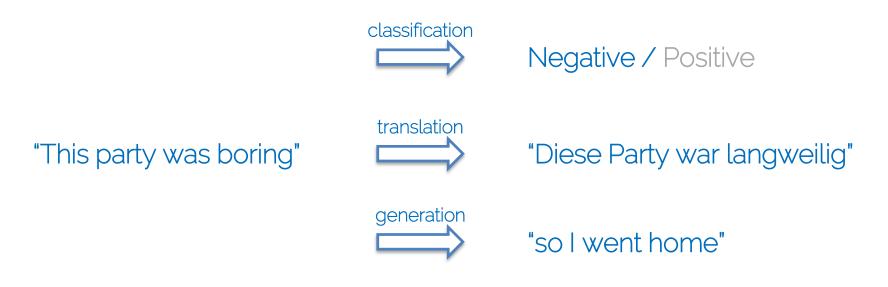


Sequence Models

Sequence Modelling

- Texts as sequences
 - Sequences are natural representations for text data



Sequence Modelling

- Images can also be represented as sequences!
 - Classification

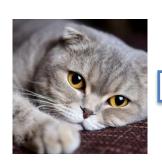
Input image

"cat"

Image patches

Sequence Modelling

- Images can also be represented as sequences!
 - Reconstruction



Input image

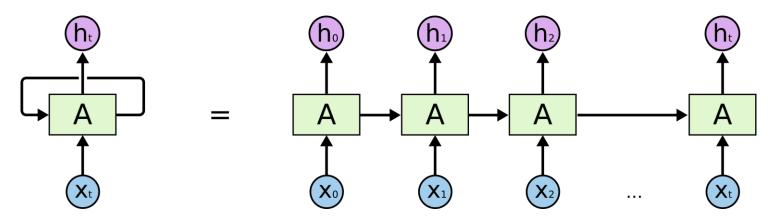
Image patches

reconstructed

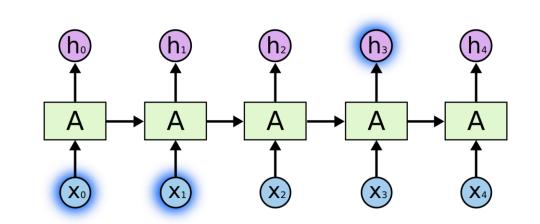
patches

reconstructed image

- RNNs
 - Recurrent Neural Networks
 - Can be unrolled in time



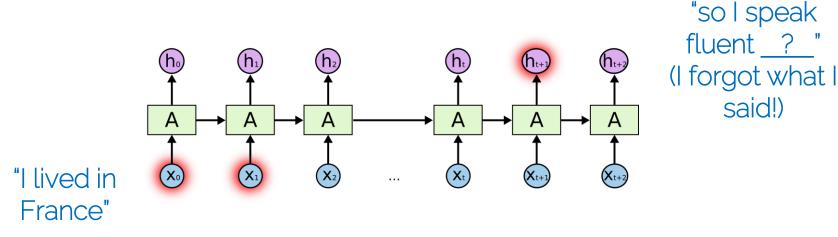
- RNNs
 - Good at handling short sequences



"so I speak fluent <u>French</u>"

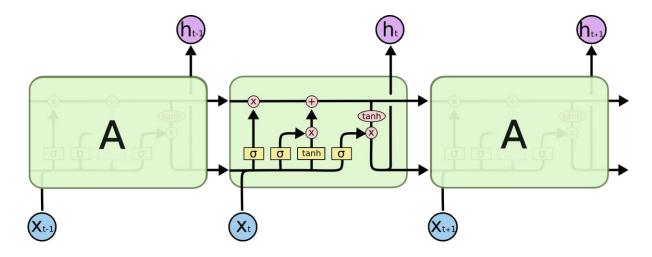
"I lived in France"

- RNNs
 - Long sequences are difficult -> long-term dependency issue



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

- LSTMs
 - Long-short Term Memory networks



• LSTMs alleviates the long-term dependency issue. However, the issue still exists for extremely long sequences, e.g., documents!

• Not all words are born equal.

"I lived in <u>France</u>, so I speak fluent <u>?</u>."

"France" is more important for predicting the word "French"

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

- Deterministic vs. stochastic
 - Soft attention
 - Attend to each part of the input signal
 - Attention weights sum to 1
 - Deterministic and differentiable
 - E.g., when predicting the word "French":

"I lived in France, so I speak fluent French."

- Deterministic vs. stochastic
 - Hard attention
 - Attend to **one** part of the input signal (one-hot)
 - Stochastic and non-differentiable
 - Need to use Monte Carlo estimator to approximate the gradients
 - E.g., when predicting the word "French":

"I lived in France, so I speak fluent French."

- Modality for attention
 - Self-attention
 - Attend to the input signal **itself**

"I lived in France, so I speak fluent French."

"I lived in France, so I speak fluent French."

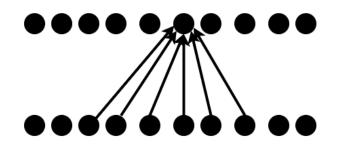
- Modality for attention
 - Cross-attention
 - Attend to another input signal as side information

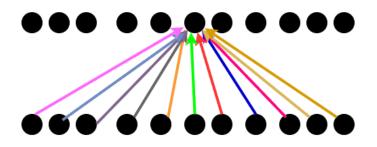
A person is standing on a beach with a <u>surfboard.</u>

Attention vs Convolution

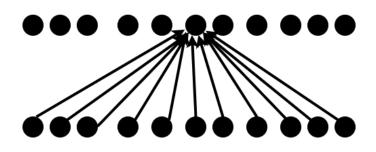
Convolution

Global attention





Fully Connected layer



Local attention

• Attention mechanism is a powerful tool to handle sequence data

• It used to be an additional plug-and-play module on top of the recurrent neural networks

 Can attention mechanism be used for handling sequence data DIRECTLY? -> Yes, transformers!

