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Representation Learning

Techniques that transform a form of raw data into a

representation that can be effectively exploited for
machine learning tasks

Representation learning typically refers to learning
such a transformation that can generalize across tasks



What are good representations?

« Representation encodes priors about data distribution(s)

— Smoothness: close inputs map to close outputs

— Compactness: input dimension >> output dimension
— Robustness: features are insensitive to input noise

— Abstraction and invariances -> problem driven

Prof. Niessner



What are representations?

« A representation performs the task of converting an
observation in the real world (e.g., an image, a

recorded speech signal, a word In a sentence) into a
mathematical form (e.q., a vector)

representation

|:> [81,20,84,64,58,39,17,54, ...]

Prof. Niessner



What are representations?

e The feature vector can be used by other models to
oroduce outputs, eg.,

— Classification

feature

[81,20,84,64, ...] |:> ‘CAT’

Prof. Niessner



What are representations?

e The feature vector can be used by other models to
oroduce outputs, eg.,

— Reconstruction

feature
[81, 20, 84, 64, ...]

Prof. Niessner



What are representations?

e The feature vector can be used by other models to
oroduce outputs, eg.,

— Generation

feature

"a photo of
ot > [81,20,84,64,..]

Prof. Niessner



What are representations?

« Representation examples
— Handcrafted attribute
« Gender: {'female” 0, 'male” 1

« Eye color {'blue” 0, "brown" 1}
« Hair color: {"black™ 0, "blond": 1]

1 | feature
| | . ’| I:> [1,0,1]
\ A)\

Prof. Niessner



What are representations?

« Representation examples
— Binary (one-hot vector)
« {'Paris” 0, 'London” 1, 'Munich™ 2, .

feature

‘Munich’® T [0,0,1]

Prof. Niessner



What are representations?

« Representation examples
— Embedding vector

Prof. Niessner

Germany
®
‘Germany’ o ® Munich
‘Munich’® T Garching

‘Garching’
Embedding space

10



Representation in Computer Vision

Supervised Unsupervised
Constrained on task(s), e.q, Constrained on data itself,
classification eg., reconstruction

Prof. Niessner 11



Supervised Approaches

o (Classification

— Train ResNet50 on ImageNet
— Use the features in the last layer as image

representations
During training:

Prof. Niessner

091N S

JoAe] D4

Ja1ISseD

'‘CAT"
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Supervised Approaches

o (Classification

— Train ResNet50 on ImageNet
— Use the features in the last layer as image

representations
After training:

Prof. Niessner

091N S

JoAR] D4

|_> representation



Unsupervised Approaches

« Clustering (K-Means)

— Mean vectors as representations |
representation

L] L] .
e ° e® o representation
® e l.

>
Before K-Means [ After K-Means

representation

Prof. Niessner 14



Self-supervised Approaches

« A form of unsupervised learming approaches where
the data provides the supervision for itself

« With a proxy loss, e.g., reconstruction loss, the
network is forced to learn the features we care about,
e.g., semantic representations

« \Xhy self-supervised?
— Hard and expensive to obtain annotations
— Alternative to the strong supervisions (labels)



Self-supervised Approaches

« A form of unsupervised learning approaches where
the data provides the supervision for itself

encoder decoder
A A

1afe| yoausnoq

S <

B

e T~ Reconstruction
No label

Prof. Niessner 16



Self-supervised Approaches

« With a proxy loss, e.g., reconstruction loss, the
network is forced to learn the features we care about,
e.g., semantic representations

encoder decoder
A A

S <

1afe| yoausnoq

B

— L2 loss —

Prof. Niessner



Self-supervised Approaches

« \Why self-supervised?
— Hard and expensive to obtain annotations
— Make the most out of the existing unlabelled data
* [nstagram: >1 billion images uploaded / day
* YouTube: >300 hrs of vides uploaded / minute
— Alternative to the strong supervisions (labels)



Self-supervision by Augmentation

Augmentation is an Art:
Image vs patch basis
Color variations

U @ - Geometric transforms

Backbone Backbone|

\ / Losses we have already seen some

Loss -> contrastive learning is popular

Prof. Niessner 19



DINO

o Self-distillation with no labels

loss:
ORENO
sg

softmax softmax
|
centering
[

e1a
student gy — | teacher gy,

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”.
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DINO

o Self-distillation with no labels

loss:
(o) cpiozn (o)
sg

softmax softmax
|
centering
|
student ggs M, | teacher ot
o e A pair of two random
o transformations of the
image input

