This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Q2E0.741 10.984 10.821 20.757 40.739 10.868 20.600 10.849 10.595 60.659 10.971 20.490 20.299 20.689 40.822 30.749 10.788 40.641 10.935 20.860 10.699 2
ActiveST0.735 20.983 20.769 40.798 10.701 20.852 50.527 20.801 20.680 10.629 20.973 10.447 100.312 10.757 10.799 40.747 20.795 30.632 20.952 10.855 20.684 3
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
DE-3DLearner LA0.704 30.774 70.766 50.764 30.687 40.832 70.413 110.790 40.639 20.599 40.952 40.478 60.222 80.746 20.859 10.678 40.806 20.607 60.915 50.847 30.703 1
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
WS3D_LA_Sempermissive0.689 40.879 30.753 60.798 10.648 80.816 90.421 100.796 30.604 50.603 30.945 100.457 90.204 90.559 100.851 20.724 30.760 70.630 30.903 70.821 50.603 8
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
VIBUSpermissive0.684 50.848 40.752 70.708 90.691 30.861 30.474 50.770 50.611 40.538 90.951 50.478 60.275 40.676 50.671 110.649 80.788 40.610 50.869 90.808 100.657 4
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
GaIA0.682 60.731 110.846 10.713 80.657 60.869 10.475 40.705 90.452 130.569 50.951 50.563 10.290 30.544 110.799 40.677 50.810 10.618 40.900 80.821 50.642 5
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
LE0.680 70.744 90.731 90.727 60.664 50.859 40.427 90.759 60.562 70.562 60.948 70.480 40.245 60.735 30.765 60.648 100.786 60.591 70.931 30.817 70.624 7
One-Thing-One-Click0.670 80.734 100.815 30.661 130.644 90.841 60.509 30.741 70.479 120.548 70.968 30.461 80.251 50.664 60.754 70.656 70.744 100.541 110.917 40.844 40.625 6
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Viewpoint_BN_LA_AIR0.650 90.778 60.731 90.688 110.617 110.812 110.446 70.739 80.618 30.540 80.945 100.415 110.204 90.623 70.676 100.594 110.744 100.576 80.868 100.811 80.582 10
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
CSC_LA_SEM0.644 100.761 80.707 120.703 100.642 100.813 100.436 80.659 110.502 90.516 110.945 100.487 30.238 70.538 120.678 90.659 60.739 120.568 100.915 50.811 80.566 12
PointContrast_LA_SEM0.636 110.694 120.738 80.731 50.653 70.817 80.467 60.651 120.517 80.522 100.946 80.479 50.198 110.575 90.526 130.649 80.747 80.569 90.845 110.803 110.600 9
Scratch_LA_SEM0.621 120.802 50.715 110.687 120.570 120.800 120.386 120.703 100.486 110.514 120.946 80.390 120.181 120.620 80.670 120.487 130.746 90.539 120.804 120.798 120.580 11
SQN_LA0.576 130.674 130.670 130.722 70.454 130.790 130.342 130.622 130.487 100.427 130.933 130.357 130.157 130.452 130.721 80.492 120.696 130.487 130.790 130.748 130.507 13


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_Inspermissive0.364 10.556 20.444 10.328 20.222 10.598 10.005 40.544 10.065 10.185 10.274 20.177 20.452 10.654 10.171 30.455 20.333 10.892 10.193 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Box2Mask_LA0.327 20.852 10.336 50.381 10.162 20.508 20.052 10.205 50.061 20.154 20.313 10.208 10.299 30.530 30.165 40.492 10.213 30.784 20.162 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
CSC_LA_INS0.258 30.485 40.356 40.298 30.114 40.364 30.044 20.223 40.022 30.136 30.217 30.036 30.214 40.507 40.191 20.363 40.221 20.776 30.079 4
PointContrast_LA_INS0.256 40.519 30.376 30.216 50.099 50.347 40.026 30.443 20.017 40.113 50.142 40.008 50.137 50.586 20.219 10.362 50.149 50.775 40.078 5
Scratch_LA_INS0.241 50.463 50.402 20.220 40.131 30.306 50.005 40.307 30.006 50.131 40.131 50.034 40.301 20.376 50.114 50.427 30.186 40.723 50.083 3