Transformers in Language

Attention Is All You Need

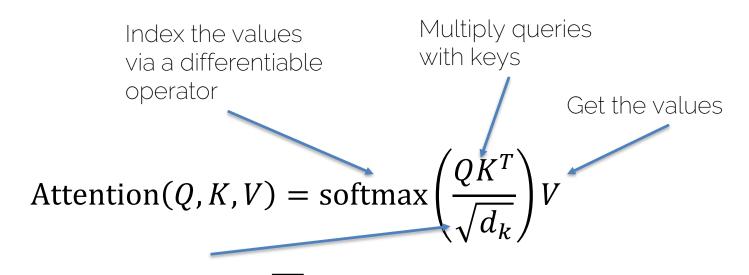
Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez^{* †} University of Toronto aidan@cs.toronto.edu

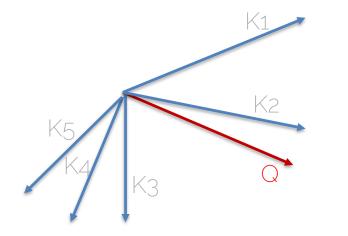
Łukasz Kaiser* Google Brain lukaszkaiser@google.com

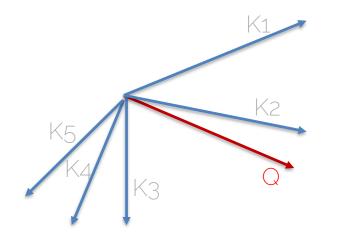
Illia Polosukhin*[‡] illia.polosukhin@gmail.com

- Scale up pure self-attention layers as the first transformer architecture
- Solve the long-term dependency issue in sequence modelling
- Extremely powerful at handling sequence data (texts)
- Bigger model, bigger capacity -> better performance when trained on large-scale datasets

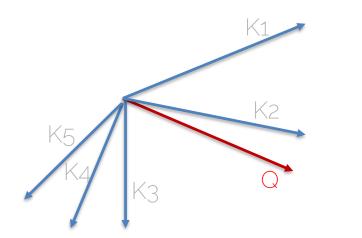


To train them well, divide by $\sqrt{d_k}$, "probably" because for large values of the key's dimension, the dot product grows large in magnitude, pushing the softmax function into regions where it has extremely small gradients.



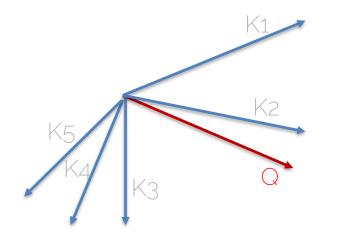


Values
V1
V2
V3
V4
V5



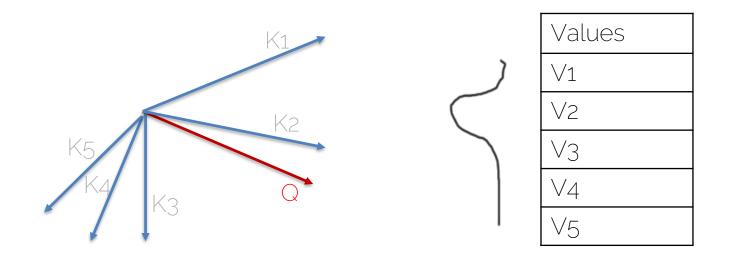
Values	
V1	
V2	
V3	
V4	
V5	

 QK^T Dot product between (<Q,K1>), (<Q,K2>), (<Q,K3>), (<Q,K4>), (<Q,K5>).



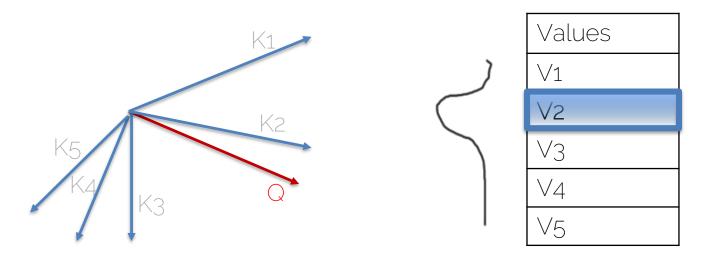
\vee	'alues
\vee	′ 1
\vee	[′] 2
\vee	′3
\vee	<i>'</i> 4
\lor	<i>'</i> 5

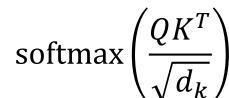
 $\left(\frac{QK^T}{\sqrt{A_T}}\right)$ Is simply inducing a distribution over the values. The larger a value is, the higher is its softmax value. Can be interpreted as a differentiable soft indexing.





Is simply inducing a distribution over the values. The larger a value is, the higher is its softmax value. Can be interpreted as a differentiable soft indexing.



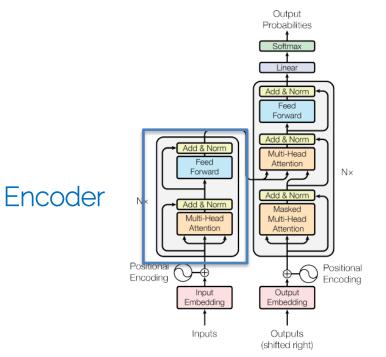


Selecting the value V where the network needs to attend...

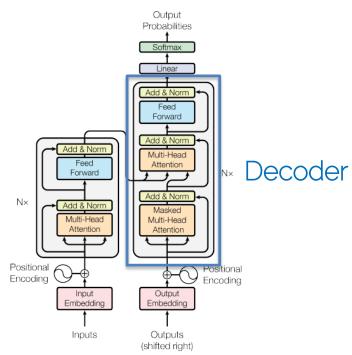
• Transformers under the hood



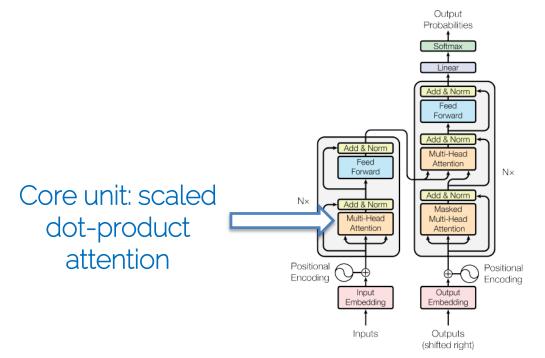
• Transformers under the hood



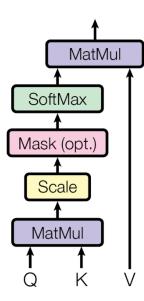
• Transformers under the hood



• Transformers under the hood



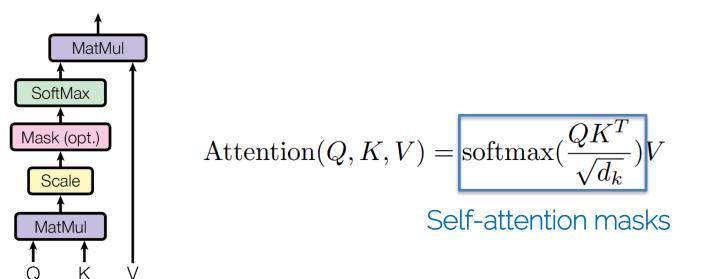
• Scaled dot-product attention



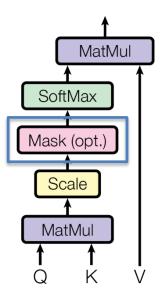
$$\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