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”. 21



DINO

o Self-distillation with no labels

loss:
@ an @
sg

softmax softmax
|
centerin

. ema, Same image encoder,
T i eg. ResNet50, but
X, < different parameters

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”. 22



DINO

o Self-distillation with no labels

loss:
@ - p2 log pi
sg

softmax softmax ' .
— Teacher's output is
‘==|g centered over the batch

student gy — | teacher gy,

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”. 23




o Self-distillation with no labels

For a batch with K features

(i)
p.(2)® — =90, (@) 7f'7s)
@ S, PG T W /75)
Network
outputs

DINO

Network outputs are
normalized by a

loss:
softmax softmax
|
centering
|
student gy M, | teacher e

temperature softmax over
the feature dimension

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”. 24



o Self-distillation with no labels

For a batch with K features

P, (z)® = exp(gq, () )/
. Zszl eXP(Qeg(;r:)(k)/Ts)

Temperature

DINO

Network outputs are
normalized by a

loss:
softmax softmax
|
centering
|
student gy M, | teacher e

temperature softmax over
the feature dimension

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”. 25



o Self-distillation with no labels

For a batch with K features

oL exples. (@) /)
(z) S exp(ga, (z)®) /1)

Normalized
features

DINO

Network outputs are
normalized by a

loss:
softmax softmax
|
centering
|
student gy M, | teacher e

temperature softmax over
the feature dimension

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”. 26



DINO

o Self-distillation with no labels

The similarity of two
@ _pﬁff; N @ outputs is measured by a

- cross-entropy loss
softmax softmax
I
centering
|
student ggs M, | teacher ot

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”. 27



DINO

o Self-distillation with no labels

0

softmax

student gy

loss:
- p2 log pi

e1ma

T

A stop-gradient operator is
applied on the teacher to

softmax

back-prop gradients only

centering

through the student

teacher gy,

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”. 28



o Self-distillation with no labels

The teacher is essentially
built from past iterations of
the student

DINO

loss:

® o @
sg
softmax softmax
I
centering
[
student gasu M, | teacher ot

The teacher parameters
are updated with an
exponential moving

average of the student
parameters

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”. 29



o Self-distillation with no labels

The trained student
network is used for
feature extraction

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”.

DINO

loss:
@ - p2 log pi
softmax
student gy T,

softmax

centering

teacher gy,




Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks

# C: center (K)

# tps, tpt: student and teacher temperatures

# 1, m: network and center momentum rates

gt .params = gs.params

for x in loader: # load a minibatch x with n samples
x1l, x2 = augment (x), augment (x) # random views

sl, s2
tl, t2

= gs(xl), gs(x2) # student output n-by-K
= gt(xl), gt(x2) # teacher output n-by-K
loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward() # back-propagate

# student, teacher and center updates
update (gs) # SGD

gt .params = lxgt.params + (1-1)*gs.params
C = mxC + (1l-m)=xcat([tl, t2]) .mean (dim=0)

def H(t, s):
t t.detach() # stop gradient
s softmax(s / tps, dim=1)
t = softmax((t — C) / tpt, dim=1l) # center + sharpen
return - (t * log(s)).sum(dim=1) .mean ()

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”.



Figure 3: Attention maps from multiple heads. We consider
the heads from the last layer of a ViT-S/8 trained with DINO and
display the self-attention for [CLS] token query. Different heads,
materialized by different colors, focus on different locations that
represents different objects or parts (more examples in Appendix).

Prof. Niessner Caron et al. "Emerging Properties in Self-Supervised Vision Transformers”. 32



Contrastive Learning Approaches

« What Is contrastive learning”?

— To learn an embedding space in which similar
samples pairs stay close while dissimilar ones

repel

Class 1 @ o

e st oo

o e o o

PR o
®

."\s ‘./ )"‘/- . .

m. = g U E
ClassZ'_’_. . . FO 2

Prof. Niessner



Contrastive Learning Approaches

« Can be both supervised and unsupervised
— With labels? Without labels?

