This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
Q2E0.721 10.984 10.785 10.684 20.693 20.879 10.563 10.822 10.640 10.659 10.965 20.493 10.147 50.711 10.866 10.631 30.797 10.663 10.932 20.849 10.660 1
ActiveST0.703 20.977 20.776 30.657 50.707 10.874 20.541 20.744 20.605 20.610 20.968 10.442 40.126 60.705 20.785 20.742 10.791 20.586 20.940 10.839 20.645 2
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
GaIA0.638 50.536 120.783 20.651 60.600 50.840 30.413 50.728 40.490 70.520 60.948 40.475 20.299 10.518 60.680 40.629 40.729 60.573 40.906 30.815 40.626 3
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
DE-3DLearner LA0.639 40.839 30.723 60.681 30.629 40.839 50.424 40.728 40.538 50.526 40.945 60.427 60.120 70.511 70.643 60.547 60.781 30.566 50.905 40.809 50.607 4
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
WS3D_LA_Sempermissive0.662 30.812 40.762 40.742 10.635 30.828 60.474 30.736 30.588 30.546 30.947 50.450 30.174 40.536 50.752 30.668 20.735 50.583 30.902 60.797 60.573 5
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
One-Thing-One-Click0.594 70.756 60.722 70.494 120.546 80.795 70.371 60.725 60.559 40.488 70.957 30.367 80.261 20.547 40.575 120.225 120.671 100.543 60.904 50.826 30.557 6
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
LE0.608 60.791 50.726 50.651 60.589 60.779 90.346 90.662 80.493 60.524 50.923 130.430 50.234 30.572 30.638 70.411 100.708 70.533 80.855 70.782 70.508 7
VIBUSpermissive0.586 80.736 80.623 110.664 40.559 70.840 30.358 70.666 70.447 80.429 100.944 70.421 70.000 130.411 90.629 80.614 50.745 40.541 70.848 90.758 80.493 8
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
PointContrast_LA_SEM0.550 90.735 90.676 80.601 90.475 90.794 80.288 110.621 100.378 120.430 90.940 80.303 100.089 100.379 100.580 110.531 70.689 90.422 110.852 80.758 80.468 9
CSC_LA_SEM0.531 110.659 100.638 100.578 100.417 110.775 100.254 120.537 110.396 100.439 80.939 100.284 120.083 110.414 80.599 100.488 90.698 80.444 100.785 110.747 100.440 10
Viewpoint_BN_LA_AIR0.548 100.747 70.574 130.631 80.456 100.762 110.355 80.639 90.412 90.404 110.940 80.335 90.107 80.277 120.645 50.495 80.666 110.517 90.818 100.740 110.431 11
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
SQN_LA0.486 120.587 110.649 90.527 110.372 120.718 120.320 100.510 120.393 110.325 120.924 120.290 110.095 90.287 110.607 90.356 110.626 120.416 120.672 120.680 130.359 12
Scratch_LA_SEM0.382 130.389 130.606 120.401 130.303 130.705 130.169 130.460 130.292 130.282 130.939 100.207 130.004 120.147 130.201 130.184 130.592 130.389 130.409 130.714 120.250 13


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
WS3D_LA_Inspermissive0.719 11.000 10.834 20.639 30.620 20.832 10.477 20.782 10.608 20.572 10.592 20.506 10.587 11.000 10.822 10.764 20.658 10.994 20.659 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Box2Mask_LA0.685 21.000 10.994 10.847 10.635 10.787 20.518 10.544 30.741 10.561 20.598 10.396 20.541 21.000 10.258 50.912 10.531 30.869 40.591 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
CSC_LA_INS0.496 31.000 10.697 40.692 20.494 30.563 50.272 30.655 20.239 40.309 40.377 40.024 40.216 40.466 40.369 30.724 40.585 20.938 30.311 3
PointContrast_LA_INS0.474 40.655 50.452 50.612 40.382 40.616 30.098 40.434 50.340 30.422 30.445 30.095 30.523 30.493 30.760 20.701 50.261 50.994 10.244 4
Scratch_LA_INS0.357 50.667 40.711 30.598 50.319 50.593 40.000 50.452 40.229 50.190 50.222 50.000 50.037 50.160 50.349 40.751 30.344 40.686 50.114 5


