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Generative Adversarial Networks (GANs)

5https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html

List of All (arXiv) Adversarial Example Papers

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
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Convolution & Up Convolution

6

Convolution
no padding, no stride

https://github.com/vdumoulin/conv_arithmetic

Up (transposed) convolution
no padding, no stride

Input

Output

Input

Output

https://github.com/vdumoulin/conv_arithmetic
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Autoencoders & Variational Autoencoders

7

Conv Upconv

Encoder Decoder

Sample
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Autoencoder: Reconstruction

8
Conv Upconv

Input Image Output Image

Reconstruction
Loss (often L2)
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Training Autoencoders

9

Latent space z
dim (z) < dim (x)
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Decoder as Generative Model

10

“Test time”:
-> reconstruction from 

‘random’ vector

Output Image
Latent space z
dim (z) < dim (x)
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Decoder as Generative Model

11

Interpolation between two chair models

[Dosovitsky et al. 14] Learning to Generate Chairs



Prof. Niessner

Decoder as Generative Model

12[Dosovitsky et al. 14] Learning to Generate Chairs

Morphing between
chair models



Prof. Niessner

Decoder as Generative Model

13

Reconstruction Loss 
Often L2, i.e., sum of squared dist.
-> L2 distributes error equally

-> mean is opt.
-> result is blurry.

Instead of L2, can we 
“learn” a loss function?

“Test time”:
-> reconstruction from 

‘random’ vector

Output Image
Latent space z
dim (z) < dim (x)
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Generative Adversarial Networks (GANs)

14[Goodfellow et al. 14] GANs (slide McGuinness)
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Generative Adversarial Networks (GANs)

15[Goodfellow et al. 14] GANs (slide McGuinness)
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Generative Adversarial Networks (GANs)

16[Goodfellow et al. 14/16] GANs

real data fake data
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Discriminator loss

Generator loss binary cross entropy

GANs: Loss Functions

• Minimax Game:
– G minimizes probability that D is correct
– Equilibrium is saddle point of discriminator loss

17

-> D provides supervision (i.e., gradients) for G
[Goodfellow et al. 14/16] GANs
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GANs: Loss Functions

• Heuristic Method (often used in practice)
– G maximizes the log-probability of D being mistaken
– G can still learn even when D rejects all generator samples

18

Discriminator loss

Generator loss

[Goodfellow et al. 14/16] GANs
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Alternating Gradient Updates
• Step 1: Fix G, and perform gradient step to

• Step 2: Fix D, and perform gradient step to 

19
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Vanilla GAN

20https://papers.nips.cc/paper/5423-generative-adversarial-nets

https://papers.nips.cc/paper/5423-generative-adversarial-nets
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Putting it all Together

21
Vitaly Bondar: Generative Models Lecture
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Training a GAN

22

https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f

https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f
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GANs: Loss Functions

23[Goodfellow et al. 14/16] GANs

Minimax

Heuristic
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DCGAN: Generator

24DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

Generator of Deep Convolutional GANs

https://github.com/carpedm20/DCGAN-tensorflow
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DCGAN: Results

25DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

Results on MNIST

https://github.com/carpedm20/DCGAN-tensorflow
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DCGAN: Results

26

Results on CelebA (200k relatively well aligned portrait photos)
DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

https://github.com/carpedm20/DCGAN-tensorflow
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DCGAN: Results

27DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

Asian face dataset

https://github.com/carpedm20/DCGAN-tensorflow
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DCGAN: Results

28DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

https://github.com/carpedm20/DCGAN-tensorflow
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DCGAN: Results

29DCGAN: https://github.com/carpedm20/DCGAN-tensorflow

Loss of D and G on custom dataset

https://github.com/carpedm20/DCGAN-tensorflow
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“Bad” Training Curves

30

https://stackoverflow.com/questions/44313306/dcgans-discriminator-getting-too-strong-too-quickly-to-allow-generator-to-learn

https://stackoverflow.com/questions/44313306/dcgans-discriminator-getting-too-strong-too-quickly-to-allow-generator-to-learn
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“Good” Training Curves

