This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
Q2E0.721 10.984 10.785 10.684 20.693 20.879 10.563 10.822 10.640 10.659 10.965 20.493 10.147 50.711 10.866 10.631 30.797 10.663 10.932 20.849 10.660 1
ActiveST0.703 20.977 20.776 30.657 50.707 10.874 20.541 20.744 20.605 20.610 20.968 10.442 40.126 60.705 20.785 20.742 10.791 20.586 20.940 10.839 20.645 2
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
WS3D_LA_Sempermissive0.662 30.812 40.762 40.742 10.635 30.828 60.474 30.736 30.588 30.546 30.947 50.450 30.174 40.536 50.752 30.668 20.735 50.583 30.902 60.797 60.573 5
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
GaIA0.638 50.536 120.783 20.651 60.600 50.840 30.413 50.728 40.490 70.520 60.948 40.475 20.299 10.518 60.680 40.629 40.729 60.573 40.906 30.815 40.626 3
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
Viewpoint_BN_LA_AIR0.548 100.747 70.574 130.631 80.456 100.762 110.355 80.639 90.412 90.404 110.940 80.335 90.107 80.277 120.645 50.495 80.666 110.517 90.818 100.740 110.431 11
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
DE-3DLearner LA0.639 40.839 30.723 60.681 30.629 40.839 50.424 40.728 40.538 50.526 40.945 60.427 60.120 70.511 70.643 60.547 60.781 30.566 50.905 40.809 50.607 4
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
LE0.608 60.791 50.726 50.651 60.589 60.779 90.346 90.662 80.493 60.524 50.923 130.430 50.234 30.572 30.638 70.411 100.708 70.533 80.855 70.782 70.508 7
VIBUSpermissive0.586 80.736 80.623 110.664 40.559 70.840 30.358 70.666 70.447 80.429 100.944 70.421 70.000 130.411 90.629 80.614 50.745 40.541 70.848 90.758 80.493 8
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
SQN_LA0.486 120.587 110.649 90.527 110.372 120.718 120.320 100.510 120.393 110.325 120.924 120.290 110.095 90.287 110.607 90.356 110.626 120.416 120.672 120.680 130.359 12
CSC_LA_SEM0.531 110.659 100.638 100.578 100.417 110.775 100.254 120.537 110.396 100.439 80.939 100.284 120.083 110.414 80.599 100.488 90.698 80.444 100.785 110.747 100.440 10
PointContrast_LA_SEM0.550 90.735 90.676 80.601 90.475 90.794 80.288 110.621 100.378 120.430 90.940 80.303 100.089 100.379 100.580 110.531 70.689 90.422 110.852 80.758 80.468 9
One-Thing-One-Click0.594 70.756 60.722 70.494 120.546 80.795 70.371 60.725 60.559 40.488 70.957 30.367 80.261 20.547 40.575 120.225 120.671 100.543 60.904 50.826 30.557 6
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Scratch_LA_SEM0.382 130.389 130.606 120.401 130.303 130.705 130.169 130.460 130.292 130.282 130.939 100.207 130.004 120.147 130.201 130.184 130.592 130.389 130.409 130.714 120.250 13


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
Box2Mask_LA0.465 20.667 20.591 30.773 10.331 20.682 20.029 20.409 20.122 20.284 20.432 10.253 20.466 21.000 10.127 40.806 10.280 30.821 40.291 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
WS3D_LA_Inspermissive0.548 11.000 10.690 10.476 20.406 10.756 10.031 10.733 10.215 10.351 10.415 20.319 10.541 11.000 10.477 10.576 20.557 10.941 20.377 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_INS0.259 40.333 50.286 50.334 40.142 40.485 30.000 30.343 40.010 40.127 30.219 30.005 40.324 30.267 30.226 20.402 50.103 50.994 10.069 4
Scratch_LA_INS0.200 50.667 20.673 20.145 50.100 50.430 40.000 30.314 50.004 50.025 50.099 50.000 50.000 50.143 40.076 50.424 40.198 40.297 50.006 5
CSC_LA_INS0.289 30.667 20.580 40.427 30.202 30.424 50.000 30.384 30.015 30.061 40.180 40.014 30.071 40.119 50.173 30.445 30.390 20.938 30.120 3


