
Prof. Niessner

Representation 
Learning

1



Prof. Niessner

Representation Learning

• Techniques that transform a form of raw data into a 
representation that can be effectively exploited for 
machine learning tasks

• Representation learning typically refers to learning 
such a transformation that can generalize across tasks
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What are good representations?
• Representation encodes priors about data distribution(s)

– Smoothness: close inputs map to close outputs
– Compactness: input dimension >> output dimension
– Robustness: features are insensitive to input noise
– Abstraction and invariances -> problem driven
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What are representations?
• A representation performs the task of converting an 

observation in the real world (e.g., an image, a 
recorded speech signal, a word in a sentence) into a 
mathematical form (e.g., a vector)
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What are representations?
• The feature vector can be used by other models to 

produce outputs, e.g.,
– Classification

5
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What are representations?
• The feature vector can be used by other models to 

produce outputs, e.g.,
– Reconstruction 
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What are representations?
• The feature vector can be used by other models to 

produce outputs, e.g.,
– Generation 
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[81, 20, 84, 64,… ]

feature
“a photo of 

a cat”
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What are representations?
• Representation examples

– Handcrafted attribute
• Gender: {“female”: 0, “male”: 1}
• Eye color: {“blue”: 0, “brown”: 1}
• Hair color: {“black”: 0, “blond”: 1}
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What are representations?
• Representation examples

– Binary (one-hot vector)
• {“Paris”: 0, “London”: 1, “Munich”: 2, …}
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[0, 0, 1]

feature

“Munich”
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What are representations?
• Representation examples

– Embedding vector
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“Munich”

Munich

Germany

Garching

Embedding space

“Germany”

“Garching”
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Representation in Computer Vision
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“CAT”

Supervised Unsupervised

Constrained on task(s), e.g., 
classification

Constrained on data itself, 
e.g., reconstruction
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Supervised Approaches
• Classification

– Train ResNet50 on ImageNet
– Use the features in the last layer as image 

representations

12

R
esN

et50

F
C

 layer
“CAT”

During training:
C

lassifier



Prof. Niessner

Supervised Approaches
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representation

• Classification
– Train ResNet50 on ImageNet
– Use the features in the last layer as image 

representations
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Unsupervised Approaches
• Clustering (K-Means)

– Mean vectors as representations
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Self-supervised Approaches
• A form of unsupervised learning approaches where 

the data provides the supervision for itself
• With a proxy loss, e.g., reconstruction loss, the 

network is forced to learn the features we care about, 
e.g., semantic representations

• Why self-supervised?
– Hard and expensive to obtain annotations
– Alternative to the strong supervisions (labels)
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Self-supervised Approaches
• A form of unsupervised learning approaches where 

the data provides the supervision for itself
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Reconstruction
No label!
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Self-supervised Approaches
• With a proxy loss, e.g., reconstruction loss, the 

network is forced to learn the features we care about, 
e.g., semantic representations

17

L2 loss
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Self-supervised Approaches
• Why self-supervised?

– Hard and expensive to obtain annotations
– Make the most out of the existing unlabelled data

• Instagram: >1 billion images uploaded / day
• YouTube: >300 hrs of vides uploaded / minute

– Alternative to the strong supervisions (labels)
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Self-supervision by Augmentation
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Loss

BackboneBackbone

Augmentation is an Art:
- Image vs patch basis
- Color variations
- Geometric transforms
- …

Losses we have already seen some
-> contrastive learning is popular
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DINO
• Self-distillation with no labels

20Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 
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DINO
• Self-distillation with no labels

21Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 

A pair of two random 
transformations of the 

image input



Prof. Niessner

DINO
• Self-distillation with no labels

22Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 

Same image encoder, 
e.g., ResNet50, but 

different parameters
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DINO
• Self-distillation with no labels

23Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 

Teacher’s output is 
centered over the batch
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DINO
• Self-distillation with no labels

24Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 

Network outputs are 
normalized by a 

temperature softmax over 
the feature dimensionNetwork 

outputs

For a batch with K features
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DINO
• Self-distillation with no labels

25Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 

Network outputs are 
normalized by a 

temperature softmax over 
the feature dimensionTemperature

For a batch with K features
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DINO
• Self-distillation with no labels

26Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 

Network outputs are 
normalized by a 

temperature softmax over 
the feature dimensionNormalized 

features

For a batch with K features
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DINO
• Self-distillation with no labels

27Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 

The similarity of two 
outputs is measured by a 

cross-entropy loss
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DINO
• Self-distillation with no labels

28Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 

A stop-gradient operator is 
applied on the teacher to 
back-prop gradients only 

through the student
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DINO
• Self-distillation with no labels

29Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 

The teacher parameters 
are updated with an 
exponential moving 

average of the student 
parameters

The teacher is essentially 
built from past iterations of 

the student
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DINO
• Self-distillation with no labels

30Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 

The trained student 
network is used for 
feature extraction
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DINO

31Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 



Prof. Niessner

DINO

32Caron et al. “Emerging Properties in Self-Supervised Vision Transformers”. 