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
WS3D_LA_ODpermissive0.538 11.000 10.880 10.653 10.289 10.832 10.393 10.293 10.583 10.426 10.363 10.079 10.419 10.357 10.534 10.831 10.433 10.894 10.429 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_DET0.246 20.667 20.497 30.265 30.014 20.580 30.005 40.006 40.169 30.148 30.140 20.002 30.005 40.353 20.288 20.598 30.128 20.488 40.074 2
CSC_LA_DET0.239 30.444 30.405 40.269 20.013 40.595 20.029 20.024 20.150 40.178 20.094 30.029 20.089 30.296 40.220 30.624 20.076 40.707 20.066 3
Scratch_LA_DET0.206 40.333 40.500 20.183 40.014 30.504 40.021 30.018 30.315 20.100 40.046 40.002 40.090 20.348 30.112 40.376 40.109 30.613 30.029 4


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
NWSYY0.678 20.779 40.782 10.774 20.637 20.827 40.491 10.736 20.597 20.561 20.947 20.438 20.206 30.610 10.758 20.667 20.773 10.594 30.880 20.824 10.673 1
DE-3DLearner LR0.608 30.853 20.689 50.593 70.483 50.830 20.466 20.652 30.528 40.482 30.954 10.288 60.250 10.448 40.595 40.532 50.748 30.503 60.822 40.806 30.647 2
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
WS3D_LR_Sem0.682 10.863 10.765 20.782 10.648 10.803 70.438 30.793 10.607 10.589 10.944 30.455 10.223 20.536 20.768 10.726 10.758 20.623 10.906 10.821 20.596 3
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSG_3DSegNet0.570 50.717 60.730 40.697 40.521 30.823 50.377 80.419 80.531 30.452 40.935 80.316 30.147 50.359 70.551 70.551 40.692 70.513 50.797 60.764 60.508 4
PointContrast_LR_SEM0.555 70.711 70.668 60.622 60.425 70.830 20.433 40.552 60.273 80.440 60.938 60.287 70.096 70.470 30.576 50.612 30.687 80.438 80.781 80.785 40.474 5
Scratch_LR_SEM0.531 80.750 50.666 70.553 80.409 80.816 60.387 60.487 70.285 70.368 80.938 60.310 40.074 80.388 60.564 60.468 70.698 60.448 70.804 50.761 70.454 6
Viewpoint_BN_LR_AIR0.566 60.780 30.659 80.677 50.484 40.799 80.419 50.636 40.480 60.432 70.940 50.238 80.124 60.396 50.609 30.432 80.735 50.527 40.787 70.752 80.423 7
CSC_LR_SEM0.575 40.671 80.740 30.727 30.445 60.847 10.380 70.602 50.512 50.447 50.942 40.291 50.184 40.353 80.468 80.508 60.745 40.602 20.855 30.765 50.420 8


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
WS3D_LR_Ins0.773 11.000 10.885 30.783 30.738 10.840 40.402 40.793 10.804 10.605 20.676 10.636 20.593 21.000 10.805 30.894 20.761 11.000 10.696 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
InstTeacher3D0.738 21.000 10.770 60.714 40.583 20.885 10.608 10.636 20.649 20.654 10.612 20.637 10.541 31.000 10.824 10.896 10.639 31.000 10.634 2
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
Scratch_LR_INS0.584 50.667 50.798 50.604 60.512 50.814 60.292 50.507 50.511 30.506 50.423 50.306 50.485 60.714 30.639 50.866 40.565 50.944 40.352 3
TWIST+CSC0.669 31.000 10.885 20.784 20.541 40.862 30.541 20.574 30.502 40.589 30.517 30.462 30.500 50.714 30.749 40.822 50.708 20.944 40.352 4
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
PointContrast_LR_INS0.573 60.667 50.818 40.831 10.558 30.815 50.273 60.550 40.464 50.583 40.414 60.152 60.527 40.429 60.543 60.873 30.552 60.944 40.320 5
CSC_LR_INS0.615 41.000 10.933 10.604 50.436 60.865 20.469 30.438 60.296 60.425 60.478 40.333 40.612 10.688 50.824 10.774 60.590 41.000 10.309 6


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
WS3D_LR_ODpermissive0.551 10.917 20.878 10.752 10.308 20.834 10.442 10.266 10.588 10.442 10.423 10.138 10.463 20.450 20.446 10.842 10.462 10.839 30.430 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LR_DET0.474 21.000 10.865 20.421 20.259 30.802 30.153 30.198 30.399 30.332 20.277 30.044 20.538 10.491 10.404 30.808 20.364 20.889 10.286 2
PointContrast_LR_DET0.421 30.667 40.730 30.378 30.308 10.808 20.179 20.206 20.395 40.285 30.318 20.030 30.373 30.304 30.414 20.765 30.307 30.856 20.250 3
Scratch_LR_DET0.302 40.667 30.687 40.375 40.199 40.704 40.085 40.093 40.456 20.167 40.170 40.005 40.090 40.049 40.353 40.555 40.257 40.414 40.103 4