The 3D semantic instance prediction task involves detecting and segmenting the object in an 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the average precision for each class. We report the mean average precision AP at overlap 0.25 (AP 25%), overlap 0.5 (AP 50%), and over overlaps in the range [0.5:0.95:0.05] (AP). Note that multiple predictions of the same ground truth instance are penalized as false positives.



This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_ODpermissive0.551 10.833 10.866 10.763 10.341 10.847 10.433 10.283 10.629 10.445 10.449 10.158 10.459 10.343 20.439 10.816 10.487 10.842 10.482 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LR_DET0.252 20.667 20.670 20.101 30.084 30.634 30.002 30.033 20.370 20.097 30.059 20.001 30.030 30.498 10.122 30.459 30.097 30.577 30.040 2
CSC_LR_DET0.235 30.667 20.400 30.130 20.088 20.700 20.035 20.013 30.220 30.124 20.059 30.009 20.031 20.142 40.177 20.527 20.181 20.707 20.020 3
Scratch_LR_DET0.037 40.020 40.019 40.001 40.010 40.058 40.000 40.001 40.012 40.039 40.007 40.000 40.000 40.304 30.010 40.002 40.008 40.165 40.008 4