-

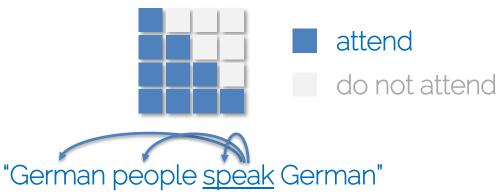
• Scaled dot-product attention



• Scaled dot-product attention

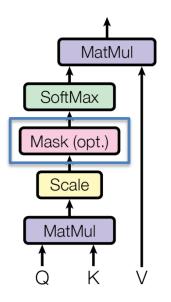


Triangular masking for unidirectional (left-to-right) modelling



Only attend to the words before it and itself

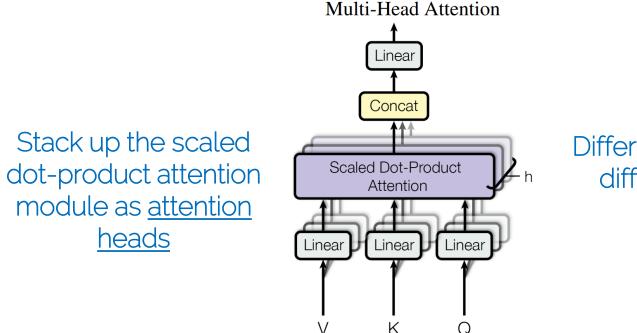
• Scaled dot-product attention



Full masking for bidirectional modelling

Attend to the words before and after it, and itself

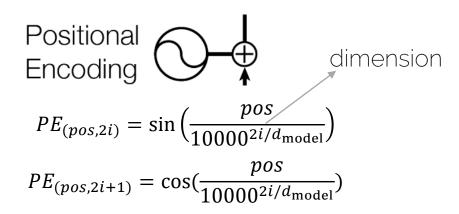
• Multi-head Attention

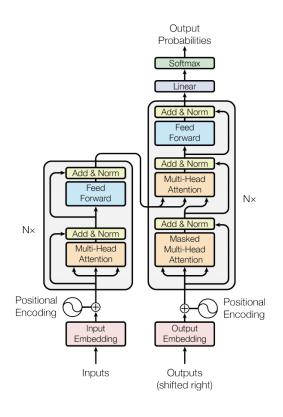


Different heads attend to different parts of the input signals

Positional Encoding

Uses fixed positional encoding based on trigonometric series, in order for the model to make use of the order of the sequence

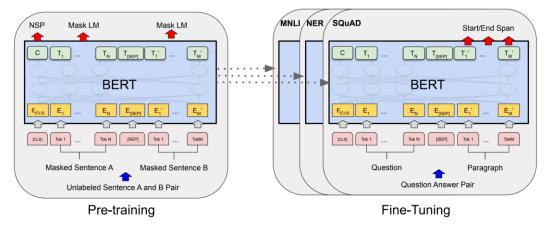




Attention is All You Need

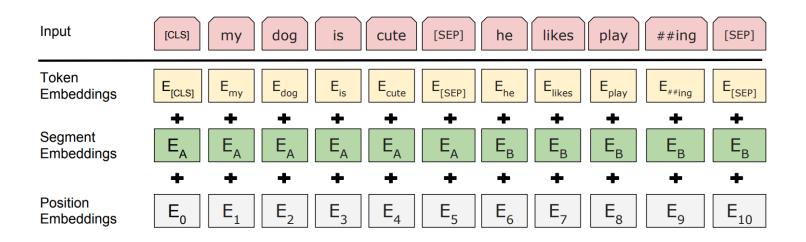
- Significantly improved SOTA in Machine Translation
- Launched a transformer revolution in the NLP field
- Foundation of large NLP models like BERT (Google) and GPT-3, ChatGPT (OpenAI)!
- Transformers finally made its way to compute vision (will talk about it later!)

- Bidirectional Encoder Representations from
 Transformers
 - A big transformer as a text encoder

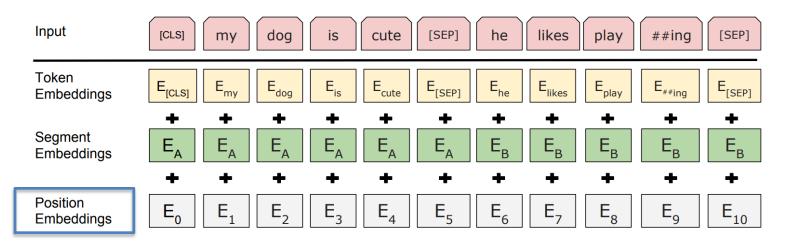


Prof. Niessner Devlin et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". 38

• BERT Input Representations – Three embeddings

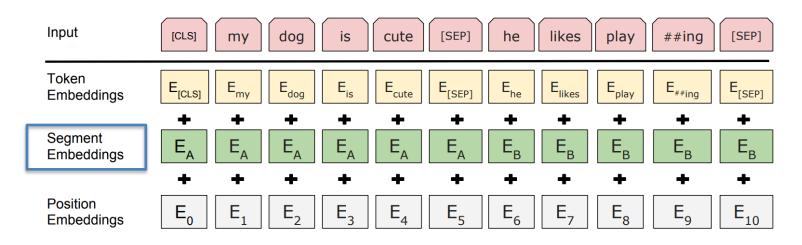


• BERT Input Representations



To indicate the positions in the sequence

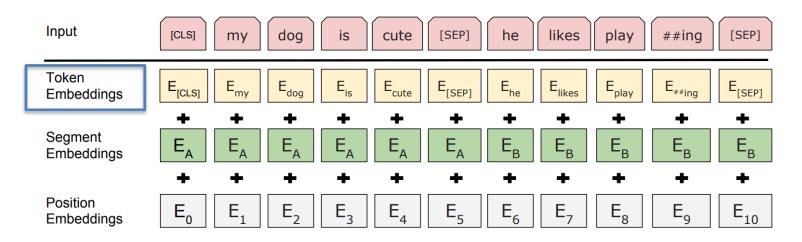
• BERT Input Representations



To indicate the sentence A or B

Prof. Niessner Devlin et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". 41

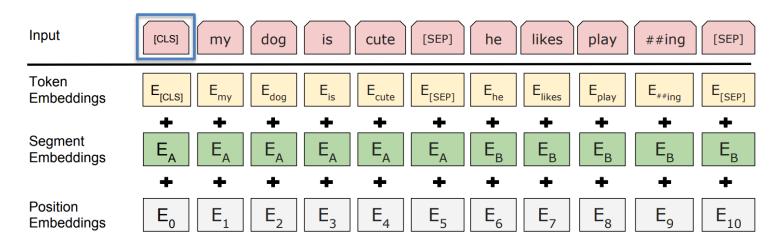
BERT Input Representations



Word embeddings

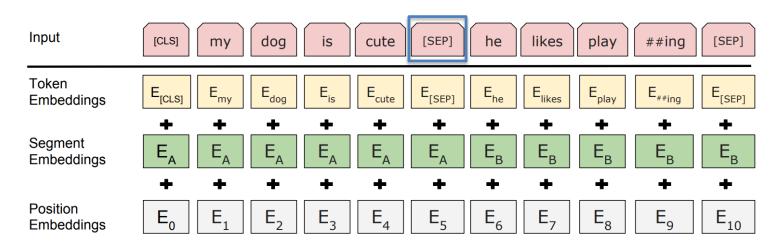
Prof. Niessner Devlin et al. "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". 42