« Can be even used in semi-supervised setting -> some
samples are annotated, others not

« When working with unsupervised data, it is one of the
most powerful approaches in self-supervised setting

Prof. Niessner



Contrastive Learning Approaches

contrastive loss

gradient ? gradient k
— P L, = —log —XP(ak+/T)
(_b q- ‘_W Z«izo eXp(Q'ki /T)
q L InfoNCE Loss: (k+1)-way softmax classifier
A A
encoder q encoder k
Issue: k is coupled to the mini-batch size
A A which limits k by GPU memory
2! "

(a) end-to-end

Prof. Niessner 35



Contrastive Learning Approaches

contrastive loss

gradient T
|/—

v ok
q k

4 )
samplin
encoder Ping
A
f memory
bank
:L.Q

(b) memory bank

Prof. Niessner

Idea: don’t update keys at the same time
but compare to encodings from memory bank

-> allows for large k but encodings are not
up to date (typically once per epoch)



Contrastive Learning Approaches

Prof. Niessner

contrastive loss
e Momentum Contrast for

gradient 4 unsupervised visual

representation learning

ff’ ¢k <

q k « A self-supervised learning
) A algorithm with a contrastive
0SS
encoder momentum
encoder
! ! « Enables learning a large and
" consistent visual
x1 x representation
(c) MoCo

He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”.



Can be thought of as building a dynamic dictionary

Prof. Niessner

MoCo

contrastive loss
A

— similarity “

q ko ki ko ...
T queue T
momentum
encoder o
* s : 3\
ke ke ke
xquery ‘r[) y 331 Y 332 y

Samples from the dataset

He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”.



MoCo

Can be thought of as building a dynamic dictionary

Prof. Niessner

contrastive loss
A

(—> similarity 4—\|

; ] keyisamples

T aueve 1 encoded on-the-fly
— momentum oy a slowly

A .f "  Updating encoder
auery :Blgey :Blfey :Egey

He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”. 39



MoCo

Can be thought of as building a dynamic dictionary

contrastive loss
A

similarity

‘query’ samples qﬁ ko 2,@

encoded by T auee 1

another encoder to | encoer momentum

match the keys in y ,, ’ \
gauery 25 i s .

dictionary

Prof. Niessner He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”.



MoCo

Can be thought of as building a dynamic dictionary

The similarities o
between the query (===
q ko Ky ks ...
and keys are T e |
supervised by a e
contrastive loss ¢ B
gauery :Blgey :Blfey :Egey

Prof. Niessner He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”.



MoCo

Can be thought of as building a dynamic dictionary

Prof. Niessner

contrastive loss
A

L similaity 4 |
f | INfoNCE loss function:
q ko ki ko ...
queue ]
] ! £ = tog ks
encoder momentum Zz‘:o eXP(Q"ki/T)
encoder
A / / Query
key key k
ey Ty o Y

He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”. 42



MoCo

Can be thought of as building a dynamic dictionary

Prof. Niessner

contrastive loss
A

(» similarity <

q ko k1 ko ...

T queue T C, -
encoser e

A ‘ ’ .
pauery :Egey Ilfey Igey

He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”.

—log

| INfoONCE loss function:

ZXD(QIE T)

> im0 exp(qki/T)
Matched key



MoCo

Can be thought of as building a dynamic dictionary

Prof. Niessner

(a- similarity < —\|
q ko ki ko ...
T queue T
momentum
encoder o
4 / / .
ke ke ke
xquery IO y :Bl Y 372 y

contrastive loss
A

INfONCE loss function

Ly=—

log

exp(q ki /T)

Yo exp(L T)

All keys

He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”. 44



Prof. Niessner

MoCo

Can be thought of as building a dynamic dictionary

contrastive loss
A

== InfoNCE loss function:
q ko k1 ks ... temperature
T queue T £, = —log Iixp
encoder m:?;g:rm 2210 P
A p A . Dot products
auery xlgey xll‘ey x;‘ey as similarities

He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”. 45



Can be thought of as building a dynamic dictionary

Prof. Niessner

MoCo

contrastive loss

gradients H ~ simiTarity “

q ko ki ko ..
T queue T
encoder m:rTceor:jg]rm
T p A
k k k
xquery I[]ey mley Igey

He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”.



MoCo

Can be thought of as building a dynamic dictionary

Prof. Niessner

contrastive loss
A

( > similarity < )

q ko ki ko ...

