3D Semantic Label with Limited Annotations Benchmark
This table lists the benchmark results for the 3D semantic label with limited annotations scenario.
Method | Info | avg iou | bathtub | bed | bookshelf | cabinet | chair | counter | curtain | desk | door | floor | otherfurniture | picture | refrigerator | shower curtain | sink | sofa | table | toilet | wall | window |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q2E | 0.739 1 | 0.984 1 | 0.797 1 | 0.761 2 | 0.716 1 | 0.884 1 | 0.588 1 | 0.843 1 | 0.589 3 | 0.656 1 | 0.971 2 | 0.487 2 | 0.271 2 | 0.772 1 | 0.807 2 | 0.726 2 | 0.795 2 | 0.630 1 | 0.945 2 | 0.856 1 | 0.693 1 | |
ActiveST | 0.725 2 | 0.980 2 | 0.764 4 | 0.753 3 | 0.699 2 | 0.863 2 | 0.521 2 | 0.773 2 | 0.671 1 | 0.625 2 | 0.974 1 | 0.456 6 | 0.182 9 | 0.721 2 | 0.874 1 | 0.746 1 | 0.808 1 | 0.628 2 | 0.960 1 | 0.846 2 | 0.664 3 | |
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation. | ||||||||||||||||||||||
DE-3DLearner LA | 0.695 3 | 0.897 3 | 0.784 2 | 0.728 5 | 0.697 3 | 0.846 4 | 0.441 7 | 0.770 3 | 0.615 2 | 0.585 3 | 0.951 4 | 0.504 1 | 0.232 4 | 0.672 3 | 0.760 4 | 0.655 4 | 0.772 5 | 0.599 3 | 0.877 7 | 0.834 4 | 0.678 2 | |
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022 | ||||||||||||||||||||||
WS3D_LA_Sem | 0.670 4 | 0.842 6 | 0.732 8 | 0.825 1 | 0.657 4 | 0.794 10 | 0.506 3 | 0.762 5 | 0.584 4 | 0.553 5 | 0.947 7 | 0.451 8 | 0.219 5 | 0.585 6 | 0.652 8 | 0.670 3 | 0.791 3 | 0.570 5 | 0.857 11 | 0.816 5 | 0.579 5 | |
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022 | ||||||||||||||||||||||
LE | 0.652 5 | 0.816 7 | 0.760 5 | 0.747 4 | 0.648 5 | 0.807 8 | 0.455 6 | 0.765 4 | 0.517 7 | 0.523 7 | 0.941 11 | 0.452 7 | 0.190 8 | 0.586 5 | 0.691 7 | 0.525 11 | 0.762 6 | 0.552 8 | 0.930 4 | 0.795 9 | 0.580 4 | |
VIBUS | 0.651 6 | 0.868 4 | 0.728 11 | 0.675 9 | 0.624 7 | 0.861 3 | 0.247 13 | 0.734 6 | 0.561 5 | 0.520 8 | 0.948 6 | 0.464 4 | 0.216 6 | 0.670 4 | 0.742 5 | 0.589 9 | 0.746 7 | 0.579 4 | 0.877 7 | 0.800 7 | 0.568 6 | |
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||
GaIA | 0.643 7 | 0.704 11 | 0.776 3 | 0.670 10 | 0.597 9 | 0.842 5 | 0.382 9 | 0.688 9 | 0.413 12 | 0.556 4 | 0.950 5 | 0.471 3 | 0.334 1 | 0.478 10 | 0.728 6 | 0.640 5 | 0.787 4 | 0.557 7 | 0.937 3 | 0.812 6 | 0.531 11 | |
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023 | ||||||||||||||||||||||
One-Thing-One-Click | 0.642 8 | 0.725 10 | 0.735 7 | 0.717 6 | 0.635 6 | 0.829 6 | 0.457 5 | 0.639 11 | 0.421 11 | 0.552 6 | 0.967 3 | 0.460 5 | 0.240 3 | 0.558 7 | 0.788 3 | 0.621 6 | 0.720 8 | 0.477 11 | 0.915 5 | 0.842 3 | 0.539 8 | |
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021 | ||||||||||||||||||||||
Viewpoint_BN_LA_AIR | 0.623 9 | 0.812 8 | 0.743 6 | 0.654 11 | 0.579 11 | 0.800 9 | 0.462 4 | 0.713 7 | 0.533 6 | 0.516 9 | 0.944 8 | 0.434 9 | 0.215 7 | 0.437 11 | 0.521 12 | 0.601 7 | 0.720 8 | 0.563 6 | 0.884 6 | 0.800 7 | 0.534 10 | |
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck. | ||||||||||||||||||||||
PointContrast_LA_SEM | 0.614 10 | 0.844 5 | 0.731 9 | 0.681 7 | 0.590 10 | 0.791 11 | 0.348 11 | 0.689 8 | 0.503 8 | 0.502 10 | 0.942 10 | 0.361 11 | 0.154 12 | 0.484 9 | 0.624 9 | 0.591 8 | 0.708 10 | 0.524 10 | 0.874 10 | 0.793 10 | 0.536 9 | |
CSC_LA_SEM | 0.612 11 | 0.747 9 | 0.731 9 | 0.679 8 | 0.603 8 | 0.815 7 | 0.400 8 | 0.648 10 | 0.453 9 | 0.481 11 | 0.944 8 | 0.421 10 | 0.173 10 | 0.504 8 | 0.623 10 | 0.588 10 | 0.690 12 | 0.545 9 | 0.877 7 | 0.778 11 | 0.541 7 | |
SQN_LA | 0.542 12 | 0.568 13 | 0.674 13 | 0.618 13 | 0.462 12 | 0.772 12 | 0.351 10 | 0.567 12 | 0.443 10 | 0.378 13 | 0.931 13 | 0.335 12 | 0.173 10 | 0.392 12 | 0.623 10 | 0.455 13 | 0.688 13 | 0.466 12 | 0.769 13 | 0.720 13 | 0.450 12 | |
Scratch_LA_SEM | 0.524 13 | 0.640 12 | 0.690 12 | 0.636 12 | 0.442 13 | 0.756 13 | 0.326 12 | 0.544 13 | 0.365 13 | 0.396 12 | 0.940 12 | 0.284 13 | 0.085 13 | 0.333 13 | 0.479 13 | 0.502 12 | 0.696 11 | 0.453 13 | 0.785 12 | 0.746 12 | 0.372 13 | |