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_ODpermissive0.366 11.000 10.825 10.698 10.068 10.665 10.007 40.210 10.409 10.173 10.189 10.019 10.375 10.062 40.176 10.730 10.227 10.587 20.162 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LA_DET0.274 20.667 20.458 40.189 20.034 30.528 20.093 10.098 30.329 20.117 30.147 20.004 20.318 20.154 20.136 20.687 20.166 20.733 10.072 3
PointContrast_LA_DET0.246 30.667 20.587 20.173 30.032 40.525 30.018 30.011 40.199 40.157 20.121 30.003 30.253 30.191 10.100 30.570 40.156 30.586 30.073 2
Scratch_LA_DET0.217 40.667 20.575 30.139 40.035 20.386 40.064 20.121 20.256 30.073 40.064 40.000 40.112 40.152 30.032 40.595 30.124 40.492 40.020 4


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_Sem0.685 10.871 10.769 10.779 10.647 10.806 10.453 10.802 10.577 10.588 10.945 10.460 10.223 10.539 10.793 10.732 10.766 10.614 10.904 10.823 10.604 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
NWSYY0.286 20.000 20.515 40.322 60.247 20.618 20.219 30.304 50.174 80.268 40.926 30.117 20.162 50.065 80.000 20.079 50.514 20.345 40.028 20.701 20.125 2
CSC_LR_SEM0.270 30.000 20.528 30.331 50.139 70.535 70.118 80.326 40.222 30.292 30.921 40.089 60.163 40.129 20.000 20.131 30.463 30.278 80.000 30.699 30.033 7
DE-3DLearner LR0.263 40.000 20.547 20.235 80.184 50.566 30.165 50.249 60.196 40.309 20.938 20.070 80.186 30.069 70.000 20.000 80.368 60.356 20.000 30.698 40.118 4
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
CSG_3DSegNet0.258 50.000 20.335 80.368 30.169 60.549 60.229 20.158 80.182 70.208 80.898 80.105 30.190 20.093 60.000 20.093 40.448 40.342 50.000 30.679 60.119 3
Viewpoint_BN_LR_AIR0.256 60.000 20.479 50.377 20.204 40.551 50.205 40.219 70.235 20.224 70.903 70.092 40.088 60.122 30.000 20.003 70.354 70.354 30.000 30.676 70.034 6
PointContrast_LR_SEM0.253 70.000 20.412 70.347 40.137 80.564 40.140 60.361 30.187 60.249 50.914 50.092 40.055 70.102 50.000 20.048 60.392 50.302 70.000 30.697 50.056 5
Scratch_LR_SEM0.251 80.000 20.457 60.238 70.205 30.528 80.123 70.419 20.195 50.246 60.905 60.086 70.048 80.103 40.000 20.132 20.331 80.308 60.000 30.675 80.015 8


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_Ins0.347 10.593 10.448 10.322 10.224 10.610 20.004 20.488 10.144 10.187 10.311 10.121 10.342 10.424 10.198 10.473 10.333 10.773 10.249 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
InstTeacher3D0.117 20.000 20.368 20.000 50.050 30.616 10.000 30.314 20.001 50.187 20.111 20.116 20.007 50.000 20.016 20.216 30.100 40.000 20.000 4
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
TWIST+CSC0.108 30.000 20.237 30.027 20.055 20.531 30.011 10.290 30.001 40.103 30.099 30.011 50.113 20.000 20.000 50.322 20.143 20.000 20.000 5
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
PointContrast_LR_INS0.057 40.000 20.184 40.010 30.014 40.400 40.000 30.127 40.000 60.028 60.038 50.021 40.010 30.000 20.000 50.108 60.085 50.000 20.000 5
CSC_LR_INS0.056 50.000 20.177 50.006 40.009 60.370 50.000 30.070 60.003 20.059 40.054 40.052 30.010 40.000 20.004 30.122 50.072 60.000 20.000 3
Scratch_LR_INS0.054 60.000 20.153 60.000 50.011 50.350 60.000 30.108 50.001 30.042 50.010 60.001 60.001 60.000 20.000 40.153 40.141 30.000 20.000 2


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_ODpermissive0.374 10.867 10.797 10.655 10.104 10.678 10.046 10.215 10.406 10.186 10.219 10.034 10.354 10.160 10.101 10.741 10.306 10.679 10.181 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LR_DET0.191 20.667 20.468 30.226 20.036 20.420 30.025 20.010 30.081 30.066 30.045 20.000 20.162 30.010 30.017 20.657 20.109 20.420 30.013 2
PointContrast_LR_DET0.187 30.667 20.523 20.109 30.027 30.435 20.005 30.013 20.199 20.070 20.035 30.000 40.183 20.033 20.003 40.497 30.078 30.488 20.005 3
Scratch_LR_DET0.076 40.667 20.099 40.015 40.005 40.190 40.000 40.000 40.033 40.007 40.001 40.000 30.000 40.010 40.004 30.094 40.014 40.237 40.000 4