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
WS3D_LA_ODpermissive0.344 10.667 10.816 10.593 10.084 10.640 10.054 10.059 20.400 10.166 10.228 10.027 10.317 10.201 10.155 10.735 10.272 10.674 10.100 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_DET0.162 30.167 40.503 20.273 20.004 40.446 20.000 20.030 30.077 40.078 20.049 20.000 30.231 20.113 20.013 40.501 30.075 20.346 30.016 3
CSC_LA_DET0.182 20.667 10.343 40.262 30.016 20.414 30.000 30.098 10.159 20.069 30.044 30.001 20.159 30.072 30.026 30.527 20.072 30.326 40.024 2
Scratch_LA_DET0.148 40.667 10.389 30.083 40.005 30.324 40.000 30.004 40.078 30.041 40.016 40.000 30.124 40.003 40.037 20.443 40.063 40.381 20.006 4


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
WS3D_LR_Sem0.684 10.865 10.761 10.780 10.644 10.810 20.445 10.796 10.596 10.594 10.945 20.456 10.234 10.541 10.793 10.723 10.761 10.618 10.906 10.822 10.598 2
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSG_3DSegNet0.480 40.521 50.715 30.562 20.389 60.693 80.307 40.157 80.501 30.321 80.927 80.219 60.074 80.329 20.485 20.504 20.596 80.458 50.715 40.714 80.418 4
NWSYY0.517 20.725 30.619 60.396 40.455 30.766 50.327 30.570 20.477 50.427 30.943 30.288 20.220 30.274 50.135 30.471 30.697 30.504 20.714 50.767 30.566 3
CSC_LR_SEM0.460 50.472 70.731 20.465 30.398 40.817 10.292 50.442 50.311 80.387 60.939 40.218 70.181 40.302 40.076 40.449 40.743 20.430 70.444 80.737 50.368 7
PointContrast_LR_SEM0.438 70.517 60.659 50.251 60.332 80.783 30.244 80.408 60.411 70.409 40.935 60.206 80.119 70.200 70.048 50.355 60.682 40.414 80.647 60.743 40.391 5
DE-3DLearner LR0.508 30.824 20.530 80.314 50.479 20.746 70.334 20.490 40.508 20.477 20.950 10.269 30.221 20.324 30.029 60.421 50.626 60.490 30.727 30.782 20.620 1
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
Scratch_LR_SEM0.401 80.240 80.674 40.095 80.347 70.763 60.271 70.204 70.449 60.406 50.936 50.220 50.127 60.199 80.004 70.348 80.665 50.477 40.493 70.730 60.366 8
Viewpoint_BN_LR_AIR0.452 60.587 40.569 70.172 70.391 50.769 40.290 60.512 30.501 30.373 70.935 60.251 40.173 50.201 60.003 80.352 70.619 70.454 60.783 20.719 70.390 6


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
WS3D_LR_Ins0.581 11.000 10.667 40.730 10.492 10.782 20.029 10.765 10.287 10.398 20.414 20.183 30.456 11.000 10.514 10.736 10.577 10.975 10.448 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
TWIST+CSC0.421 30.667 30.757 10.333 30.358 30.770 30.008 30.436 20.254 20.361 30.372 30.224 20.378 20.143 20.303 40.643 20.446 30.889 20.242 3
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
InstTeacher3D0.443 21.000 10.617 50.341 20.382 20.785 10.000 40.333 40.158 40.485 10.458 10.420 10.250 30.000 30.384 30.630 30.467 20.875 30.394 2
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
Scratch_LR_INS0.273 60.667 30.567 60.106 50.203 40.685 50.013 20.002 60.130 50.269 50.234 60.129 60.103 50.000 30.063 60.557 50.385 40.753 50.057 6
CSC_LR_INS0.325 40.667 30.698 30.106 40.198 50.708 40.000 40.244 50.194 30.279 40.292 40.179 40.107 40.000 30.446 20.600 40.328 60.693 60.108 4
PointContrast_LR_INS0.298 50.667 30.752 20.005 60.186 60.644 60.000 40.359 30.118 60.223 60.266 50.131 50.012 60.000 30.256 50.550 60.333 50.791 40.073 5


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
WS3D_LR_ODpermissive0.374 10.867 10.797 10.655 10.104 10.678 10.046 10.215 10.406 10.186 10.219 10.034 10.354 10.160 10.101 10.741 10.306 10.679 10.181 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LR_DET0.187 30.667 20.523 20.109 30.027 30.435 20.005 30.013 20.199 20.070 20.035 30.000 40.183 20.033 20.003 40.497 30.078 30.488 20.005 3
CSC_LR_DET0.191 20.667 20.468 30.226 20.036 20.420 30.025 20.010 30.081 30.066 30.045 20.000 20.162 30.010 30.017 20.657 20.109 20.420 30.013 2
Scratch_LR_DET0.076 40.667 20.099 40.015 40.005 40.190 40.000 40.000 40.033 40.007 40.001 40.000 30.000 40.010 40.004 30.094 40.014 40.237 40.000 4