### Differentiable Surface Splatting for Point-based Geometry Processing

WANG YIFAN, ETH Zurich, Switzerland FELICE SERENA, ETH Zurich, Switzerland SHIHAO WU, ETH Zurich, Switzerland CENGIZ ÖZTIRELI, Disney Research Zurich, Switzerland OLGA SORKINE-HORNUNG, ETH Zurich, Switzerland





# 3D Gaussian Splatting (3DGS)

### 3D Gaussian Splatting



Fig. 2. Optimization starts with the sparse SfM point cloud and creates a set of 3D Gaussians. We then optimize and adaptively control the density of this set of Gaussians. During optimization we use our fast tile-based renderer, allowing competitive training times compared to SOTA fast radiance field methods. Once trained, our renderer allows real-time navigation for a wide variety of scenes.



How to blend points in screen space:



[Zwicker1 '01] Surface Splatting

[Yifan '19] Differentiable Surface Splatting for Point-Based Geometry Proccessing

[Zwicker2 '01] EWA Volume Splatting

[Kerbl & Kopanas '23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering

How to blend points in screen space:



[Yifan '19] Differentiable Surface Splatting for Point-Based Geometry Proccessing

[Zwicker2 '01] EWA Volume Splatting

[Kerbl & Kopanas '23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering

How to blend points in screen space:

[Zwicker2 '01] / [Kerbl & Kopanas '23  $C_i O_i W_i$  $o_i w_i$ ) Plane Image Opacity for each point, allows to let Top-Down View points disappear.

Screenshot from NeRF [Mildenhall '20]

results in the MLP being evaluated at continuous positions over the course of optimization. We use these samples to estimate  $C(\mathbf{r})$  with the quadrature rule discussed in the volume rendering review by Max [26]:

$$\hat{C}(\mathbf{r}) = \sum_{i=1}^{N} T_i (1 - \exp(-\sigma_i \delta_i)) \mathbf{c}_i, \text{ where } T_i = \exp\left(-\sum_{j=1}^{i-1} \sigma_j \delta_j\right), \quad (3)$$

where  $\delta_i = t_{i+1} - t_i$  is the distance between adjacent samples. This function for calculating  $\hat{C}(\mathbf{r})$  from the set of  $(\mathbf{c}_i, \sigma_i)$  values is trivially differentiable and reduces to traditional alpha compositing with alpha values  $\alpha_i = 1 - \exp(-\sigma_i \delta_i)$ .

What are the benefits of 3D Gaussians?

#### Initialization:

- No Multi-View-Stereo needed → SfM points (no normals) are enough
- Start with isotropic Gaussians

#### Quality:

• Complicated geometry (i.e., thin structures, vegetation etc.) are more volumetric than surface-like

### How are 3D Gaussians rendered?

- 1. Sort: globally based on depth
- 2. Splat: compute the shape of the Gaussian after projection
- 3. Blend: alpha composite

#### Parameters per Gaussian:

$$p = \begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} \quad \Sigma = \begin{bmatrix} \sigma_x & \sigma_{xy} & \sigma_{xz} \\ & \sigma_y & \sigma_{yz} \\ & & \sigma_z \end{bmatrix}$$

- o opacity
- *sh* spherical harmonics



How can we optimize a covariance matrix?

**Problem**: Not all symmetric matrices are covariance matrices. Gradient updates can easily make them invalid.

How can we optimize a covariance matrix?

**Problem**: Not all symmetric matrices are covariance matrices. Gradient updates can easily make them invalid.

 $\Sigma = RSS^T R^T$ 

Solution: For any rotation and scale this is a valid covariance matrix.

How can we optimize a covariance matrix?

**Problem**: Not all symmetric matrices are covariance matrices. Gradient updates can easily make them invalid.

 $\Sigma = RSS^T R^T$ 

Solution: For any rotation and scale this is a valid covariance matrix.

R does not optimize well  $\rightarrow$  use quaternions.

- Now, we're ready to optimize:
- 1. Initialize isotropic 3D Gaussians to SfM points.