• BERT Input Representations



Learnable token for Next Sentence Prediction

• BERT Input Representations



Indicate the end of the sentence(s)

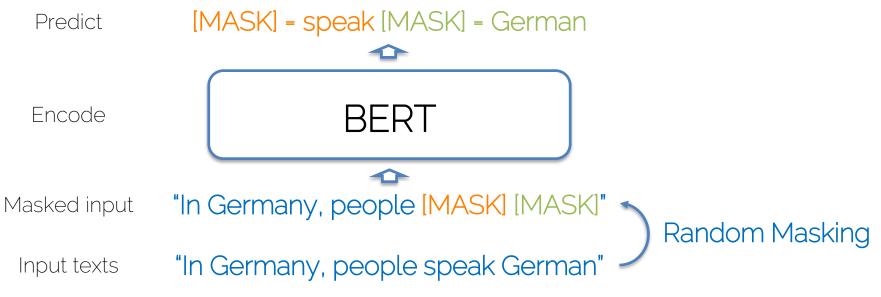
- Pre-training Objectives
 - Two unsupervised tasks
 - Masked Language Modelling (MLM)
 - Next Sentence Prediction (NSP)
 - No human annotation needed!

- Masked Language Modelling (MLM)
 - Key idea:
 - Randomly mask out some words from the input
 - Predict the masked words with the context from the input itself
 - Enforce the network to learn the word-level context

Input texts "In Germany, people speak German"

Prof. Niessner

Prof. Niessner



Prof. Niessner

- Next Sentence Prediction (NSP)
 - Key idea:
 - Take two sentence A and B from the dataset
 - 50% of the time B is the actual next sentence of B, another 50% of the time B is randomly sampled from the dataset
 - Predict if B is the next sentence of A
 - Enforce the network to learn the sentence-level context

• Next Sentence Prediction (NSP)

A sample "In Gerr from the So Germ dataset

Sentence A "In Germany, people speak German."

Sentence B "So German is the native language of the German people."

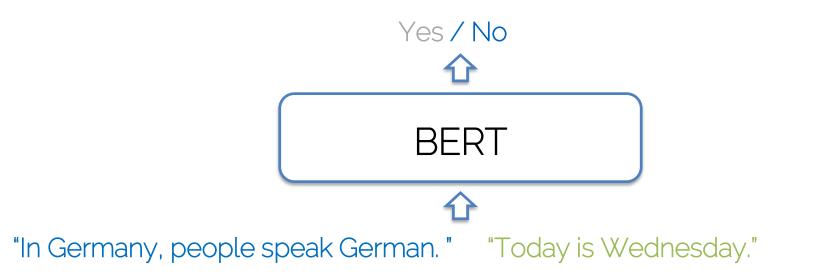
"Today is Wednesday."

Sentence B' (another sentence from the dataset) 52

• Next Sentence Prediction (NSP)

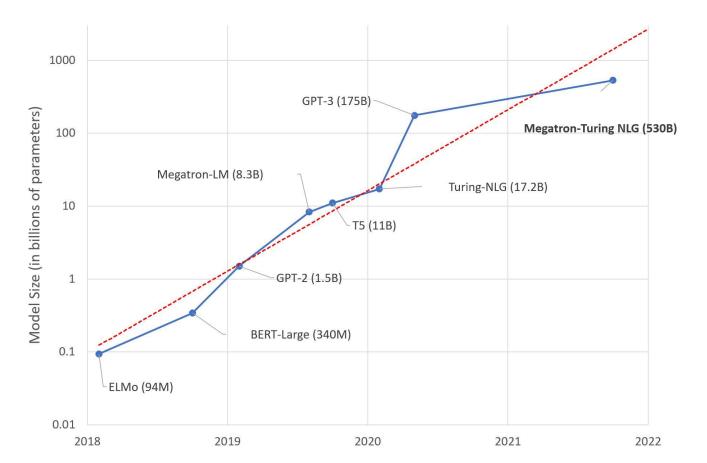


• Next Sentence Prediction (NSP)



- Pre-training with two self-supervised objectives, then fine-tuned on downstream tasks
- No human annotations needed for pre-training! -> can be pretrained on large-scale datasets, even those ones that have not been annotated, e.g., web documents.
- VERY BIG (back then in 2018)! BERT_{large} has 340M parameters
- Masked Language Modelling has a huge impact for representation learning, even for Computer Vision!

Language Model Sizes

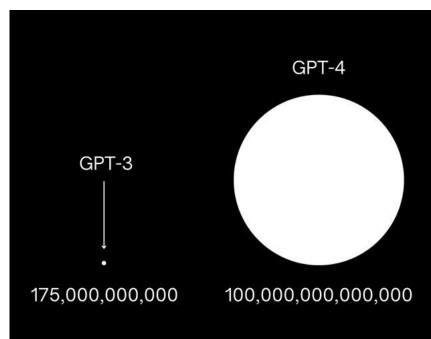


Prof. Niessner

Language Model Sizes: Rumors...

- From social media
 - Take with caution!!!!
 - GPT-4 100 trillion params

- If you have not seen it: <u>https://chat.openai.com/</u>
 - Based on GPT-3.5



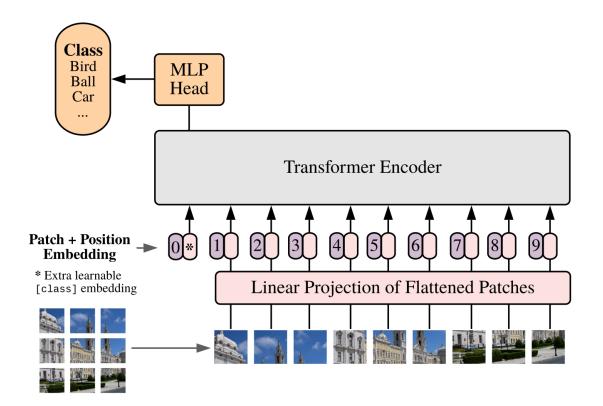
Transformers in Computer Vision

• CNNs can be computationally demanding and require a great amount of design tricks and efforts

