3D Semantic Label with Limited Annotations Benchmark
This table lists the benchmark results for the 3D semantic label with limited annotations scenario.
Method | Info | avg iou | bathtub | bed | bookshelf | cabinet | chair | counter | curtain | desk | door | floor | otherfurniture | picture | refrigerator | shower curtain | sink | sofa | table | toilet | wall | window |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q2E | 0.721 1 | 0.984 1 | 0.785 1 | 0.684 2 | 0.693 2 | 0.879 1 | 0.563 1 | 0.822 1 | 0.640 1 | 0.659 1 | 0.965 2 | 0.493 1 | 0.147 5 | 0.711 1 | 0.866 1 | 0.631 3 | 0.797 1 | 0.663 1 | 0.932 2 | 0.849 1 | 0.660 1 | |
ActiveST | 0.703 2 | 0.977 2 | 0.776 3 | 0.657 5 | 0.707 1 | 0.874 2 | 0.541 2 | 0.744 2 | 0.605 2 | 0.610 2 | 0.968 1 | 0.442 4 | 0.126 6 | 0.705 2 | 0.785 2 | 0.742 1 | 0.791 2 | 0.586 2 | 0.940 1 | 0.839 2 | 0.645 2 | |
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation. | ||||||||||||||||||||||
WS3D_LA_Sem | 0.662 3 | 0.812 4 | 0.762 4 | 0.742 1 | 0.635 3 | 0.828 6 | 0.474 3 | 0.736 3 | 0.588 3 | 0.546 3 | 0.947 5 | 0.450 3 | 0.174 4 | 0.536 5 | 0.752 3 | 0.668 2 | 0.735 5 | 0.583 3 | 0.902 6 | 0.797 6 | 0.573 5 | |
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022 | ||||||||||||||||||||||
GaIA | 0.638 5 | 0.536 12 | 0.783 2 | 0.651 6 | 0.600 5 | 0.840 3 | 0.413 5 | 0.728 4 | 0.490 7 | 0.520 6 | 0.948 4 | 0.475 2 | 0.299 1 | 0.518 6 | 0.680 4 | 0.629 4 | 0.729 6 | 0.573 4 | 0.906 3 | 0.815 4 | 0.626 3 | |
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023 | ||||||||||||||||||||||
DE-3DLearner LA | 0.639 4 | 0.839 3 | 0.723 6 | 0.681 3 | 0.629 4 | 0.839 5 | 0.424 4 | 0.728 4 | 0.538 5 | 0.526 4 | 0.945 6 | 0.427 6 | 0.120 7 | 0.511 7 | 0.643 6 | 0.547 6 | 0.781 3 | 0.566 5 | 0.905 4 | 0.809 5 | 0.607 4 | |
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022 | ||||||||||||||||||||||
One-Thing-One-Click | 0.594 7 | 0.756 6 | 0.722 7 | 0.494 12 | 0.546 8 | 0.795 7 | 0.371 6 | 0.725 6 | 0.559 4 | 0.488 7 | 0.957 3 | 0.367 8 | 0.261 2 | 0.547 4 | 0.575 12 | 0.225 12 | 0.671 10 | 0.543 6 | 0.904 5 | 0.826 3 | 0.557 6 | |
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021 | ||||||||||||||||||||||
VIBUS | 0.586 8 | 0.736 8 | 0.623 11 | 0.664 4 | 0.559 7 | 0.840 3 | 0.358 7 | 0.666 7 | 0.447 8 | 0.429 10 | 0.944 7 | 0.421 7 | 0.000 13 | 0.411 9 | 0.629 8 | 0.614 5 | 0.745 4 | 0.541 7 | 0.848 9 | 0.758 8 | 0.493 8 | |
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing | ||||||||||||||||||||||
LE | 0.608 6 | 0.791 5 | 0.726 5 | 0.651 6 | 0.589 6 | 0.779 9 | 0.346 9 | 0.662 8 | 0.493 6 | 0.524 5 | 0.923 13 | 0.430 5 | 0.234 3 | 0.572 3 | 0.638 7 | 0.411 10 | 0.708 7 | 0.533 8 | 0.855 7 | 0.782 7 | 0.508 7 | |
Viewpoint_BN_LA_AIR | 0.548 10 | 0.747 7 | 0.574 13 | 0.631 8 | 0.456 10 | 0.762 11 | 0.355 8 | 0.639 9 | 0.412 9 | 0.404 11 | 0.940 8 | 0.335 9 | 0.107 8 | 0.277 12 | 0.645 5 | 0.495 8 | 0.666 11 | 0.517 9 | 0.818 10 | 0.740 11 | 0.431 11 | |
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck. | ||||||||||||||||||||||
CSC_LA_SEM | 0.531 11 | 0.659 10 | 0.638 10 | 0.578 10 | 0.417 11 | 0.775 10 | 0.254 12 | 0.537 11 | 0.396 10 | 0.439 8 | 0.939 10 | 0.284 12 | 0.083 11 | 0.414 8 | 0.599 10 | 0.488 9 | 0.698 8 | 0.444 10 | 0.785 11 | 0.747 10 | 0.440 10 | |
PointContrast_LA_SEM | 0.550 9 | 0.735 9 | 0.676 8 | 0.601 9 | 0.475 9 | 0.794 8 | 0.288 11 | 0.621 10 | 0.378 12 | 0.430 9 | 0.940 8 | 0.303 10 | 0.089 10 | 0.379 10 | 0.580 11 | 0.531 7 | 0.689 9 | 0.422 11 | 0.852 8 | 0.758 8 | 0.468 9 | |
SQN_LA | 0.486 12 | 0.587 11 | 0.649 9 | 0.527 11 | 0.372 12 | 0.718 12 | 0.320 10 | 0.510 12 | 0.393 11 | 0.325 12 | 0.924 12 | 0.290 11 | 0.095 9 | 0.287 11 | 0.607 9 | 0.356 11 | 0.626 12 | 0.416 12 | 0.672 12 | 0.680 13 | 0.359 12 | |
Scratch_LA_SEM | 0.382 13 | 0.389 13 | 0.606 12 | 0.401 13 | 0.303 13 | 0.705 13 | 0.169 13 | 0.460 13 | 0.292 13 | 0.282 13 | 0.939 10 | 0.207 13 | 0.004 12 | 0.147 13 | 0.201 13 | 0.184 13 | 0.592 13 | 0.389 13 | 0.409 13 | 0.714 12 | 0.250 13 | |