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Large Reconstruction 
Model (LRM)
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Introduction
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Task: X to 3D
• Image-to-3D

• Text-to-3D

• Multi-view-to-3D, Video-to-3D, …
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What is a Large Reconstruction Model?
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Feed-Forward Network
trained on large data to generalize

Input: 
single image, 
text, …

Output: 
Radiance field 
representation, 
e.g., NeRF, 3DGS
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Large Reconstruction 
Model (LRM)
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PixelNeRF
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Input images PixelNeRF NeRF

[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images
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PixelNeRF

7

Input images

Input image PixelNeRF

PixelNeRF

[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images
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PixelNeRF – Single Image Input

8[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images
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PixelNeRF – Single Image Input
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1. Extract features 
from input image 
with CNN encoder

Input Image

Target Image

Image Encoder

[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images
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PixelNeRF – Single Image Input
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1. Extract features 
from input image 
with CNN encoder

2. Shoot camera 
rays from pixels of 
the target view

Input Image

Target Image

Image Encoder

[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images
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PixelNeRF – Single Image Input
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1. Extract features 
from input image 
with CNN encoder

2. Shoot camera 
rays from pixels of 
the target view

3. Determine features for sample 
points along the rays: 
• Project 3D points to image plane.
• Bilinearly interpolate image features

Input Image

Target Image

Image Encoder

[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images
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PixelNeRF – Single Image Input
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Input Image

Target Image

3D Position +
View Direction

Image Feature

Color + Opacity

Image Encoder

MLP
[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images
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PixelNeRF – Single Image Input
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→ Volume rendering and 
supervision as in NeRF. 

[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images
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PixelNeRF – Multi-View Input

14[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images

→ There are multiple image feature vectors. 
How should we aggregate them?
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PixelNeRF – Multi-View Input

15[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images

3D Position + 
View Direction

MLP

Color + 
Opacity

Image Feature
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PixelNeRF – Architecture

16[Yu et al. ‘21] pixelNeRF: Neural Radiance Fields from One or Few Images

Important: Position & view direction 
are in input coordinate system. 
→ View direction provides crucial 
information on relevance of a 
source view.

In single-image case, network 
boils down to 5 ResNet blocks.

Fully-connected ResNet 
architecture
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LRM: Large Reconstruction Model
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Image 
Encoder

Image-to-
Triplane 
Decoder

Triplane 
NeRF

[Hong et al. ‘24] LRM: Large Reconstruction Model for Single Image to 3D
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LRM – Image Encoder
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Patchify image 
into sequence

Self-attention 
between patches

Patch-wise 
feature tokens

[Hong et al. ‘24] LRM: Large Reconstruction Model for Single Image to 3D

Pretrained
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LRM: Large Reconstruction Model
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Image 
Encoder

Image-to-
Triplane 
Decoder

Triplane 
NeRF

[Hong et al. ‘24] LRM: Large Reconstruction Model for Single Image to 3D
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LRM – Image-to-Triplane Decoder
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Per 
triplane 

cell

• Contain normalized extrinsics and 
intrinsics

• Are encoded to high-dimensional 
camera embedding by MLP

2 different conditional operations:
• Cross-attention with input image patches
• Modulation with camera features

Upsample 
triplane 
features

[Hong et al. ‘24] LRM: Large Reconstruction Model for Single Image to 3D
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LRM – Image-to-Triplane Decoder
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2 different conditional operations

Cross-attention with input image patches
→ control fine-grained geometric and color information 

Modulation with camera features
→ control orientation and 
distortion of the whole shape

[Hong et al. ‘24] LRM: Large Reconstruction Model for Single Image to 3D
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LRM: Large Reconstruction Model
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Image 
Encoder

Image-to-
Triplane 
Decoder

Triplane 
NeRF

[Hong et al. ‘24] LRM: Large Reconstruction Model for Single Image to 3D
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LRM – Triplane NeRF
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3 axis-aligned 
feature planes

How to extract triplane features for a 3D point?
1. Project point onto each plane
2. Trilinearly interpolate triplane features
3. Obtain one vector per triplane

MLP maps features 
to color and density

Volume rendering as in NeRF; 
Training with color and LPIPS 
rendering losses

[Hong et al. ‘24] LRM: Large Reconstruction Model for Single Image to 3D
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LRM – Results
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Input 
Image

Rendered Novel Views Rendered Novel ViewsInput 
Image

[Hong et al. ‘24] LRM: Large Reconstruction Model for Single Image to 3D
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GRM: Large Gaussian Reconstruction Model

[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation

Single image to 3D Text to 3D

Multi-view to 3D
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GRM: Large Gaussian Reconstruction Model
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Facilitate text and single image input 
by using pretrained generators

4 images and 
camera poses

Vision Transformer 
Encoder

Transformer-based 
Upsampler

Combine pixel-aligned Gaussians 
to single 3DGS representation

[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
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GRM: ViT Encoder
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1. Concatenate image with camera
poses as Plücker rays

2. Encode with CNN tokenizer to
create one sequence from all 4 
images 4 × Τ𝐻 16 × Τ𝑊 16

3. Append learnable image position
encodings.

4. Series of self-attention layers
attending to all tokens across the
input views. 

[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
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GRM: Large Gaussian Reconstruction Model
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Facilitate text and single image input 
by using pretrained generators