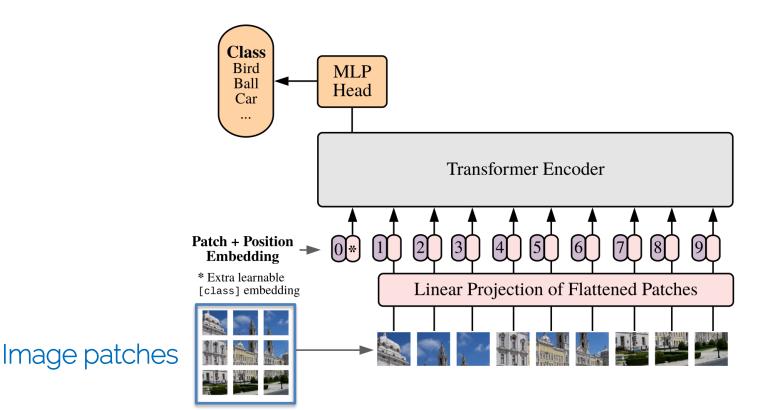
Images can be modelled as sequences of patches
 Vision Transformers (ViTs)

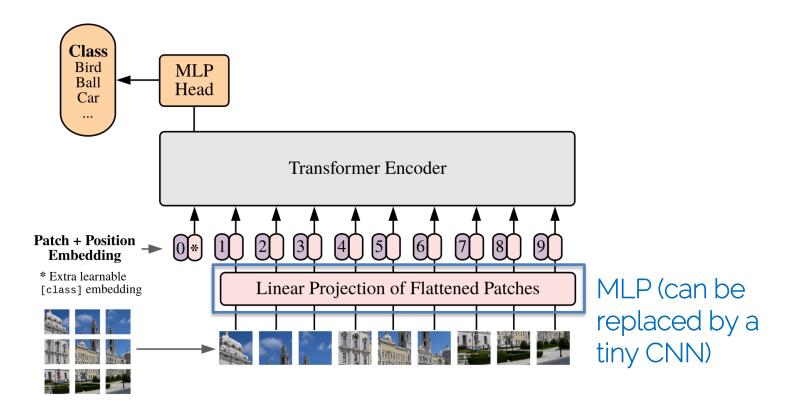
Image patches

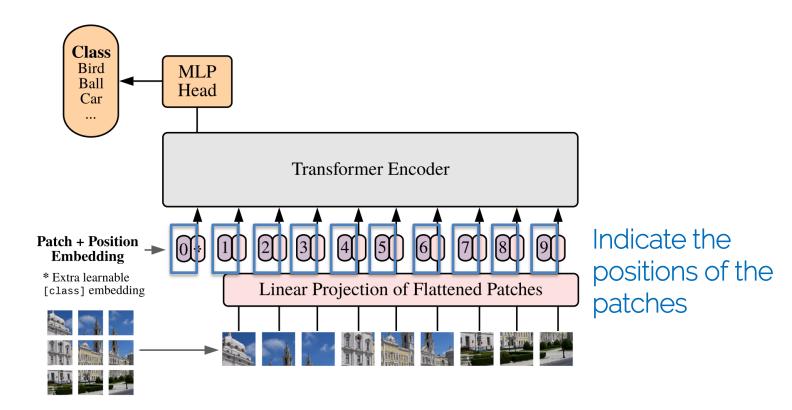
Prof. Niessner

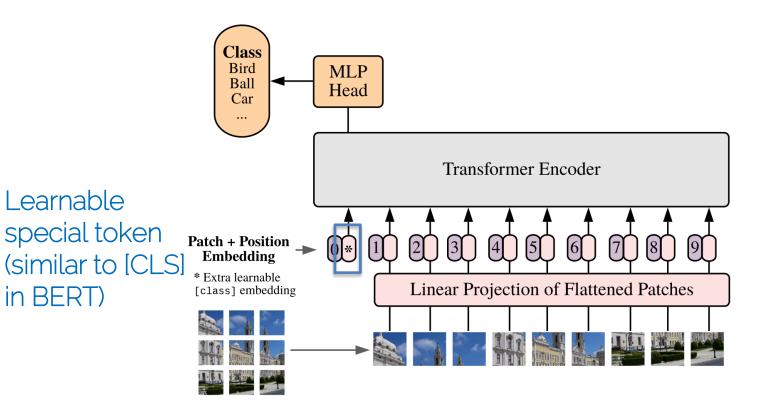


Prof. Niessner

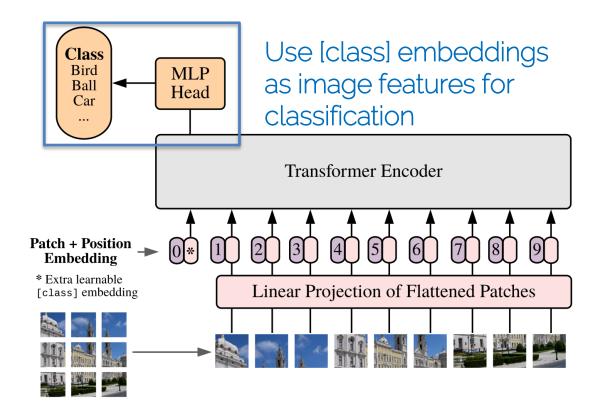








Prof. Niessner



• Pre-trained on several big datasets

• Perform transfer learning on target datasets/benchmarks (freeze the pre-trained transformer backbone, fine-tune the classifier only)

• Outperform the ResNet baseline with substantially less computational resources for pre-training

- A closer look at ViTs
 - Transformers in language can give us the attention maps on the input words

 Can ViTs provide the attention maps on the input image patches? -> YES!

• Attention maps in ViTs

Input Attention

Attention maps on the input image while computing the attended [class] embedding for classification

i.e., to classify an image, ViTs give us a hint for which part is most relevant to the predicted label.

Prof. Niessner

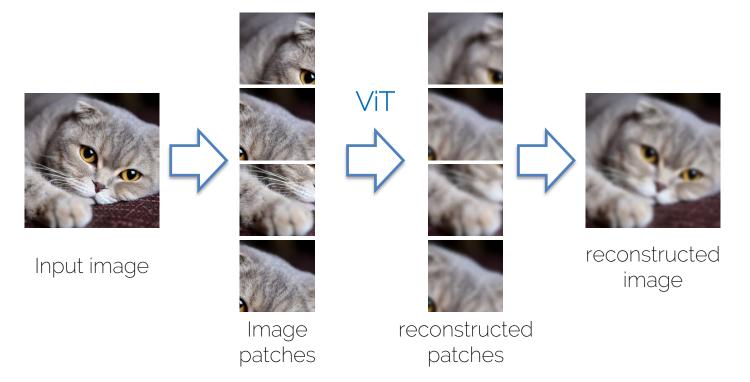
• ViTs set a new form for image recognition

• ViTs are extremely powerful at representing image features

• ViTs are also applied in many other domains, such as representation learning (e.g., DINO, MoCo, CLIP, etc.), object detection, and multimodal learning.

