This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
Q2E0.721 10.984 10.785 10.684 20.693 20.879 10.563 10.822 10.640 10.659 10.965 20.493 10.147 50.711 10.866 10.631 30.797 10.663 10.932 20.849 10.660 1
ActiveST0.703 20.977 20.776 30.657 50.707 10.874 20.541 20.744 20.605 20.610 20.968 10.442 40.126 60.705 20.785 20.742 10.791 20.586 20.940 10.839 20.645 2
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
DE-3DLearner LA0.639 40.839 30.723 60.681 30.629 40.839 50.424 40.728 40.538 50.526 40.945 60.427 60.120 70.511 70.643 60.547 60.781 30.566 50.905 40.809 50.607 4
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
VIBUSpermissive0.586 80.736 80.623 110.664 40.559 70.840 30.358 70.666 70.447 80.429 100.944 70.421 70.000 130.411 90.629 80.614 50.745 40.541 70.848 90.758 80.493 8
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
WS3D_LA_Sempermissive0.662 30.812 40.762 40.742 10.635 30.828 60.474 30.736 30.588 30.546 30.947 50.450 30.174 40.536 50.752 30.668 20.735 50.583 30.902 60.797 60.573 5
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
GaIA0.638 50.536 120.783 20.651 60.600 50.840 30.413 50.728 40.490 70.520 60.948 40.475 20.299 10.518 60.680 40.629 40.729 60.573 40.906 30.815 40.626 3
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
LE0.608 60.791 50.726 50.651 60.589 60.779 90.346 90.662 80.493 60.524 50.923 130.430 50.234 30.572 30.638 70.411 100.708 70.533 80.855 70.782 70.508 7
CSC_LA_SEM0.531 110.659 100.638 100.578 100.417 110.775 100.254 120.537 110.396 100.439 80.939 100.284 120.083 110.414 80.599 100.488 90.698 80.444 100.785 110.747 100.440 10
PointContrast_LA_SEM0.550 90.735 90.676 80.601 90.475 90.794 80.288 110.621 100.378 120.430 90.940 80.303 100.089 100.379 100.580 110.531 70.689 90.422 110.852 80.758 80.468 9
One-Thing-One-Click0.594 70.756 60.722 70.494 120.546 80.795 70.371 60.725 60.559 40.488 70.957 30.367 80.261 20.547 40.575 120.225 120.671 100.543 60.904 50.826 30.557 6
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Viewpoint_BN_LA_AIR0.548 100.747 70.574 130.631 80.456 100.762 110.355 80.639 90.412 90.404 110.940 80.335 90.107 80.277 120.645 50.495 80.666 110.517 90.818 100.740 110.431 11
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
SQN_LA0.486 120.587 110.649 90.527 110.372 120.718 120.320 100.510 120.393 110.325 120.924 120.290 110.095 90.287 110.607 90.356 110.626 120.416 120.672 120.680 130.359 12
Scratch_LA_SEM0.382 130.389 130.606 120.401 130.303 130.705 130.169 130.460 130.292 130.282 130.939 100.207 130.004 120.147 130.201 130.184 130.592 130.389 130.409 130.714 120.250 13


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
Box2Mask_LA0.235 20.407 20.199 40.427 10.107 20.414 20.007 20.229 30.022 20.098 20.226 20.152 10.261 20.492 20.039 40.427 10.113 30.463 40.150 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
WS3D_LA_Inspermissive0.336 10.630 10.386 10.242 20.173 10.575 10.007 10.550 10.050 10.164 10.232 10.127 20.424 10.614 10.198 10.420 20.314 10.771 10.164 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LA_INS0.159 30.343 30.247 30.226 30.063 30.264 50.000 30.268 20.004 30.018 40.064 40.007 30.009 40.041 50.091 20.279 30.194 20.712 20.037 3
PointContrast_LA_INS0.124 40.037 50.109 50.085 40.052 40.287 30.000 30.219 40.001 40.040 30.104 30.002 40.074 30.211 30.055 30.239 40.036 50.661 30.020 4
Scratch_LA_INS0.089 50.306 40.319 20.025 50.035 50.274 40.000 30.157 50.001 50.006 50.031 50.000 50.000 50.095 40.017 50.172 50.077 40.094 50.002 5