31
https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f

https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f
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“Good” Training Curves

32
https://stackoverflow.com/questions/42690721/how-to-interpret-the-discriminators-loss-and-the-generators-loss-in-generative

https://stackoverflow.com/questions/42690721/how-to-interpret-the-discriminators-loss-and-the-generators-loss-in-generative
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Training Schedules
• Adaptive schedules

For instance
while loss_discriminator > t_d:

train discriminator
while loss_generator > t_g:

train generator

33
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Weak vs Strong Discriminator
• Need balance 

• Discriminator too weak?
– No good gradients (cannot get better than 

teacher…)

• Generator too weak?
– Discriminator will always be right 

34
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Mode Collapse
min
𝐺

max
𝐷

𝑉 𝐺,𝐷 ≠ max
𝐷

min
𝐺

𝑉(𝐺, 𝐷)

• 𝐷 in inner loop -> convergence to correct dist.
• 𝐺 in inner loop -> easy to convergence to one sample

35[Metz et al. 16]
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Mode Collapse
• Same data dimension
• Performance correlates 

with dim of manifold
• Performance correlates 

with # of modes

36Slide credit Ming-Yu Liu

-> More modes, smaller recovery rate!
-> part of the reason, why we often see 
GAN-results on specific domains (e.g., 
faces)
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Mode Collapse
• Same # of modes
• Performance correlates 

with dim of manifold
• Performance non-

correlated with data 
dimensions

37Slide credit Ming-Yu Liu

-> Larger latent space,
more mode collapse
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Problems with Global Structure

38
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Problems with Counting

39
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Evaluation of GAN Performance

40
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Evaluation of GAN Performance
• Main difficulty of GANs: we don’t know how good they 

are

• People cherry pick results in papers -> some of them 
will always look good, but how to quantify?

• Do we only memorize, or do we generalize?

• GANs are difficult to evaluate! [This et al., ICLR 2016]

41
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Evaluation of GAN Performance
• Human evaluation:

– Every n updates, show a series of predictions
– Check train curves
– What does ‘look good’ mean at the beginning?

• Need variety!
• But don’t have ‘realistic’ predictions yet…

– If it doesn’t look good? Go back, try different 
hyperparameters…

42
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Evaluation of GAN Performance
• Inception Score (IS)

– Measures saliency and diversity

– Train an accurate classifier
– Train an image generation model (conditional)
– Check how accurate the classifier can recognize 

the generated images
– Makes some assumptions about data distributions…

43
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Evaluation of GAN Performance
• Inception Score (IS)

– Saliency: check whether the generated images can 
be classified with high confidence (i.e., high scores 
only on a single class)

– Diversity: check whether we obtain samples from 
all classes

44

What if we only have one good image per class?
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Evaluation of GAN Performance
• Frechet Inception Distance (FID)

– Calculates the feature distance between the real and 
synthetic distribution (modelled by multivariate Gaussian)

– Pros: 
• More robust to noise then IS
• No class concept needs

– Cons:
• Still relies on pretrained Inception-V3 model features

45
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Evaluation of GAN Performance
• Could also look at discriminator

– If we end up with a strong discriminator, then 
generator must also be good

– Use D features, for classification network
– Only fine-tune last layer
– If high class accuracy -> we have a good D and G

46
Caveat: doesn’t seem widespread in the community
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Next: Making GANs Work in Practice

• Training / Hyperparameters (most important)

• Choice of loss function

• Choice of architecture

47
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GAN Hacks: Normalize Inputs
• Normalize the inputs between -1 and 1

• Tanh as the last layer of the generator output

• No-brainer 

48https://github.com/soumith/ganhacks

https://github.com/soumith/ganhacks
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GAN Hacks: Sampling
• Use a spherical z
• Don’t sample from a uniform distribution
• Sample from a Gaussian Distribution

49

• When doing interpolations, do the 
interpolation via a great circle, rather than 
a straight line from point A to point B

• Tom White's Sampling Generative 
Networks ref 
code https://github.com/dribnet/plat
has more details

https://arxiv.org/abs/1609.04468
https://github.com/dribnet/plat
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GAN Hacks: BatchNorm
• Use Batch Norm

• Construct different mini-
batches for real and 
fake, i.e. each mini-batch 
needs to contain only all 
real images or all 
generated images.