Now, we're ready to optimize:

- 1. Initialize isotropic 3D Gaussians to SfM points.
- 2. Run SVD to optimize 3D Gaussian parameters.

$$\mathcal{L} = (1 - \lambda) \mathcal{L}_1 + \lambda \mathcal{L}_{\text{D-SSIM}}$$

Compare rendered images with target images:

- L1 Color Loss
- Structural Dissimilarity Measure D-SSIM (= 1 SSIM)



→Not enough
Gaussians to
represent structure
realistically.



→Not enough
Gaussians to
represent structure
realistically.

→ Densification of
3D Gaussians in
needed.

### Densification

Increase the number of points where necessary:

- Points with **high positional gradients** correspond to regions that are not well reconstructed yet.
- Add more Gaussians Densify these regions.

### 2 Ways of Densification



[Kerbl & Kopanas '23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering

### Pruning

Idea: Prune unneeded Gaussians, but how to identify them?

Simple, but effective approach:

- Reset opacity to small value every 3000 iterations.
- Prune Gaussians whose opacity remains below a threshold.

### Results with Densification and Pruning



→ Poorly reconstructed areas have disappeared. Enough Gaussians to represent structure realistically.

### Results with Densification and Pruning



#### w/o Densification and Pruning

#### 3D Gaussian Splatting

Prof. Niessner

### How to get to 100+ fps?

Using the GPU efficiently:

- 1. Tiling: Split the image in 16x16 Tiles helps threads to work collaboratively.
- 2. Single global sort: GPU sorts millions of primitives fast.

### Summary - 3D Gaussian Pipeline



Prof. Niessner

[Kerbl & Kopanas '23] 3D Gaussian Splatting for Real-Time Radiance Field Rendering

### Evaluation



### Evaluation



 $\rightarrow$  3DGS reaches comparable quality to MipNeRF360 at 2000x faster rendering and 70x faster optimization.

Prof. Niessnei

### Limitations

- 1. Handcrafted heuristics for densification and pruning.
- 2. Popping artifacts because of the mean-based sorting.
- 3. Representation size:
  - a. 3DGS: 350 700MB (3-6M of Gaussians)
  - b. INGP: 15 50MB
  - c. MipNeRF360: 8.6MB


# Dynamic 3D Gaussians

# Dynamic Setting

# Challenge: The dynamic setting is highly underconstrained.

 $\rightarrow$  Good priors are needed.

## Dynamic Gaussian Splatting exploded!

~50 papers in the first 7 months!

#### Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis

Jonathon Luiten<sup>1,2</sup> Georgios Kopanas<sup>3</sup> Bastian Leibe<sup>2</sup> Deva Ramanan<sup>1</sup> <sup>1</sup>Carnegie Mellon University, USA <sup>2</sup>RWTH Aachen University, Germany <sup>3</sup>Inria & Université Côte d'Azur, France 1uiten®vision.rwth-aachen.de

> 4D Gaussian Splatting: Towards Efficient Novel View Synthesis for Dynamic Scenes

Yuanxing Duan<sup>1</sup><sup>9</sup> Fangyin Wei<sup>2</sup><sup>9</sup> Qiyu Dai<sup>1,4</sup> Yuhang He<sup>1</sup> Wenzheng Chen<sup>3†</sup> Baoquan Chen<sup>1,4†</sup> <sup>1</sup>Peking University <sup>2</sup>Princeton University <sup>3</sup>NVIDIA <sup>4</sup>National Key Lab of General AI, China

#### REAL-TIME PHOTOREALISTIC DYNAMIC SCENE REP-RESENTATION AND RENDERING WITH 4D GAUSSIAN SPLATTING

Zeyu Yang, Hongye Yang, Zijie Pan, Li Zhang\* Fudan University https://fudan-zvg.qithub.io/4d-gaussian-splatting

#### Deformable 3D Gaussians for High-Fidelity Monocular Dynamic Scene Reconstruction

Ziyi Yang<sup>1,2</sup> Xinyu Gao<sup>1</sup> Wen Zhou<sup>2</sup> Shaohui Jiao<sup>2</sup> Yuqing Zhang<sup>1</sup> Xiaogang Jin<sup>1†</sup> <sup>1</sup>State Key Laboratory of CAD&CG, Zhejjang University <sup>2</sup>ByteDance Inc.