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
WS3D_LA_ODpermissive0.341 11.000 10.629 10.426 10.070 10.608 10.063 10.176 10.503 10.132 10.084 10.001 10.337 10.220 10.103 10.628 10.282 10.739 10.131 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_DET0.135 20.667 20.296 30.145 20.002 30.330 30.000 40.000 30.050 30.049 20.023 20.000 30.002 40.006 40.034 30.472 20.052 20.285 40.011 2
CSC_LA_DET0.135 20.444 30.336 20.029 40.001 40.356 20.008 20.000 20.011 40.045 30.010 40.000 20.032 20.011 30.043 20.458 30.028 30.602 20.010 3
Scratch_LA_DET0.098 40.167 40.253 40.074 30.002 20.257 40.004 30.000 40.080 20.038 40.013 30.000 30.006 30.143 20.002 40.243 40.017 40.473 30.001 4


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
WS3D_LR_Sem0.685 10.871 10.769 10.779 10.647 10.806 10.453 10.802 10.577 10.588 10.945 10.460 10.223 10.539 10.793 10.732 10.766 10.614 10.904 10.823 10.604 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
NWSYY0.286 20.000 20.515 40.322 60.247 20.618 20.219 30.304 50.174 80.268 40.926 30.117 20.162 50.065 80.000 20.079 50.514 20.345 40.028 20.701 20.125 2
CSC_LR_SEM0.270 30.000 20.528 30.331 50.139 70.535 70.118 80.326 40.222 30.292 30.921 40.089 60.163 40.129 20.000 20.131 30.463 30.278 80.000 30.699 30.033 7
CSG_3DSegNet0.258 50.000 20.335 80.368 30.169 60.549 60.229 20.158 80.182 70.208 80.898 80.105 30.190 20.093 60.000 20.093 40.448 40.342 50.000 30.679 60.119 3
PointContrast_LR_SEM0.253 70.000 20.412 70.347 40.137 80.564 40.140 60.361 30.187 60.249 50.914 50.092 40.055 70.102 50.000 20.048 60.392 50.302 70.000 30.697 50.056 5
DE-3DLearner LR0.263 40.000 20.547 20.235 80.184 50.566 30.165 50.249 60.196 40.309 20.938 20.070 80.186 30.069 70.000 20.000 80.368 60.356 20.000 30.698 40.118 4
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
Viewpoint_BN_LR_AIR0.256 60.000 20.479 50.377 20.204 40.551 50.205 40.219 70.235 20.224 70.903 70.092 40.088 60.122 30.000 20.003 70.354 70.354 30.000 30.676 70.034 6
Scratch_LR_SEM0.251 80.000 20.457 60.238 70.205 30.528 80.123 70.419 20.195 50.246 60.905 60.086 70.048 80.103 40.000 20.132 20.331 80.308 60.000 30.675 80.015 8


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
WS3D_LR_Ins0.347 10.593 10.448 10.322 10.224 10.610 20.004 20.488 10.144 10.187 10.311 10.121 10.342 10.424 10.198 10.473 10.333 10.773 10.249 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
TWIST+CSC0.108 30.000 20.237 30.027 20.055 20.531 30.011 10.290 30.001 40.103 30.099 30.011 50.113 20.000 20.000 50.322 20.143 20.000 20.000 5
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
InstTeacher3D0.117 20.000 20.368 20.000 50.050 30.616 10.000 30.314 20.001 50.187 20.111 20.116 20.007 50.000 20.016 20.216 30.100 40.000 20.000 4
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
Scratch_LR_INS0.054 60.000 20.153 60.000 50.011 50.350 60.000 30.108 50.001 30.042 50.010 60.001 60.001 60.000 20.000 40.153 40.141 30.000 20.000 2
CSC_LR_INS0.056 50.000 20.177 50.006 40.009 60.370 50.000 30.070 60.003 20.059 40.054 40.052 30.010 40.000 20.004 30.122 50.072 60.000 20.000 3
PointContrast_LR_INS0.057 40.000 20.184 40.010 30.014 40.400 40.000 30.127 40.000 60.028 60.038 50.021 40.010 30.000 20.000 50.108 60.085 50.000 20.000 5


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
WS3D_LR_ODpermissive0.374 10.867 10.797 10.655 10.104 10.678 10.046 10.215 10.406 10.186 10.219 10.034 10.354 10.160 10.101 10.741 10.306 10.679 10.181 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LR_DET0.191 20.667 20.468 30.226 20.036 20.420 30.025 20.010 30.081 30.066 30.045 20.000 20.162 30.010 30.017 20.657 20.109 20.420 30.013 2
PointContrast_LR_DET0.187 30.667 20.523 20.109 30.027 30.435 20.005 30.013 20.199 20.070 20.035 30.000 40.183 20.033 20.003 40.497 30.078 30.488 20.005 3
Scratch_LR_DET0.076 40.667 20.099 40.015 40.005 40.190 40.000 40.000 40.033 40.007 40.001 40.000 30.000 40.010 40.004 30.094 40.014 40.237 40.000 4