Prof. Niessner

Contrastive Learning Approaches
• What is contrastive learning? 

– To learn an embedding space in which similar 
samples pairs stay close while dissimilar ones 
repel
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Contrastive Learning Approaches
• Can be both supervised and unsupervised

– With labels? Without labels?

• Can be even used in semi-supervised setting -> some 
samples are annotated, others not

• When working with unsupervised data, it is one of the 
most powerful approaches in self-supervised setting
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Contrastive Learning Approaches

35

InfoNCE Loss: (k+1)-way softmax classifier

Issue: k is coupled to the mini-batch size
which limits k by GPU memory
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Contrastive Learning Approaches

36

Idea: don’t update keys at the same time
but compare to encodings from memory bank

-> allows for large k but encodings are not
up to date (typically once per epoch) 
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Contrastive Learning Approaches
• Momentum Contrast for 

unsupervised visual 
representation learning

• A self-supervised learning 
algorithm with a contrastive 
loss

• Enables learning a large and 
consistent visual 
representation

37He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo

38

Can be thought of as building a dynamic dictionary

Samples from the dataset

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo

39

Can be thought of as building a dynamic dictionary

“key”: samples 
encoded on-the-fly 
by a slowly 
updating encoder

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo
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Can be thought of as building a dynamic dictionary

“query”: samples 
encoded by 
another encoder to 
match the keys in 
dictionary

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo
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Can be thought of as building a dynamic dictionary

The similarities 
between the query 
and keys are 
supervised by a 
contrastive loss

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo
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Can be thought of as building a dynamic dictionary

InfoNCE loss function:

Query

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo
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Can be thought of as building a dynamic dictionary

InfoNCE loss function:

Matched key

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo
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Can be thought of as building a dynamic dictionary

InfoNCE loss function:

All keys

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo
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Can be thought of as building a dynamic dictionary

InfoNCE loss function:

Dot products 
as similarities

temperature

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo
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Can be thought of as building a dynamic dictionary

gradients

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo

47

Can be thought of as building a dynamic dictionary

The momentum  
encoder is driven 
by a momentum 
update with the 
query encoder

update

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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MoCo

48

Can be thought of as building a dynamic dictionary

Momentum update:

Momentum encoder parameters

Target encoder 
parameters

Momentum 
coefficient

m=0.999 by default

update

He et al. “Momentum Contrast for Unsupervised Visual Representation Learning”. 
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SimCLR
• A Simple Framework for Contrastive Learning of 

Visual Representations

• Learns visual representations by maximizing 
agreement between differently augmented views of 
the same data samples

• Supervised via a contrastive loss in the latent space

49Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. 
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SimCLR
• A Simple Framework for Contrastive Learning of 

Visual Representations

50

One input sample is 
augmented to two 

views by two different 
operators from the 
same family, e.g., 
different rotations

Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. 
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SimCLR
• A Simple Framework for Contrastive Learning of 

Visual Representations

51

Encoder network, 
e.g., ResNet50

Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. 
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SimCLR
• A Simple Framework for Contrastive Learning of 

Visual Representations

52

Visual 
representations

Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. 
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SimCLR
• A Simple Framework for Contrastive Learning of 

Visual Representations

53

Projected 
representations

Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. 



Prof. Niessner

SimCLR
• A Simple Framework for Contrastive Learning of 

Visual Representations

54

Normalized 
temperature-scaled 
cross entropy loss

For a batch with N 
samples, 2N 

augmented samples 
are produced

Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. 
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SimCLR
• A Simple Framework for Contrastive Learning of 

Visual Representations

55

Set to 1 iff it is a negative pair
Given a positive pair, 
all other 2(N-1) pairs 

are treated as negative 
pairs

Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. 
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SimCLR
• A Simple Framework for Contrastive Learning of 

Visual Representations

56

The projection head 
is removed for 

downstream tasks

Chen et al. “A Simple Framework for Contrastive Learning of Visual Representations”. 
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SimCLR
• Key takeaways from SimCLR

– Larger batch (4k or 8k) to provide more negative 
samples

– Apply a MLP on the ResNet outputs to encode the 
final features during training, use the ResNet
outputs directly during inference

– Stronger data augmentations help

57
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Augmentation is an Art

58
Augmentations in SimCLR
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Multi-Model Representation Learning

• Augmentations are key for contrastive learning: why 
not use matching samples from different modes?