#### 4D Gaussian Splatting for Real-Time Dynamic Scene Rendering

 Guanjun Wu<sup>1</sup>; Taoran Yi<sup>2</sup>; Jiemin Fang<sup>3</sup>; Lingxi Xie<sup>3</sup>, Xiaopeng Zhang<sup>3</sup>, Wei Wei<sup>1</sup>, Wenyu Liu<sup>2</sup>, Qi Tian<sup>3</sup>, Xinggang Wang<sup>2+‡</sup>
<sup>1</sup>School of CS, Huazhong University of Science and Technology
<sup>2</sup>School of EIC, Huazhong University of Science and Technology
<sup>3</sup>Huawei Inc. (guajuwu, taoranyi, weiw, liuwy, xgwang]@hust.edu.cn

{guajuwu, taotanyi, weiw, lluwy, xgwangjenust.edu.cn {jaminfong, 198808xc, zxphistory}@gmail.com tian.qil@huawei.com

#### GauFRe : Gaussian Deformation Fields for Real-time Dynamic Novel View Synthesis

Yiqing Liang<sup>†</sup>, Numair Khan, Zhengqin Li, Thu Nguyen-Phuoc, Douglas Lanman, James Tompkin<sup>†</sup>, Lei Xiao Meta <sup>†</sup>Brown University

#### MD-Splatting: Learning Metric Deformation from 4D Gaussians in Highly Deformable Scenes

Zhao Mandi

Bardienus P. Duisterhof Carnegie Mellon University bdulater#cmu.edu

on University Stanford University fcnu,edu mandifatanford.edu

Jia-Wei Liu National University of Singapore jiawe1.11u8u.nos.edu

Shuran Song Stanford University aburan@stanford.edu Yunchao Yao Carnegie Mellon University yunchaoy8andrew.cmu.edu Mike Zheng Shou

National University of Singapore mike.sheng.shou@gmail.com

Jeffrey Ichnowski Carnegie Mellon University jeffl@cmu.edu

#### An Efficient 3D Gaussian Representation for Monocular/Multi-view Dynamic Scenes

Kai Katsumata Duc Minh Vo Hideki Nakayama The University of Tokyo, Japan {katsumata, vmduc, nakayama}@nlab.ci.i.u-tokyo.ac.jp

#### DynMF: Neural Motion Factorization for Real-time Dynamic View Synthesis with 3D Gaussian Splatting

Agelos Kratimenos Jiahui Lei Kostas Daniilidis University of Pennsylvania Project Page: https://agelosk.github.io/dynmf/

#### Gaussian-Flow: 4D Reconstruction with Dynamic 3D Gaussian Particle

Youtian Lin<sup>1</sup> Zuozhuo Dai<sup>2</sup> Siyu Zhu<sup>3</sup> Yao Yao<sup>1ac</sup> <sup>1</sup>Nanjing University <sup>2</sup>Alibaba Group <sup>3</sup>Fudan University

Spacetime Gaussian Feature Splatting for Real-Time Dynamic View Synthesis

Zhan Li<sup>1,2\*</sup> Zhang Chen<sup>1†</sup> <sup>1</sup> OPPO US Research Center Zhong Li<sup>1†</sup> Yi Xu<sup>1</sup> <sup>2</sup> Portland State University

Jia-Wei Liu Jniversity of Singapore Nati

# Dynamic 3DGS Approaches - Overview

We differentiate:

- Generic approaches suitable for any type of scene
  - Dynamic 3D Gaussians per-scene
- Approaches for **heads** 
  - Gaussian Avatars per-scene
  - Neural Parametric Gaussian Avatars per-scene
  - Avat3r generalization
- Approaches for humans
  - Animatable Gaussians per-scene

### Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis



[Luiten '23] Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis

# Good data is essential for per-scene dynamic 3DGS

Multi view input videos are needed.