50
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GAN Hacks: Use ADAM

• See Adam usage [Radford et al. 15]

• SGD for discriminator

• ADAM for generator

51
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GAN Hacks: One-sided Label Smoothing

• Prevent discriminator from giving too large gradient 
signal to generator:

52
Salimans et al. 17 “Improved Techniques for Training GANs”

Some value smaller than 1; e.g.,0.9

-> reduces confidence; i.e., makes disc. ‘weaker’
-> encourages ‘extreme samples’ (prevents extrapolating)

𝝀
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GAN Hacks: Historical Generator Batches

53Srivastava et al. 17 “Learning from Simulated and Unsupervised Images through Adversarial Training”

Help stabilize discriminator training in early stage



Prof. Niessner

GAN Hacks: Avoid Sparse Gradients
• Stability of GAN game suffers if gradients are sparse
• LeakyReLU -> good in both G and D
• Downsample -> use average pool, conv+stride
• Upsample -> upconv+stride, PixelShuffle

54[Shi et al. 16] https://arxiv.org/pdf/1609.05158.pdf

https://arxiv.org/pdf/1609.05158.pdf
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Exponential Averaging of Weights
• Problem: discriminator is noisy due to SGD

• Rather than taking final result of a GAN, would be 
biased on last latest iterations (i.e., latest training 
samples),

• -> exponential average of weights
• -> keep second ‘vector’ of weights that are averaged 

-> almost no cost, average of weights from last n iters

55



Prof. Niessner

Other Objective Functions

56

“heuristic is standard…”

Vitaly Bondar: Generative Models Lecture
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Other Objective Functions

57

“heuristic is standard…”

The loss function alone will not make it suddenly work!
Vitaly Bondar: Generative Models Lecture
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GAN Losses: EBGAN
• Discriminator is AE (Energy-based GAN)
• a good autoencoder: we want the reconstruction cost 

D(x) for real images to be low.
• a good critic: we want to penalize the discriminator if 

the reconstruction error for generated images drops 
below a value m.

58https://medium.com/@jonathan_hui/gan-energy-based-gan-ebgan-boundary-equilibrium-gan-began-4662cceb7824

https://medium.com/@jonathan_hui/gan-energy-based-gan-ebgan-boundary-equilibrium-gan-began-4662cceb7824
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GAN Losses: BEGAN
• Similar to EBGAN

• Instead of reconstruction 
loss, measure difference 
in data distribution of real 
and generated images

59https://medium.com/@jonathan_hui/gan-energy-based-gan-ebgan-boundary-equilibrium-gan-began-4662cceb7824

https://medium.com/@jonathan_hui/gan-energy-based-gan-ebgan-boundary-equilibrium-gan-began-4662cceb7824
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GAN Losses: WGAN
• Earth Mover Distance / Wasserstein Distance

60

Minimum amount of work to move earth from p(x) to q(x)

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
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GAN Losses: WGAN
• Formulate EMD via it’s dual:

61

1-Lipschitz function: upper bound between densities

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
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GAN Losses: WGAN

62

f is a critic function, defined by a neural network
-> f needs to be 1-Lipschitz; WGAN restricts max weight value in f; 
weights of the discriminator must be within a certain range controlled by
hyperparameters c 

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490


Prof. Niessner

GAN Losses: WGAN

63https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
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GAN Losses: WGAN

64https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
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GAN Losses: WGAN

65https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
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GAN Losses: GAN

66https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
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GAN Losses: WGAN

67https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490

https://medium.com/@jonathan_hui/gan-wasserstein-gan-wgan-gp-6a1a2aa1b490
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GAN Losses: WGAN
• + mitigates mode collapse 
• + generator still learns when critic performs well
• + actual convergence

• Enforcing Lipschitz constraint is difficult
• Weight clipping is “terrible”

– -> too high: takes long time to reach limit; slow training
-> too small: vanishing gradients when layers are big

68
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GAN Losses
• Many more variations!!!

