This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Q2E0.739 10.984 10.797 10.761 20.716 10.884 10.588 10.843 10.589 30.656 10.971 20.487 20.271 20.772 10.807 20.726 20.795 20.630 10.945 20.856 10.693 1
ActiveST0.725 20.980 20.764 40.753 30.699 20.863 20.521 20.773 20.671 10.625 20.974 10.456 60.182 90.721 20.874 10.746 10.808 10.628 20.960 10.846 20.664 3
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
DE-3DLearner LA0.695 30.897 30.784 20.728 50.697 30.846 40.441 70.770 30.615 20.585 30.951 40.504 10.232 40.672 30.760 40.655 40.772 50.599 30.877 70.834 40.678 2
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
WS3D_LA_Sempermissive0.670 40.842 60.732 80.825 10.657 40.794 100.506 30.762 50.584 40.553 50.947 70.451 80.219 50.585 60.652 80.670 30.791 30.570 50.857 110.816 50.579 5
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
LE0.652 50.816 70.760 50.747 40.648 50.807 80.455 60.765 40.517 70.523 70.941 110.452 70.190 80.586 50.691 70.525 110.762 60.552 80.930 40.795 90.580 4
VIBUSpermissive0.651 60.868 40.728 110.675 90.624 70.861 30.247 130.734 60.561 50.520 80.948 60.464 40.216 60.670 40.742 50.589 90.746 70.579 40.877 70.800 70.568 6
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
GaIA0.643 70.704 110.776 30.670 100.597 90.842 50.382 90.688 90.413 120.556 40.950 50.471 30.334 10.478 100.728 60.640 50.787 40.557 70.937 30.812 60.531 11
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
One-Thing-One-Click0.642 80.725 100.735 70.717 60.635 60.829 60.457 50.639 110.421 110.552 60.967 30.460 50.240 30.558 70.788 30.621 60.720 80.477 110.915 50.842 30.539 8
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Viewpoint_BN_LA_AIR0.623 90.812 80.743 60.654 110.579 110.800 90.462 40.713 70.533 60.516 90.944 80.434 90.215 70.437 110.521 120.601 70.720 80.563 60.884 60.800 70.534 10
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
PointContrast_LA_SEM0.614 100.844 50.731 90.681 70.590 100.791 110.348 110.689 80.503 80.502 100.942 100.361 110.154 120.484 90.624 90.591 80.708 100.524 100.874 100.793 100.536 9
CSC_LA_SEM0.612 110.747 90.731 90.679 80.603 80.815 70.400 80.648 100.453 90.481 110.944 80.421 100.173 100.504 80.623 100.588 100.690 120.545 90.877 70.778 110.541 7
SQN_LA0.542 120.568 130.674 130.618 130.462 120.772 120.351 100.567 120.443 100.378 130.931 130.335 120.173 100.392 120.623 100.455 130.688 130.466 120.769 130.720 130.450 12
Scratch_LA_SEM0.524 130.640 120.690 120.636 120.442 130.756 130.326 120.544 130.365 130.396 120.940 120.284 130.085 130.333 130.479 130.502 120.696 110.453 130.785 120.746 120.372 13


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_Inspermissive0.730 11.000 10.939 20.703 30.638 20.822 10.464 30.756 10.727 20.580 20.601 10.545 10.530 10.857 20.819 20.856 20.686 10.991 30.623 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Box2Mask_LA0.695 21.000 10.996 10.798 10.561 40.801 20.579 10.684 20.745 10.637 10.523 20.387 20.505 41.000 10.310 50.727 40.658 20.979 40.622 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
CSC_LA_INS0.620 31.000 10.699 50.623 40.665 10.673 30.541 20.552 40.150 50.520 30.499 30.203 30.529 20.857 20.793 30.865 10.549 30.997 20.449 4
PointContrast_LA_INS0.603 41.000 10.773 40.576 50.613 30.666 40.156 50.683 30.385 30.499 40.495 40.192 40.521 30.618 40.882 10.843 30.528 40.957 50.469 3
Scratch_LA_INS0.501 50.667 50.796 30.711 20.560 50.607 50.198 40.324 50.253 40.361 50.346 50.038 50.415 50.576 50.630 40.725 50.505 51.000 10.303 5


