Scene Type Classification Benchmark
The Scene type classification task involves classifying a scan into 13 scene types.
Evaluation and metricsOur evaluation ranks all methods according to recall (TP/(TP+FN)) as well as the PASCAL VOC intersection-over-union metric (IoU = TP/(TP+FP+FN)), where TP, FP, and FN are the numbers of true positive, false positive, and false negative predictions, respectively.
This table lists the benchmark results for the scene type classification scenario.
Method | Info | avg recall | apartment | bathroom | bedroom / hotel | bookstore / library | conference room | copy/mail room | hallway | kitchen | laundry room | living room / lounge | misc | office | storage / basement / garage |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
LAST-PCL-type | 0.780 1 | 0.250 3 | 1.000 1 | 1.000 1 | 1.000 1 | 1.000 1 | 1.000 1 | 0.500 2 | 1.000 1 | 0.500 2 | 0.889 1 | 0.000 2 | 1.000 1 | 1.000 1 | |
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12 | |||||||||||||||
SE-ResNeXt-SSMA | 0.498 4 | 0.000 5 | 0.812 4 | 0.941 2 | 0.500 3 | 0.500 4 | 0.500 3 | 0.500 2 | 0.429 5 | 0.500 2 | 0.667 3 | 0.500 1 | 0.625 4 | 0.000 3 | |
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv | |||||||||||||||
multi-task | 0.700 2 | 0.500 1 | 1.000 1 | 0.882 3 | 0.500 3 | 1.000 1 | 1.000 1 | 0.500 2 | 1.000 1 | 1.000 1 | 0.778 2 | 0.000 2 | 0.938 2 | 0.000 3 | |
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020 | |||||||||||||||
3DASPP-SCE | 0.691 3 | 0.500 1 | 0.938 3 | 0.824 4 | 1.000 1 | 1.000 1 | 0.500 3 | 1.000 1 | 0.857 3 | 0.500 2 | 0.556 4 | 0.000 2 | 0.812 3 | 0.500 2 | |
resnet50_scannet | 0.353 5 | 0.250 3 | 0.812 4 | 0.529 5 | 0.500 3 | 0.500 4 | 0.000 5 | 0.500 2 | 0.571 4 | 0.000 5 | 0.556 4 | 0.000 2 | 0.375 5 | 0.000 3 | |