T ueve 1 The momentum

update . .

ncoder [y  "omentm encoder Is driven

i ‘ ’* by a momentum
auery :Ekey xkey key

0

12 ypdate with the
query encoder

He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”. 47



MoCo

Can be thought of as building a dynamic dictionary

Prof. Niessner

contrastive loss
A

similarity

f_b ) Momentum update:

q ko ki ko ...

T queue T Momentum encoder parameters

update

o S g [EHE 0

f B k”‘ — Momentum Target encoder
A To” T Xy~ ... coefficient parameters

M=0.999 by default

He et al. "Momentum Contrast for Unsupervised Visual Representation Learning”. 48



SIMCLR

« A Simple Framework for Contrastive Learning of
Visual Representations

« [Learns visual representations by maximizing
agreement between differently augmented views of
the same data samples

e Supervised via a contrastive loss in the latent space

Prof. Niessner Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations’.



SIMCLR

« A Simple Framework for Contrastive Learning of
Visual Representations

Maximize agreement

)] lo
h; <— Representation — h;
One input sample is
augmented to two
views by two different

operators from the
same family, eg..
different rotations

Prof. Niessner Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations’. 50



SIMCLR

« A Simple Framework for Contrastive Learning of
Visual Representations

Maximize agreement

Z; = > Zj
)] lo
h; <— Representation — h;

Encoder network,
e.g. ResNets50

Prof. Niessner Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations’, 51



SIMCLR

« A Simple Framework for Contrastive Learning of
Visual Representations

Maximize agreement

Z; = - Zj
ag(-) T T a(") |
|
h; +— Representation —» h; Visual |
i representations
()

Prof. Niessner Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations’.



SIMCLR

« A Simple Framework for Contrastive Learning of
Visual Representations

Maximize agreement . PereCted
Zi ] ,
: ' | representations
g(-) g(-)
h; <— Representation — h;

Prof. Niessner Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations’.



SIMCLR

« A Simple Framework for Contrastive Learning of
Visual Representations

Maximize agreement

Z; - - Zj
f = —lo exp(sim(z;, z;)/7)
FOI’ a batCh \X/|th N Q() T TQ() 1 ° Zifl Lgq) exp(sim(z;, zx)/7)
h; <— Representation — h;

samples, 2N
augmented samples ¢,
are produced

Normalized
temperature-scaled
Cross entropy loss

Prof. Niessner Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations’. 54



SIMCLR

« A Simple Framework for Contrastive Learning of
Visual Representations

Maximize agreement
Z; - > Zj

0;;=—log —x eXp(Sim(zia.Zj)/’f)
Given a positive pair, J (')T | Tg(-) S Wi Pxp(sim(z:, 24)/7)
all other 2(N-1) pairs h; +— Representation —» h;
are treated as negative ¢,
pairs

Prof. Niessner Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations’. 55



SIMCLR

« A Simple Framework for Contrastive Learning of
Visual Representations

Maximize agreement . The pI’OJeCtIOH head
Z; = > Zi .
y is removed for
g (')I ¢} downstream tasks
h; <— Representation — h;

Prof. Niessner Chen et al. "A Simple Framework for Contrastive Learning of Visual Representations’. 56



SIMCLR

« Key takeaways from SImCLR

— Larger batch (4k or 8k) to provide more negative
samples

— Apply a MLP on the ResNet outputs to encode the
final features during training, use the ResNet
outputs directly during inference

— Stronger data augmentations help

Prof. Niessnet



Augmentation is an Art

s g - 2 }\
-:‘l\ < ? b o ‘ *_ ¥
N & ~J ‘

-

(a) Original (b) Crop and resize

f) Rotate {90°, 180°, 270°} (g) Cutout (h) Gaussian noise (1) Gaussian blur (j) Sobel filtering

Augmentations in SimCLR

Prof. Niessner 58



Multi-Model Representation Learning

« Augmentations are key for contrastive learning: why
not use matching samples from different modes?