Masked Auto-encoder (MAE)

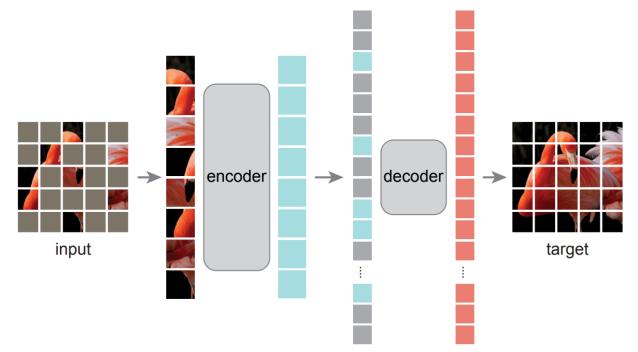
• ViTs as auto-encoders



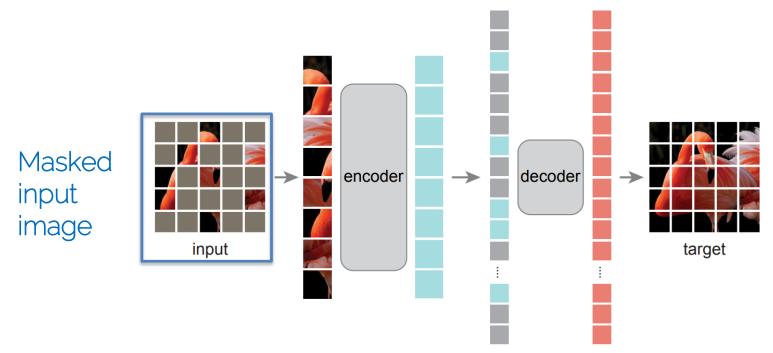
Masked Auto-encoder (MAE)

- What's new?
 - Mask out a lot of patches in the input image
 - Inputting the unmasked patches into the ViT only
 - -> Reduce the computational needs
 - Reconstruct the masked patches

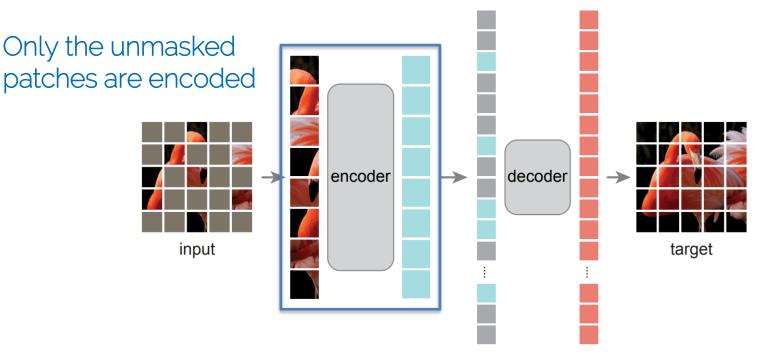
• Masked Image Modelling (MIM)



• Masked Image Modelling (MIM)



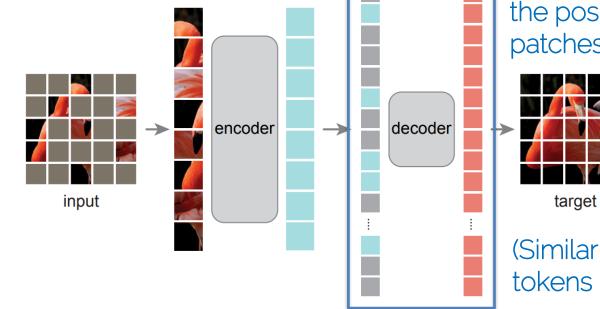
Masked Image Modelling (MIM)



Prof. Niessner

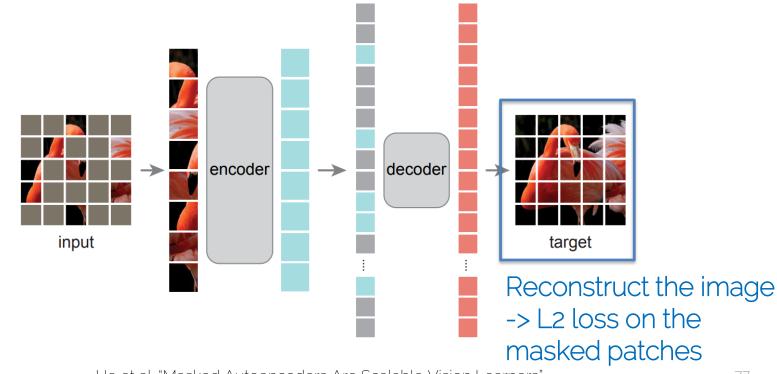
Masked Image Modelling (MIM)

Put learnable tokens to the positions where the patches are masked

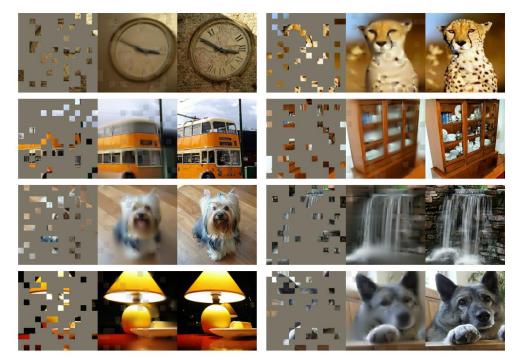


(Similar to the [MASK] tokens in BERT)

• Masked Image Modelling (MIM)



• Visualized reconstructions



Prof. Niessner

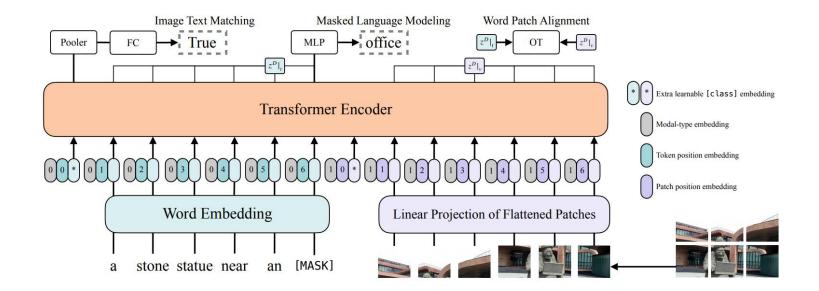
• By inputting the unmasked patches into the ViT only, MAEs require less computes and training time

• Masked Image Modelling enforces the ViT encoder to learn the local and global context of the input images

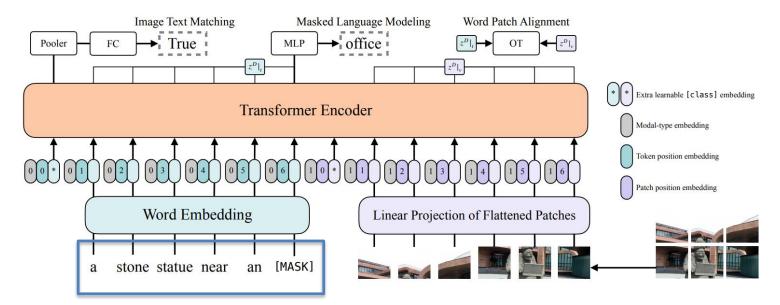
Transformers in Multimodal Learning

- ViLT: Vision-and-Language Transformer Without
 Convolution or Region Supervision
 - Concatenate image patches with text sequence as the input sequence
 - Pre-training with two self-supervised objectives
 - Image text matching
 - Masked language modelling

