The 3D semantic instance prediction task involves detecting and segmenting the object in an 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the average precision for each class. We report the mean average precision AP at overlap 0.25 (AP 25%), overlap 0.5 (AP 50%), and over overlaps in the range [0.5:0.95:0.05] (AP). Note that multiple predictions of the same ground truth instance are penalized as false positives.



This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_ODpermissive0.543 10.917 10.875 10.736 10.297 10.844 10.403 10.232 30.527 30.475 10.427 10.137 10.451 10.280 30.454 10.872 10.496 10.909 10.435 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_DET0.467 20.667 20.641 40.385 30.247 20.827 20.274 20.311 10.484 40.452 20.408 20.056 30.428 20.468 10.360 20.784 30.309 40.900 20.398 2
CSC_LA_DET0.461 30.667 20.847 20.452 20.206 30.811 30.149 40.160 40.606 10.439 30.328 30.066 20.369 40.457 20.338 30.855 20.322 30.846 30.378 4
Scratch_LA_DET0.420 40.667 20.693 30.374 40.204 40.790 40.182 30.275 20.555 20.324 40.310 40.027 40.411 30.205 40.317 40.778 40.341 20.723 40.390 3