Panoptic Studio 31 cameras, each 150 frames at 30fps

[Luiten '23] Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis

# Making 3D Gaussians move

Gaussian parameters that are **fixed** over time

- Scale
- Color
- Opacity

# → Optimized on the first frame.

Gaussian parameters that change over time

- 3D position
- 3D rotation

→ Optimized for each timestep relative to the previous.

## Physically-Based Priors as Regularizers

- Local rigidity prior  $\mathcal{L}_{i,j}^{\text{rigid}} = w_{i,j} \left\| (\mu_{j,t-1} - \mu_{i,t-1}) - R_{i,t-1} R_{i,t}^{-1} (\mu_{j,t} - \mu_{i,t}) \right\|_2$
- Local rotational-similarity prior  $\mathcal{L}^{\text{rot}} = \frac{1}{k|\mathcal{S}|} \sum_{i \in \mathcal{S}} \sum_{j \in \text{knn}_{i;k}} w_{i,j} \left\| \hat{q}_{j,t} \hat{q}_{j,t-1}^{-1} - \hat{q}_{i,t} \hat{q}_{i,t-1}^{-1} \right\|_{2}$
- Long-term local isometry prior

 $\mathcal{L}^{\text{iso}} = \frac{1}{k|\mathcal{S}|} \sum_{i \in \mathcal{S}} \sum_{j \in \text{knn}_{i;k}} w_{i,j} \left\| \|\mu_{j,0} - \mu_{i,0}\|_2 - \|\mu_{j,t} - \mu_{i,t}\|_2 \right\|$ 



CVPR'24 [Qian et al.] GaussianAvatars

#### User Control



| ▼ FLAME parameters |       |      |     |  |
|--------------------|-------|------|-----|--|
|                    |       |      |     |  |
| 0.07               | 0.02  | 0,00 | nec |  |
| 6,67               | 8.66  | 0.00 | jaw |  |
| 6,68               | -8,92 | 0.00 | eye |  |
|                    | pitch | yaw  |     |  |
| Expression         |       |      |     |  |
|                    | -8.18 |      |     |  |
|                    | 0.00  |      |     |  |
|                    | -8.88 |      |     |  |
|                    | -0.15 |      |     |  |
|                    | 0. 80 |      |     |  |
| reset FLAN         | E     |      |     |  |



#### **GaussianAvatars:**

Photorealistic Head Avatars with Rigged 3D Gaussians

#### User Control

| ▼ Render  |         | ×        |  |
|-----------|---------|----------|--|
| 💽 show sp | latting |          |  |
| show mes  | sh      |          |  |
|           |         | timestep |  |

| ▼ FLAME par | rameters |      |     |
|-------------|----------|------|-----|
| 💽 enable    | control  |      |     |
| Joints      |          |      |     |
| 0.07        | 0.02     | 0,00 | nec |
| 6,67        | 8.06     | 0.00 | jaw |
| 6,68        | -8.92    | 0.00 | eye |
|             | pitch    | yaw  |     |
| Expression  |          |      |     |
|             | -8.18    |      |     |
|             | 0.00     |      |     |
|             | -8.88    |      |     |
|             |          |      |     |
|             | 0.00     |      |     |
| reset FLAN  | E        |      |     |



#### GaussianAvatars:

Photorealistic Head Avatars with Rigged 3D Gaussians

CVPR'24 [Qian et al.] GaussianAvatars

#### Video-driven Avatar Animation



Source Actor



Animated Avatar CVPR'24 [Qian et al.] GaussianAvatars

#### Video-driven Avatar Animation



Source Actor



Animated Avatar CVPR'24 [Qian et al.] GaussianAvatars

#### With NPHM Base Model



### 3DGS + NPHM Base Model



#### a) NPHM Tracking



b) Cycle-Consistency Distillation



#### a) NPHM Tracking



![](_page_53_Picture_1.jpeg)

# c) Neural Parametric Gaussian Avatars Canonical Gaussians Deformed Gaussians

#### a) NPHM Tracking

![](_page_53_Picture_4.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_55_Picture_1.jpeg)

