This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Q2E0.721 10.984 10.785 10.684 20.693 20.879 10.563 10.822 10.640 10.659 10.965 20.493 10.147 50.711 10.866 10.631 30.797 10.663 10.932 20.849 10.660 1
ActiveST0.703 20.977 20.776 30.657 50.707 10.874 20.541 20.744 20.605 20.610 20.968 10.442 40.126 60.705 20.785 20.742 10.791 20.586 20.940 10.839 20.645 2
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
WS3D_LA_Sempermissive0.662 30.812 40.762 40.742 10.635 30.828 60.474 30.736 30.588 30.546 30.947 50.450 30.174 40.536 50.752 30.668 20.735 50.583 30.902 60.797 60.573 5
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
DE-3DLearner LA0.639 40.839 30.723 60.681 30.629 40.839 50.424 40.728 40.538 50.526 40.945 60.427 60.120 70.511 70.643 60.547 60.781 30.566 50.905 40.809 50.607 4
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
LE0.608 60.791 50.726 50.651 60.589 60.779 90.346 90.662 80.493 60.524 50.923 130.430 50.234 30.572 30.638 70.411 100.708 70.533 80.855 70.782 70.508 7
GaIA0.638 50.536 120.783 20.651 60.600 50.840 30.413 50.728 40.490 70.520 60.948 40.475 20.299 10.518 60.680 40.629 40.729 60.573 40.906 30.815 40.626 3
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
One-Thing-One-Click0.594 70.756 60.722 70.494 120.546 80.795 70.371 60.725 60.559 40.488 70.957 30.367 80.261 20.547 40.575 120.225 120.671 100.543 60.904 50.826 30.557 6
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
CSC_LA_SEM0.531 110.659 100.638 100.578 100.417 110.775 100.254 120.537 110.396 100.439 80.939 100.284 120.083 110.414 80.599 100.488 90.698 80.444 100.785 110.747 100.440 10
PointContrast_LA_SEM0.550 90.735 90.676 80.601 90.475 90.794 80.288 110.621 100.378 120.430 90.940 80.303 100.089 100.379 100.580 110.531 70.689 90.422 110.852 80.758 80.468 9
VIBUSpermissive0.586 80.736 80.623 110.664 40.559 70.840 30.358 70.666 70.447 80.429 100.944 70.421 70.000 130.411 90.629 80.614 50.745 40.541 70.848 90.758 80.493 8
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
Viewpoint_BN_LA_AIR0.548 100.747 70.574 130.631 80.456 100.762 110.355 80.639 90.412 90.404 110.940 80.335 90.107 80.277 120.645 50.495 80.666 110.517 90.818 100.740 110.431 11
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
SQN_LA0.486 120.587 110.649 90.527 110.372 120.718 120.320 100.510 120.393 110.325 120.924 120.290 110.095 90.287 110.607 90.356 110.626 120.416 120.672 120.680 130.359 12
Scratch_LA_SEM0.382 130.389 130.606 120.401 130.303 130.705 130.169 130.460 130.292 130.282 130.939 100.207 130.004 120.147 130.201 130.184 130.592 130.389 130.409 130.714 120.250 13


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_Inspermissive0.719 11.000 10.834 20.639 30.620 20.832 10.477 20.782 10.608 20.572 10.592 20.506 10.587 11.000 10.822 10.764 20.658 10.994 20.659 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Box2Mask_LA0.685 21.000 10.994 10.847 10.635 10.787 20.518 10.544 30.741 10.561 20.598 10.396 20.541 21.000 10.258 50.912 10.531 30.869 40.591 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
PointContrast_LA_INS0.474 40.655 50.452 50.612 40.382 40.616 30.098 40.434 50.340 30.422 30.445 30.095 30.523 30.493 30.760 20.701 50.261 50.994 10.244 4
CSC_LA_INS0.496 31.000 10.697 40.692 20.494 30.563 50.272 30.655 20.239 40.309 40.377 40.024 40.216 40.466 40.369 30.724 40.585 20.938 30.311 3
Scratch_LA_INS0.357 50.667 40.711 30.598 50.319 50.593 40.000 50.452 40.229 50.190 50.222 50.000 50.037 50.160 50.349 40.751 30.344 40.686 50.114 5