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_ODpermissive0.543 10.917 10.875 10.736 10.297 10.844 10.403 10.232 30.527 30.475 10.427 10.137 10.451 10.280 30.454 10.872 10.496 10.909 10.435 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_DET0.467 20.667 20.641 40.385 30.247 20.827 20.274 20.311 10.484 40.452 20.408 20.056 30.428 20.468 10.360 20.784 30.309 40.900 20.398 2
CSC_LA_DET0.461 30.667 20.847 20.452 20.206 30.811 30.149 40.160 40.606 10.439 30.328 30.066 20.369 40.457 20.338 30.855 20.322 30.846 30.378 4
Scratch_LA_DET0.420 40.667 20.693 30.374 40.204 40.790 40.182 30.275 20.555 20.324 40.310 40.027 40.411 30.205 40.317 40.778 40.341 20.723 40.390 3


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_Sem0.684 10.865 10.761 10.780 10.644 10.810 20.445 10.796 10.596 10.594 10.945 20.456 10.234 10.541 10.793 10.723 10.761 10.618 10.906 10.822 10.598 2
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
NWSYY0.517 20.725 30.619 60.396 40.455 30.766 50.327 30.570 20.477 50.427 30.943 30.288 20.220 30.274 50.135 30.471 30.697 30.504 20.714 50.767 30.566 3
DE-3DLearner LR0.508 30.824 20.530 80.314 50.479 20.746 70.334 20.490 40.508 20.477 20.950 10.269 30.221 20.324 30.029 60.421 50.626 60.490 30.727 30.782 20.620 1
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
CSG_3DSegNet0.480 40.521 50.715 30.562 20.389 60.693 80.307 40.157 80.501 30.321 80.927 80.219 60.074 80.329 20.485 20.504 20.596 80.458 50.715 40.714 80.418 4
CSC_LR_SEM0.460 50.472 70.731 20.465 30.398 40.817 10.292 50.442 50.311 80.387 60.939 40.218 70.181 40.302 40.076 40.449 40.743 20.430 70.444 80.737 50.368 7
Viewpoint_BN_LR_AIR0.452 60.587 40.569 70.172 70.391 50.769 40.290 60.512 30.501 30.373 70.935 60.251 40.173 50.201 60.003 80.352 70.619 70.454 60.783 20.719 70.390 6
PointContrast_LR_SEM0.438 70.517 60.659 50.251 60.332 80.783 30.244 80.408 60.411 70.409 40.935 60.206 80.119 70.200 70.048 50.355 60.682 40.414 80.647 60.743 40.391 5
Scratch_LR_SEM0.401 80.240 80.674 40.095 80.347 70.763 60.271 70.204 70.449 60.406 50.936 50.220 50.127 60.199 80.004 70.348 80.665 50.477 40.493 70.730 60.366 8


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_Ins0.726 11.000 10.797 30.730 10.669 10.851 20.410 20.765 10.693 10.528 30.583 10.388 30.638 11.000 10.880 10.874 10.653 10.975 10.631 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
TWIST+CSC0.592 21.000 10.842 10.486 40.586 20.859 10.445 10.436 20.649 20.546 20.486 30.331 40.455 20.143 20.630 40.783 40.635 20.938 20.408 3
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
InstTeacher3D0.563 31.000 10.729 50.567 20.577 30.842 30.300 30.412 40.486 50.648 10.536 20.541 10.250 30.000 30.529 50.727 60.555 30.875 30.552 2
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSC_LR_INS0.492 40.667 40.810 20.513 30.487 50.806 40.174 60.290 50.634 30.470 50.398 40.405 20.240 40.000 30.706 20.800 20.465 50.695 60.292 4
PointContrast_LR_INS0.438 50.667 40.795 40.169 50.471 60.792 50.250 40.413 30.327 60.389 60.376 50.236 50.043 60.000 30.647 30.789 30.458 60.829 40.239 5
Scratch_LR_INS0.419 60.667 40.696 60.133 60.497 40.787 60.200 50.037 60.543 40.489 40.351 60.208 60.139 50.000 30.471 60.757 50.531 40.810 50.230 6


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_ODpermissive0.550 10.867 10.892 10.728 10.346 10.837 10.384 10.305 10.539 10.444 10.425 10.155 10.464 10.294 10.507 10.865 10.486 10.897 10.461 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LR_DET0.365 20.722 20.717 20.379 20.238 20.747 30.089 20.131 30.250 40.179 30.259 20.006 40.391 20.090 40.300 20.837 20.197 30.877 20.153 3
PointContrast_LR_DET0.361 30.667 30.695 30.358 30.156 30.757 20.070 30.186 20.432 20.253 20.225 30.016 20.322 30.269 20.156 40.730 30.199 20.793 30.210 2
Scratch_LR_DET0.215 40.667 30.238 40.178 40.079 40.577 40.012 40.022 40.251 30.104 40.027 40.007 30.013 40.229 30.218 30.498 40.156 40.564 40.035 4