4 images and 
camera poses

Vision Transformer 
Encoder

Transformer-based 
Upsampler

Combine pixel-aligned Gaussians 
to single 3DGS representation

[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
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GRM: Transformer-based Upsampler
• Multiple upsample blocks 

progressively upsample by 
factor 2 until reaching 𝐻 ×𝑊

– Quadruple number of 
channels

– Double spatial dimension 
with PixelShuffle

29[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
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GRM: Transformer-based Upsampler
• Multiple upsample blocks 

progressively upsample by 
factor 2 until reaching 𝐻 ×𝑊

– Quadruple number of 
channels

– Double spatial dimension 
with PixelShuffle

30

https://nico-curti.github.io/NumPyNet/NumPyNet/layers/pixelshuffle_layer.html

[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation



Prof. Niessner

GRM: Transformer-based Upsampler
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– Windowed Self-Attention: 
balance between need
for non-local multi-view 
information aggregation 
and feasible computation 
cost

• Separate linear heads
produce Gaussian features

[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
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GRM: Large Gaussian Reconstruction Model
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Facilitate text and single image input 
by using pretrained generators

4 images and 
camera poses

Vision Transformer 
Encoder

Transformer-based 
Upsampler

Combine pixel-aligned Gaussians 
to single 3DGS representation

[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
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GRM: Pixel-aligned 3D Gaussians
• Predict one Gaussian per pixel, i.e., one

Gaussian attribute map 𝐻 ×𝑊 × 𝐶 per 
input image, 𝐶 = 12, depth (1), rotation (4), 
scale (3), opacity (1), rgb (3).

→ Pixel-aligned Gaussians are easier to
learn
→ 3D Gaussians render in real-time

33

Image from [Charatan et al. ‘24]

[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
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GRM: Pixel-aligned 3D Gaussians
1. Backproject pixel-aligned 

Gaussians to single 3DGS 
representation

2. Render as in 3DGS
3. Supervise novel views with 

image (color & perceptual) 
and mask loss

34[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
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GRM - Results

35[Xu & Shi et al. ‘24] GRM: Large Gaussian Reconstruction Model for Efficient 3D Reconstruction and Generation
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Long-LRM: Long-sequence Large 
Reconstruction Model
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→ from 32 
images in 
1.3s

[Chen et al. 2024] Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats
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Long-LRM: Long-sequence Large 
Reconstruction Model
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Hybrid Blocks: Mamba2 + Transformer

[Chen et al. 2024] Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats
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Long-LRM – Hybrid Block
• Combine Mamba2 blocks & transformer blocks → 

better scalability to higher resolution & denser views
• Hybrid block = 7 Mamba2 blocks + 1 transformer block

38

O(L) O(L^2)L = Sequence Length

Due to global 
self-attention

[Chen et al. 2024] Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats
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Long-LRM – Mamba2 Block
• Mamba2 block [Dao & Gu ‚24] is designed for

language tasks → scans through sequence in one
direction → suboptimal for images.

• Vision Mamba [Zhu et al. ’24] take bi-directional scans 
over the concatenated token sequence

39

Hidden State Input Token

Output Token

Compute state
params from input
using linear layer

[Chen et al. 2024] Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats
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Long-LRM: Long-sequence Large 
Reconstruction Model
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Hybrid Blocks: Mamba2 + Transformer

[Chen et al. 2024] Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats
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Long-LRM – Token Merge

1. Reshape input sequence 𝐿 × 𝐷 back to 𝑁 ×
𝐻

𝑝
×

𝑊

𝑝
× 𝐷

where 𝑁 = #images, 𝑝 = patch size
2. Apply 2D convolution, kernel size 2, stride 2, resulting

in 𝑁 ×
𝐻

2𝑝
×

𝑊

2𝑝
× 𝐷′

3. Resape back to
𝐿

4
× 𝐷′

→ Reduces sequence length to 1/4

41[Chen et al. 2024] Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats
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Long-LRM: Long-sequence Large 
Reconstruction Model
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Hybrid Blocks: Mamba2 + Transformer

[Chen et al. 2024] Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats
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Long-LRM – Decode to Gaussians
• Decode output tokens to per-pixel Gaussian

parameters
• At training-time prune to fixed number of Gaussians, 

at test-time prune by opacity → improve efficiency at 
high resolution and increased views

43[Chen et al. 2024] Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats
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Long-LRM – Training Objective
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Depth regularizer
to avoid “floaters“

Opacity regularizer to reduce the
number of relevant Gaussians

[Chen et al. 2024] Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats
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Long-LRM – Results

45[Chen et al. 2024] Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats
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Avat3r: Generalizable 3D Head Avatars

arXiv’25 [Kirschstein et al.] Avat3r



Avat3r: Generalizable 3D Head Avatars

arXiv’25 [Kirschstein et al.] Avat3r



Avat3r
Large Animatable Reconstruction Model

for High-fidelity 3D Head Avatars
Tobias Kirschstein1,2 - Javier Romero2 - Artem Sevastopolsky1,2 - Matthias Nießner1 - Shunsuke Saito2

1Technical University of Munich 2Meta Reality Labs

3



4 phone images

arXiv’25 [Kirschstein et al.] Avat3r



Avat3r

Zero-shot 3D facial animation
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Reading Homework

• [Hong et al. ‘24] LRM: Large Reconstruction 
Model for Single Image to 3D
– https://arxiv.org/pdf/2311.04400 

51

https://arxiv.org/pdf/2311.04400
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Literature

• [Yu et al. ‘21] pixelNeRF: Neural Radiance Fields 
from One or Few Images

• [Hong et al. ‘24] LRM: Large Reconstruction Model 
for Single Image to 3D

• [Xu & Shi et al. ‘24] GRM: Large Gaussian 
Reconstruction Model for Efficient 3D 
Reconstruction and Generation

52
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Literature

• [Chen et al. 2024] Long-LRM: Long-sequence 
Large Reconstruction Model for Wide-coverage 
Gaussian Splats 

• arXiv ’25 [Kirschstein et al.] Avat3r

53
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Thanks for watching!
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