• ViLT under the hood



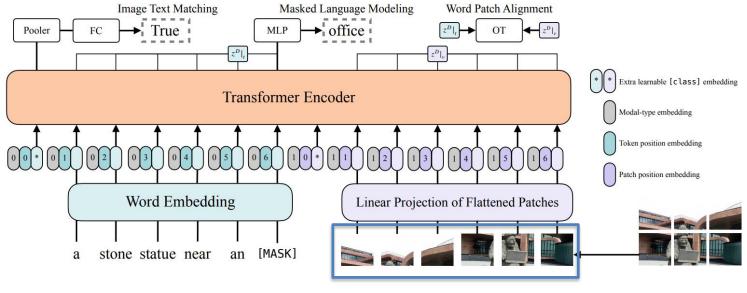
• ViLT under the hood



Masked input texts

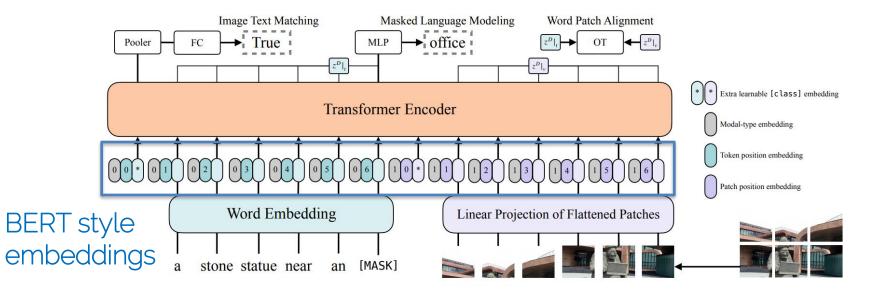
Prof. Niessner Kim et al. "VILT: Vision-and-Language Transformer Without Convolution or Region Supervision".

• ViLT under the hood

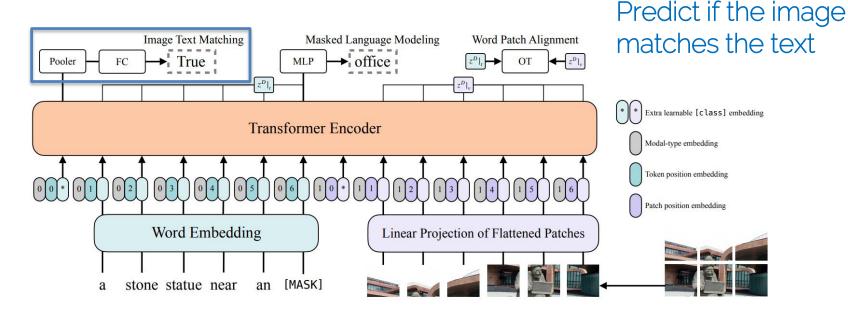


Input image patches

• ViLT under the hood

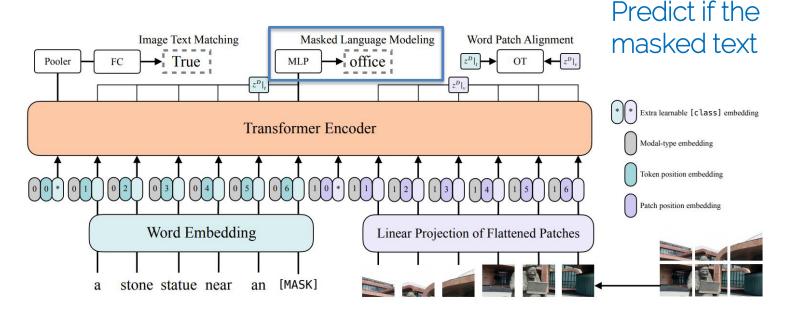


• ViLT under the hood



(Similar to BERT's next sentence prediction)

• ViLT under the hood



(Similar to BERT's masked language modelling)

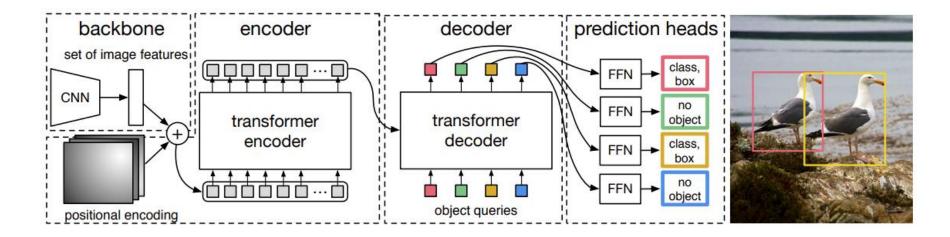
Prof. Niessner Kim et al. "ViLT: Vision-and-Language Transformer Without Convolution or Region Supervision".

- VILT is pre-trained on large-scale vision-language datasets in a self-supervised manner.
- Without any image region information (object detection bounding boxes), ViLT achieves strong performance in downstream tasks, e.g., text-to-image retrieval and visual question answering, by using the image patches only.
- ViLT is simple to implement and fast to train.

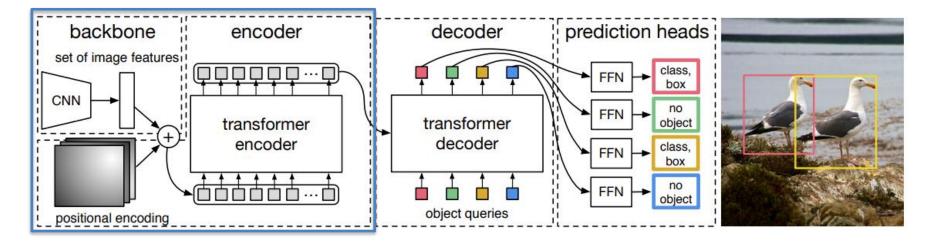
Transformers in Object Detection

- Detection Transformer
 - A set-based object detection using a Transformer on top of a CNN backbone
 - A Transformer encoder encodes the CNN features with positional embeddings
 - A Transformer decoder "translates" the input positional embeddings (object queries) into object detections or "no object"

• DETR works in a similar way as Machine Translation



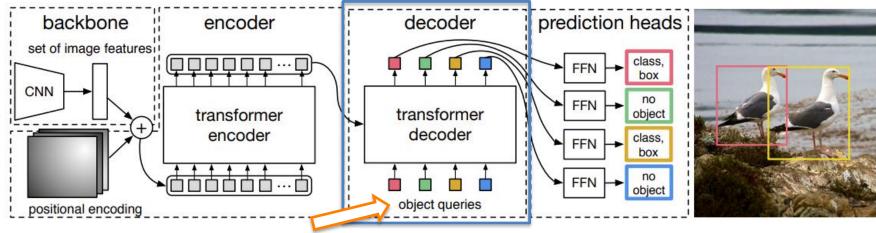
• DETR works in a similar way as Machine Translation