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_ODpermissive0.538 11.000 10.880 10.653 10.289 10.832 10.393 10.293 10.583 10.426 10.363 10.079 10.419 10.357 10.534 10.831 10.433 10.894 10.429 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LA_DET0.239 30.444 30.405 40.269 20.013 40.595 20.029 20.024 20.150 40.178 20.094 30.029 20.089 30.296 40.220 30.624 20.076 40.707 20.066 3
PointContrast_LA_DET0.246 20.667 20.497 30.265 30.014 20.580 30.005 40.006 40.169 30.148 30.140 20.002 30.005 40.353 20.288 20.598 30.128 20.488 40.074 2
Scratch_LA_DET0.206 40.333 40.500 20.183 40.014 30.504 40.021 30.018 30.315 20.100 40.046 40.002 40.090 20.348 30.112 40.376 40.109 30.613 30.029 4


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_Sem0.684 10.865 10.761 10.780 10.644 10.810 20.445 10.796 10.596 10.594 10.945 20.456 10.234 10.541 10.793 10.723 10.761 10.618 10.906 10.822 10.598 2
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
DE-3DLearner LR0.508 30.824 20.530 80.314 50.479 20.746 70.334 20.490 40.508 20.477 20.950 10.269 30.221 20.324 30.029 60.421 50.626 60.490 30.727 30.782 20.620 1
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
NWSYY0.517 20.725 30.619 60.396 40.455 30.766 50.327 30.570 20.477 50.427 30.943 30.288 20.220 30.274 50.135 30.471 30.697 30.504 20.714 50.767 30.566 3
PointContrast_LR_SEM0.438 70.517 60.659 50.251 60.332 80.783 30.244 80.408 60.411 70.409 40.935 60.206 80.119 70.200 70.048 50.355 60.682 40.414 80.647 60.743 40.391 5
Scratch_LR_SEM0.401 80.240 80.674 40.095 80.347 70.763 60.271 70.204 70.449 60.406 50.936 50.220 50.127 60.199 80.004 70.348 80.665 50.477 40.493 70.730 60.366 8
CSC_LR_SEM0.460 50.472 70.731 20.465 30.398 40.817 10.292 50.442 50.311 80.387 60.939 40.218 70.181 40.302 40.076 40.449 40.743 20.430 70.444 80.737 50.368 7
Viewpoint_BN_LR_AIR0.452 60.587 40.569 70.172 70.391 50.769 40.290 60.512 30.501 30.373 70.935 60.251 40.173 50.201 60.003 80.352 70.619 70.454 60.783 20.719 70.390 6
CSG_3DSegNet0.480 40.521 50.715 30.562 20.389 60.693 80.307 40.157 80.501 30.321 80.927 80.219 60.074 80.329 20.485 20.504 20.596 80.458 50.715 40.714 80.418 4


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
InstTeacher3D0.563 31.000 10.729 50.567 20.577 30.842 30.300 30.412 40.486 50.648 10.536 20.541 10.250 30.000 30.529 50.727 60.555 30.875 30.552 2
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
TWIST+CSC0.592 21.000 10.842 10.486 40.586 20.859 10.445 10.436 20.649 20.546 20.486 30.331 40.455 20.143 20.630 40.783 40.635 20.938 20.408 3
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
WS3D_LR_Ins0.726 11.000 10.797 30.730 10.669 10.851 20.410 20.765 10.693 10.528 30.583 10.388 30.638 11.000 10.880 10.874 10.653 10.975 10.631 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Scratch_LR_INS0.419 60.667 40.696 60.133 60.497 40.787 60.200 50.037 60.543 40.489 40.351 60.208 60.139 50.000 30.471 60.757 50.531 40.810 50.230 6
CSC_LR_INS0.492 40.667 40.810 20.513 30.487 50.806 40.174 60.290 50.634 30.470 50.398 40.405 20.240 40.000 30.706 20.800 20.465 50.695 60.292 4
PointContrast_LR_INS0.438 50.667 40.795 40.169 50.471 60.792 50.250 40.413 30.327 60.389 60.376 50.236 50.043 60.000 30.647 30.789 30.458 60.829 40.239 5


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_ODpermissive0.550 10.867 10.892 10.728 10.346 10.837 10.384 10.305 10.539 10.444 10.425 10.155 10.464 10.294 10.507 10.865 10.486 10.897 10.461 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LR_DET0.361 30.667 30.695 30.358 30.156 30.757 20.070 30.186 20.432 20.253 20.225 30.016 20.322 30.269 20.156 40.730 30.199 20.793 30.210 2
CSC_LR_DET0.365 20.722 20.717 20.379 20.238 20.747 30.089 20.131 30.250 40.179 30.259 20.006 40.391 20.090 40.300 20.837 20.197 30.877 20.153 3
Scratch_LR_DET0.215 40.667 30.238 40.178 40.079 40.577 40.012 40.022 40.251 30.104 40.027 40.007 30.013 40.229 30.218 30.498 40.156 40.564 40.035 4