The 3D semantic instance prediction task involves detecting and segmenting the object in an 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the average precision for each class. We report the mean average precision AP at overlap 0.25 (AP 25%), overlap 0.5 (AP 50%), and over overlaps in the range [0.5:0.95:0.05] (AP). Note that multiple predictions of the same ground truth instance are penalized as false positives.



This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_Inspermissive0.730 11.000 10.939 20.703 30.638 20.822 10.464 30.756 10.727 20.580 20.601 10.545 10.530 10.857 20.819 20.856 20.686 10.991 30.623 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Box2Mask_LA0.695 21.000 10.996 10.798 10.561 40.801 20.579 10.684 20.745 10.637 10.523 20.387 20.505 41.000 10.310 50.727 40.658 20.979 40.622 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
CSC_LA_INS0.620 31.000 10.699 50.623 40.665 10.673 30.541 20.552 40.150 50.520 30.499 30.203 30.529 20.857 20.793 30.865 10.549 30.997 20.449 4
PointContrast_LA_INS0.603 41.000 10.773 40.576 50.613 30.666 40.156 50.683 30.385 30.499 40.495 40.192 40.521 30.618 40.882 10.843 30.528 40.957 50.469 3
Scratch_LA_INS0.501 50.667 50.796 30.711 20.560 50.607 50.198 40.324 50.253 40.361 50.346 50.038 50.415 50.576 50.630 40.725 50.505 51.000 10.303 5