* Image <->text is a prime example since there are
millions of training pairs on the web

Prof. Niessner



CLIP

« Contrastive Language-Image Pre-training

e Trained on anew dataset of 400 million iImage-text
oairs

« Use avery large batch size of 32,678

Prof. Niessnet



CLIP

« Contrastive Language-Image Pre-training

Contrastive pre-training

Prof. Niessner

Pepper the ﬁ
aussie pup Encoder

T T, T3 Ty

| T T, 1, Ty

—> I IyTy | IxTy | 1T; Iy Ty

Image 1 T, | 14Ty | I T 13T
Encoder 3 3Ty | 13Ty | 13T 1Ty
Ly Iy | IyTy Ty | Iy Ty I Ty

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision”.

61



CLIP

« Contrastive Language-Image Pre-training

Contrastive pre-training

Prof. Niessner

Pepper the ﬁ
aussie pup Encoder

T T, T3 Ty
— 4 [T T |, 1, Ty
\‘ —> I LT | Ty | IyTs LTy
Image > I T, | 14Ty | I T 13T
y > I 3T | I3 Ty | Iy Ty 1Ty
Ly Iy | IyTy Ty | Iy Ty I Ty

Positive pairs

Radford et al. "Learning Transferable Visual Models From Natural Language Supervision” 62



CLIP

« Contrastive Language-Image Pre-training
Contrastive pre-training

Pepper the ?‘
aussie pup Encoder
A h 4 A 4 Y h 4

A T I Negative
o s - N image-text pairs
ﬁ > 6 enlen e - en) (iMage as anchor)
ﬂ > L LTy | Ty [Ty | . Ty
Ll Iy | INTy [Ty [Ty | [l Ty

Prof. Niessner Radford et al. "Learning Transferable Visual Models From Natural Language Supervision”. 63



CLIP

« Contrastive Language-Image Pre-training
Contrastive pre-training

Pepper the ﬁ
aussie pup > Er;roeox(}er
A h 4 A 4 Y h 4

r

—> LTy [T, [ Ty | L 1Ty
\‘ N LT Ty | LTy | . 1Ty N eg at| ve
e > 5 BT sn text-image pairs
A el (textas anchor)
— Iy INTy [ INTy [ InT3 | L [Ty

Prof. Niessner Radford et al. "Learning Transferable Visual Models From Natural Language Supervision”. 64



« Contrastive Language-Image Pre-training

CLIP

Contrastive pre-training

Prof. Niessner

Pepper the ﬁ
. Text
aussie pup Encoder

Apply cross-

v

I‘

I [

T T, | Tg Tn

|

—> L | |57 |1 -
—>» I 1)) IyTy | IpT; I Ty
LT, | 13T, 13Ty
—> Iy TNIJ INTy | InTs InTy

¥ entropy loss on

both directions

Radford et al. "LLearning Transferable Visual ME&@[S From Natural Language Supervision’, 65



CLIP

« Contrastive Language-Image Pre-training
Contrastive pre-training

# image_encoder - ResNet or Vision Transformer

# text_encoder - CBOW or Text Transformer

# I[n, h, w, ¢] - minibatch of aligned images

# Tln, 1] - minibatch of aligned texts

# W_i[d_i, d_e] - learned proj of image to embed

# W_t[d_t, d_e] - learned proj of text to embed EE;' [
#t - learned temperature parameter IrT]F) EE

extract feature representatiqns of each modality implementation

_f = image_encoder(I) #[n, d_i]
_f = text_encoder(T) #[n, d_t]

— =t

, d_e]
W_i), axis=1)
W_t), axis=1)

# joint multimodal embedding [n
I_e = 12_normalize(np.dot(I_f,
T_e = 12_normalize(np.dot(T_

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function

labels = np.arange(n)

loss_i = cross_entropy_loss(logits, labels, axis=8)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

Prof. Niessner Radford et al. "Learning Transferable Visual Models From Natural Language Supervision”. 66



CLIP

« Contrastive Language-Image Pre-training
Inference: zero-shot classification

A photo of Text
ect Encoder

T | & | Ta | T
Image 1 T, |1, T, | 1,T I, T,
Encoder ]—r 1 vy et ety 1IN

A photo of

Prof. Niessner Radford et al. "Learning Transferable Visual Models From Natural Language Supervision”. 67



CLIP

« Contrastive Language-Image Pre-training
Use case: text-to-image generation (DALL-E 2)

CLIP objective img

= encoder
“a corgi
playing a
flame [N W _|
throwing e
trumpet” lelololo S 8 8
"""""""""""""""""""""" 3.3.8~ Mo O
O O
prior decoder

Prof. Niessner Radford et al. "Hierarchical Text-Conditional Image Generation with CLIP Latents”.