• Image <-> text is a prime example since there are 
millions of training pairs on the web
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CLIP
• Contrastive Language-Image Pre-training

• Trained on a new dataset of 400 million image-text 
pairs

• Use a very large batch size of 32,678
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CLIP
• Contrastive Language-Image Pre-training

61

Contrastive pre-training

Radford et al. “Learning Transferable Visual Models From Natural Language Supervision”. 
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CLIP
• Contrastive Language-Image Pre-training

62

Contrastive pre-training

Positive pairs

Radford et al. “Learning Transferable Visual Models From Natural Language Supervision”. 
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CLIP
• Contrastive Language-Image Pre-training

63

Contrastive pre-training

Negative 
image-text pairs

(image as anchor)

Radford et al. “Learning Transferable Visual Models From Natural Language Supervision”. 
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CLIP
• Contrastive Language-Image Pre-training

64

Contrastive pre-training

Negative 
text-image pairs
(text as anchor)

Radford et al. “Learning Transferable Visual Models From Natural Language Supervision”. 



Prof. Niessner

CLIP
• Contrastive Language-Image Pre-training

65

Contrastive pre-training

Apply cross-
entropy loss on 
both directions

Radford et al. “Learning Transferable Visual Models From Natural Language Supervision”. 
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CLIP
• Contrastive Language-Image Pre-training

66

Contrastive pre-training

Simple 
implementation

Radford et al. “Learning Transferable Visual Models From Natural Language Supervision”. 
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CLIP
• Contrastive Language-Image Pre-training

67

Inference: zero-shot classification

Radford et al. “Learning Transferable Visual Models From Natural Language Supervision”. 
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CLIP
• Contrastive Language-Image Pre-training

68

Use case: text-to-image generation (DALL-E 2)

Radford et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. 
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CLIP
• Contrastive Language-Image Pre-training
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Use case: text-to-image generation (DALL-E 2)

Radford et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. 

“a shiba inu wearing a beret 
and black turtleneck”
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CLIP
• Contrastive Language-Image Pre-training

70

Use case: text-to-image generation (DALL-E 2)

Radford et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. 

CLIP
training 
process 
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CLIP
• Contrastive Language-Image Pre-training

71

Use case: text-to-image generation (DALL-E 2)

Radford et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. 

Generation
process 
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CLIP
• Contrastive Language-Image Pre-training

72

Use case: text-to-image generation (DALL-E 2)

Radford et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. 

A prior that map CLIP text 
embeddings to image 

embeddings
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CLIP
• Contrastive Language-Image Pre-training

73

Use case: text-to-image generation (DALL-E 2)

Radford et al. “Hierarchical Text-Conditional Image Generation with CLIP Latents”. 

A decoder 
produces 
images 

conditioned on 
CLIP image 

embeddings
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Other Self-supervised Approaches
• Autoencoder to Masked autoencoder

74

Visual 
representations

E
nco

d
er

D
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d
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Other Self-supervised Approaches
• Autoencoder to Masked autoencoder

75

Visual 
representations

E
nco

d
er

D
eco

d
er

More in the next 
lecture!

He et al. “Masked Autoencoders Are Scalable Vision Learners”. 
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Representation Learning Caveats
• Lots of hyperparameters make difficult to asses what 

made improvements possible:
– Better engineering vs method idea

• Long training cycles make things difficult to 
reproduce, in particular, for class projects

• Improvements can be small but require lots of effort 
to produce (training + hyperparam finding)
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Reading Homework
• MoCo v2: [Chen et al. 2020] Improved Baselines with Momentum 

Contrastive Learning
– https://arxiv.org/pdf/2003.04297v1.pdf

• MoCo v3: [Chen et al. 2020] An Empirical Study of Training Self-
Supervised Vision Transformers 
– https://arxiv.org/pdf/2104.02057v4.pdf

• Masked autoencoder: [He et al. 2021] Masked Autoencoders Are 
Scalable Vision Learners 
– https://openaccess.thecvf.com/content/CVPR2022/papers/He_

Masked_Autoencoders_Are_Scalable_Vision_Learners_CVPR_202
2_paper.pdf
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Literature
• DINO: [Caron. 2021] Emerging Properties in Self-Supervised Vision Transformers

– https://arxiv.org/pdf/2104.14294.pdf

• MoCo: [He et al. 2019] Momentum Contrast for Unsupervised Visual Representation Learning

– https://arxiv.org/pdf/1911.05722.pdf

• SimCLR: [Chen et al. 2020] A Simple Framework for Contrastive Learning of Visual Representations

– https://arxiv.org/pdf/2002.05709.pdf

• CLIP: [Radford et al. 2021] Learning Transferable Visual Models From Natural Language Supervision

– https://arxiv.org/pdf/2103.00020.pdf

• DALL-E 2: [Ramesh et al. 2022] Hierarchical Text-Conditional Image Generation with CLIP Latents

– https://arxiv.org/pdf/2204.06125.pdf
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Thanks for watching!
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