• High-level understanding: “loss” is a meta loss to train 
the actual loss (i.e., D) to provide gradients for G

• Always start simple: if things don’t converge, don’t 
randomly shuffle loss around; always try easy things 
first (AE, VAE, ‘simple heuristic’ GAN)

69
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GAN Architectures

70
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Multiscale GANs

71Credit: Li/Karpathy/Johnson
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Multiscale GANs

72Credit: Li/Karpathy/Johnson
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Progressive Growing GANs

73https://github.com/tkarras/progressive_growing_of_gans [Karras et al. 17]

https://github.com/tkarras/progressive_growing_of_gans
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StyleGAN[x] 
Architectures

74
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StyleGAN Architectures

75

Progressive GAN
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StyleGAN[x] Architectures

76

StyleGANProgressive GAN

Evolve
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StyleGAN – Mapping Network

77

StyleGANProgressive GAN

Evolve
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StyleGAN

StyleGAN – Style Normalization

78

Progressive GAN

Evolve
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StyleGAN

StyleGAN – Style Normalization

79

1. x: the activation from the previous layer

2. y: the style features (e.g. extracted from 

CNN) of your target style image

3. No trainable variables – mean and var 

directly calculated
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StyleGAN – Constant Input

80

StyleGAN
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StyleGAN – Style Normalization

81

StyleGAN
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StyleGAN – Mixing Regularization

82https://medium.com/@steinsfu/stylegan-vs-stylegan2-vs-stylegan2-ada-vs-stylegan3-c5e201329c8a

https://medium.com/@steinsfu/stylegan-vs-stylegan2-vs-stylegan2-ada-vs-stylegan3-c5e201329c8a


Prof. Niessner

StyleGAN

83
https://www.youtube.com/watch?v=kSLJriaOumA
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StyleGAN2 – No Droplets

84https://www.youtube.com/watch?v=c-NJtV9Jvp0, Stein Sfu StyleGAN1,2,3 

Normalization

Modulation

Without Normalization, the droplet 
artifact disappear

https://www.youtube.com/watch?v=c-NJtV9Jvp0
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StyleGAN2 – Additional Changes
• Remove redundant operations
• Noise added outside of style 

area
• Normalization and modulation 

only applied on standard 
deviation

• Modulation and Convolution 
combined in single operation

• Training strategy changes, see: 
https://github.com/NVlabs/st
ylegan2

85

FID Score

https://github.com/NVlabs/stylegan2
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StyleGAN2-ADA – Limited Data

86
https://www.youtube.com/watch?v=kSLJriaOumA

The Discriminator latents are directly augmented with probability p.

Better for limited Data No manual augmentation
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StyleGAN3 – No Aliasing 

87
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StyleGAN3 – No Aliasing 

88

Most Important differences:
• Input constant replaced with continuous Fourier 

feature
• Remove per pixel noise – no positional 

references
• Smaller mapping network depth
• Better upsampling with updated 

approximations of the Fourier low pass filter

Karras et al.: Alias-Free Generative Adversial Networks
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Reading Homework
• GANs [Goodfellow et al. 2014] Generative adversarial networks

– https://arxiv.org/abs/1406.2661

• [Radford et al. 2015] Unsupervised representation learning with 
deep convolutional generative adversarial networks
– https://arxiv.org/abs/1511.06434

• [Karras et al. 19] A style-based generator architecture for 
generative adversarial networks.
– https://arxiv.org/abs/1812.04948

89

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1812.04948
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Thanks for watching!

90