CLIP

« Contrastive Language-Image Pre-training
Use case: text-to-image generation (DALL-E 2)

‘a shiba inu wearing a beret .
and black turtleneck’

Prof. Niessner Radford et al. "Hierarchical Text-Conditional Image Generation with CLIP Latents”.



CLIP

« Contrastive Language-Image Pre-training
Use case: text-to-image generation (DALL-E 2)

“a corgi
playing a
flame
throwing
trumpet”

CLIP objective

A0

O O
O-+0-~+
O O

CLIP
k- training
process

prior

decoder

Prof. Niessner Radford et al. "Hierarchical Text-Conditional Image Generation with CLIP Latents”. 70



CLIP

« Contrastive Language-Image Pre-training
Use case: text-to-image generation (DALL-E 2)

“a corgi
playing a
flame
throwing
trumpet”

CLIP objective

A0

0 ©
O->0-0
O O

prior

decoder

Prof. Niessner Radford et al. "Hierarchical Text-Conditional Image Generation with CLIP Latents”.

Generation
Process

/1



CLIP

« Contrastive Language-Image Pre-training
Use case: text-to-image generation (DALL-E 2)

i P CLIP objective o img ,_ -
“a corgi ~
playing a ,
flame ‘- | s —————— S
throwing Y '
trumpet” 50000 : Z
________________________________________ A O O
: O+>0O» b—»
A prior that map CLIP text O O
embeddings to image prior decoder
embeddings

Prof. Niessner Radford et al. "Hierarchical Text-Conditional Image Generation with CLIP Latents”.



CLIP

« Contrastive Language-Image Pre-training
Use case: text-to-image generation (DALL-E 2)

“a corgi
playing a
flame
throwing
trumpet”

CLIP objective

A0

0 ©
O->0-0
O O

prior

decoder

Prof. Niessner Radford et al. "Hierarchical Text-Conditional Image Generation with CLIP Latents”.

A decoder
produces
images
conditioned on
CLIP image
embeddings



Other Self-supervised Approaches

o Autoencoder to Masked autoencoder

-

II

Visual
representations

/ JOP023( \

\Japoaug /

/4



Other Self-supervised Approaches

o Autoencoder to Masked autoencoder

\ /
] O
> 0
O O
O :> O
Q Q
2 2
Visual More in the next
representations lecture!

Prof. Niessner He et al. "Masked Autoencoders Are Scalable Vision Learners”

/5



Representation Learning Caveats

Lots of hyperparameters make difficult to asses what
made iImprovements possible;

— Better engineering vs method idea

Long training cycles make things difficult to
reproduce, In particular, for class projects

Improvements can be small but require lots of effort
to produce (training + hyperparam finding)



Reading Homework

« MoCo vz [Chen et al. 2020] Improved Baselines with Momentum
Contrastive Learning

— https.//arxiv.org/pdf/2003.04297v1.pdf

« MoCo v3 [Chen et al. 2020] An Empirical Study of Training Self-
Supervised Vision Transformers

— https.//arxiv.org/pdf/2104.02057v4.pdf

 Masked autoencoder: [He et al. 2021] Masked Autoencoders Are
Scalable Vision Learners

— hitps//openaccess.thecvi.com/content/CVPR2022/papers/He_

Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_202

2_paper.pdf
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Literature

«  DINO: [Caron. 2021] Emerging Properties in Self-Supervised Vision Transformers
—  https//arxiv.org/pdf/2104.14294.pdf

«  MoCo: [He et al. 2019 Momentum Contrast for Unsupervised Visual Representation Learning
—  https.//arxiv.org/pdf/1911.05722 pdf

«  SIMCLR: [Chen et al. 2020] A Simple Framework for Contrastive Learning of Visual Representations
—  https//arxiv.org/pdf/2002.05709.pdf

«  CLIP: [Radford et al. 2021] Learning Transferable Visual Models From Natural Language Supervision
—  https//arxiv.org/pdf/2103.00020.pdf

«  DALL-E 2 [Ramesh et al. 2022] Hierarchical Text-Conditional Image Generation with CLIP Latents
—  https//arxiv.org/pdf/2204.06125.pdf
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TUTi

Thanks for watching!

Prof. Niessner