Encode the input image into a sequence of image tokens (similar to ViT's encoding process)

Prof. Niessner

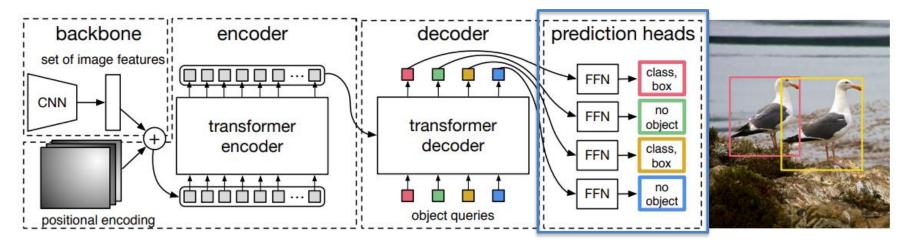
• DETR works in a similar way as Machine Translation



New positional embeddings as object queries

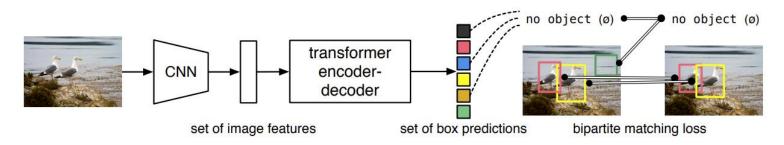
decode the object queries into output embeddings, while referring to the encoded image tokens

• DETR works in a similar way as Machine Translation

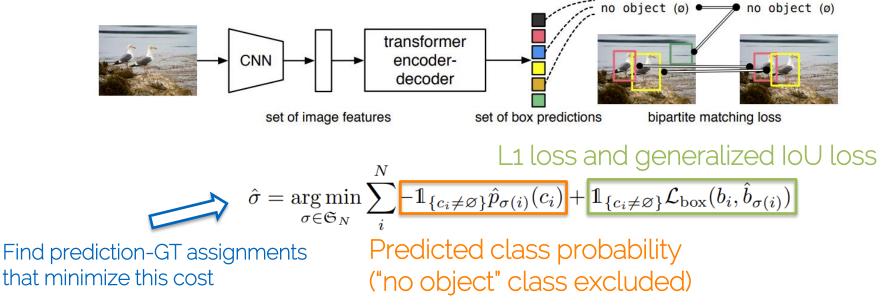


An output layer predicts the object classes and bounding boxes, or "no object"

- Object detection as set prediction
 - Each box prediction is matches with only ONE ground truth (one-to-one assignment), i.e., only match the best prediction out of duplicated ones to the GT, the others will be assigned to "no object"

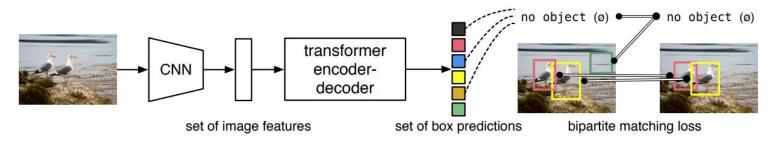


- Object detection as set prediction
 - Bipartite matching with pair-wise matching cost



Prof. Niessner

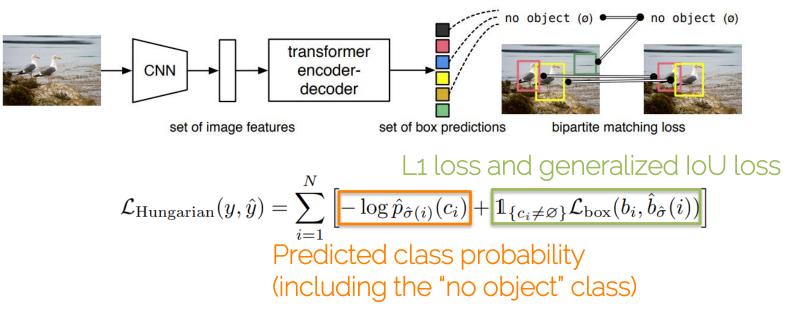
- Object detection as set prediction
 - Bipartite matching with pair-wise matching cost



Matching via <u>Hungarian</u> $\hat{\sigma} = \underset{\sigma \in \mathfrak{S}_N}{\operatorname{arg\,min}} \sum_{i}^{N} -\mathbb{1}_{\{c_i \neq \emptyset\}} \hat{p}_{\sigma(i)}(c_i) + \mathbb{1}_{\{c_i \neq \emptyset\}} \mathcal{L}_{\operatorname{box}}(b_i, \hat{b}_{\sigma(i)})$ predictions will be assigned to "no object" class

Prof. Niessner

- Object detection as set prediction
 - Hungarian loss (after bipartite matching)



Prof. Niessner

- DETR works in a similar way as Neural Machine Translation.
- The bipartite matching enforces DETR to predict nonoverlapping bounding boxes; DETR does not need non-maximum suppression (NMS) by design.
- Can be easily extended to panoptic segmentation by adding a mask head on top of the decoder outputs.

Reading Homework

- Understanding BERT
 - <u>https://jalammar.github.io/illustrated-bert/</u>
- BEIT: [Bao et al. 2021] BEIT: BERT Pre-Training of Image Transformers
 - <u>https://arxiv.org/pdf/2106.08254.pdf</u>
- Pix2Seq: [Chen et al. 2021] Pix2seq: A Language Modeling Framework for Object Detection
 - <u>https://arxiv.org/pdf/2109.10852.pdf</u>

- Attention: [Xu. 2015] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
 - <u>https://arxiv.org/pdf/1502.03044.pdf</u>
- Transformer: [Vaswani et al. 2017] Attention is All You Need
 - <u>https://arxiv.org/pdf/1706.03762.pdf</u>
- BERT: [Devlin et al. 2020] BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
 - <u>https://arxiv.org/pdf/1810.04805.pdf</u>
- VIT: [Dosovitskiy et al. 2020] An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
 - <u>https://arxiv.org/pdf/2010.11929.pdf</u>
- MAE: [He et al. 2022] Masked Autoencoders Are Scalable Vision Learners
 - <u>https://arxiv.org/pdf/2111.06377.pdf</u>
- VILT: [Kim et al. 2019] VILT: Vision-and-Language Transformer Without Convolution or Region Supervision
 - <u>https://arxiv.org/pdf/2102.03334.pdf</u>
- DETR: [Carion et al. 2022] End-to-End Object Detection with Transformers
 - <u>https://arxiv.org/pdf/2005.12872.pdf</u>

٠

٠

Thanks for watching!