![](_page_56_Picture_0.jpeg)

![](_page_56_Picture_1.jpeg)

![](_page_56_Picture_2.jpeg)

![](_page_57_Picture_0.jpeg)

### Animatable Gaussians

![](_page_58_Picture_1.jpeg)

#### Training Data: Multi-view RGB Videos

### Animatable Gaussians

![](_page_59_Figure_1.jpeg)

### Animatable Gaussians

![](_page_60_Picture_1.jpeg)

#### Animated with novel motion sequence

[Li et al. '24] Animatable Gaussians: Learning Pose-dependent Gaussian Maps for High-fidelity Human Avatar Modeling

### Generalizable 3D Head Avatars

![](_page_61_Figure_1.jpeg)

## Generalizable 3D Head Avatars

![](_page_62_Picture_1.jpeg)

arXiv'25 [Kirschstein et al.] Avat3r

![](_page_63_Picture_0.jpeg)

![](_page_63_Picture_1.jpeg)

![](_page_63_Picture_2.jpeg)

### Large Animatable Reconstruction Model for High-fidelity 3D Head Avatars

Tobias Kirschstein<sup>1,2</sup> - Javier Romero<sup>2</sup> - Artem Sevastopolsky<sup>1,2</sup> - Matthias Nießner<sup>1</sup> - Shunsuke Saito<sup>2</sup>

<sup>1</sup>Technical University of Munich <sup>2</sup>Meta Reality Labs

![](_page_63_Picture_6.jpeg)

![](_page_64_Picture_0.jpeg)

![](_page_64_Picture_1.jpeg)

![](_page_64_Picture_2.jpeg)

![](_page_64_Picture_3.jpeg)

![](_page_64_Picture_4.jpeg)

arXiv'25 [Kirschstein et al.] Avat3r

![](_page_65_Picture_0.jpeg)

![](_page_65_Picture_1.jpeg)

![](_page_65_Picture_2.jpeg)

![](_page_65_Picture_3.jpeg)

![](_page_65_Picture_4.jpeg)

![](_page_65_Picture_5.jpeg)

#### Zero-shot 3D facial animation

![](_page_66_Picture_0.jpeg)

# Summary: NeRF, 3DGS, etc.

#### Textured Meshes vs NerRFs/3D Gaussians

![](_page_67_Picture_1.jpeg)

![](_page_67_Picture_2.jpeg)

[Mildenhall et al. 20]: NeRF

Prof. Niessner

#### Textured Meshes vs NerRFs/3D Gaussians

Reconstruction:

- Optimization-based
- Need good gradients
- Not just surface rep!

![](_page_68_Picture_5.jpeg)

Rendering:

- Need only surface
- Fast access / efficient
- No gradients needed

#### [Neural Radiance Fields] [3D Gaussians] [3D Meshes]

# Reading Homework

- [Kerbl & Kopanas et al. 2023] 3D Gaussian Splatting for Real-Time Radiance Field Rendering
  - <u>https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting\_low.pdf</u>

## Literature

- [Kerbl & Kopanas et al. 2023] 3D Gaussian Splatting for Real-Time Radiance Field Rendering
- [Zwicker et al. 2001] Surface Splatting
- [Yifan et al. 2019] Differentiable Surface Splatting for Point-based Geometry Processing
- [Luiten 2023] Dynamic 3D Gaussians: Tracking by Persistent Dynamic View Synthesis
- [Qian et al. 2024] GaussianAvatars

## Literature

- SIGGRAPH Asia'24 [Giebenhain et al.]: Neural Parametric Gaussian Avatars
- [Kirschstein et al. 2025] Avat3r
- [Li et al. 2024] Animatable Gaussians: Learning Posedependent Gaussian Maps for High-fidelity Human Avatar Modeling


## Thanks for watching!

## Some Slides adapted from...

 3D Gaussian Splatting Tutorial 3DV 2024, Georgios Kopanas, Bernhard Kerbl, Antoine Guédon and Jonathon Luiten