This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
ActiveST0.748 10.984 10.804 30.759 50.720 20.849 50.516 20.791 30.670 10.654 20.974 10.495 50.382 10.811 10.828 50.787 10.780 60.640 20.952 10.861 30.701 1
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
Q2E0.743 20.984 10.803 40.770 10.725 10.881 10.572 10.806 20.663 20.665 10.972 20.506 30.305 20.652 60.829 40.761 20.809 20.660 10.951 20.862 20.682 2
GaIA0.685 80.759 100.834 10.759 50.650 80.859 30.427 100.694 100.524 100.575 70.948 60.537 10.304 30.534 120.853 20.678 70.820 10.581 100.914 40.828 50.626 8
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
One-Thing-One-Click0.694 40.760 90.815 20.706 130.684 50.840 60.492 40.701 90.557 70.596 50.972 20.497 40.281 40.709 20.757 80.689 60.789 40.600 70.907 70.864 10.671 4
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
VIBUSpermissive0.691 60.860 50.731 120.738 100.672 70.860 20.470 50.766 50.625 30.547 110.949 50.491 60.255 50.693 40.715 100.712 40.778 70.597 80.911 50.816 90.635 7
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
WS3D_LA_Sempermissive0.694 40.895 30.743 100.767 20.675 60.826 100.496 30.817 10.612 50.613 30.947 100.460 90.254 60.558 110.811 70.710 50.776 80.616 30.874 110.822 60.603 12
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
LE0.688 70.856 70.779 60.754 70.687 40.834 80.438 80.732 70.536 90.577 60.948 60.508 20.248 70.699 30.831 30.636 80.752 110.586 90.895 90.821 70.643 6
SQN_LA0.598 130.741 110.681 130.766 30.482 130.805 120.389 130.658 130.499 110.437 130.936 130.386 130.243 80.422 130.663 130.552 130.700 130.519 130.809 130.750 130.515 13
PointContrast_LA_SEM0.653 110.717 120.775 70.754 70.626 110.804 130.391 120.689 110.485 130.572 90.945 120.448 100.232 90.603 80.813 60.591 120.775 90.537 120.885 100.816 90.608 10
Viewpoint_BN_LA_AIR0.669 90.847 80.732 110.724 110.613 120.827 90.443 70.742 60.562 60.551 100.947 100.441 120.218 100.650 70.753 90.621 90.765 100.601 60.905 80.814 120.618 9
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
DE-3DLearner LA0.709 30.877 40.772 80.744 90.694 30.836 70.453 60.787 40.623 40.598 40.953 40.490 70.216 110.682 50.879 10.727 30.802 30.604 50.922 30.845 40.676 3
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
CSC_LA_SEM0.665 100.857 60.756 90.763 40.647 90.852 40.432 90.684 120.543 80.514 120.948 60.469 80.179 120.599 90.702 110.620 100.789 40.614 40.911 50.815 110.607 11
Scratch_LA_SEM0.643 120.699 130.793 50.718 120.636 100.816 110.411 110.707 80.490 120.574 80.948 60.448 100.173 130.559 100.689 120.604 110.722 120.556 110.853 120.820 80.651 5


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_Inspermissive0.793 11.000 10.894 50.845 40.808 10.830 20.564 10.819 10.771 20.604 20.674 10.635 10.592 31.000 10.912 10.815 40.760 11.000 10.748 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Box2Mask_LA0.755 21.000 10.943 10.860 30.694 40.872 10.505 40.681 20.943 10.695 10.666 20.431 20.600 10.857 20.580 50.875 30.741 21.000 10.648 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
CSC_LA_INS0.702 31.000 10.909 20.867 10.703 30.704 30.550 20.649 30.653 30.506 40.572 30.245 30.500 50.835 30.824 20.921 10.697 31.000 10.507 3
Scratch_LA_INS0.662 40.903 50.900 40.867 10.711 20.612 40.550 20.591 40.427 50.487 50.567 40.180 40.596 20.777 40.794 30.812 50.656 50.997 40.486 5
PointContrast_LA_INS0.645 51.000 10.905 30.798 50.659 50.607 50.315 50.470 50.477 40.547 30.544 50.173 50.592 30.735 50.687 40.910 20.692 40.997 40.494 4


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_ODpermissive0.538 11.000 10.880 10.653 10.289 10.832 10.393 10.293 10.583 10.426 10.363 10.079 10.419 10.357 10.534 10.831 10.433 10.894 10.429 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LA_DET0.239 30.444 30.405 40.269 20.013 40.595 20.029 20.024 20.150 40.178 20.094 30.029 20.089 30.296 40.220 30.624 20.076 40.707 20.066 3
PointContrast_LA_DET0.246 20.667 20.497 30.265 30.014 20.580 30.005 40.006 40.169 30.148 30.140 20.002 30.005 40.353 20.288 20.598 30.128 20.488 40.074 2
Scratch_LA_DET0.206 40.333 40.500 20.183 40.014 30.504 40.021 30.018 30.315 20.100 40.046 40.002 40.090 20.348 30.112 40.376 40.109 30.613 30.029 4


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
DE-3DLearner LR0.608 30.853 20.689 50.593 70.483 50.830 20.466 20.652 30.528 40.482 30.954 10.288 60.250 10.448 40.595 40.532 50.748 30.503 60.822 40.806 30.647 2
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
WS3D_LR_Sem0.682 10.863 10.765 20.782 10.648 10.803 70.438 30.793 10.607 10.589 10.944 30.455 10.223 20.536 20.768 10.726 10.758 20.623 10.906 10.821 20.596 3
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
NWSYY0.678 20.779 40.782 10.774 20.637 20.827 40.491 10.736 20.597 20.561 20.947 20.438 20.206 30.610 10.758 20.667 20.773 10.594 30.880 20.824 10.673 1
CSC_LR_SEM0.575 40.671 80.740 30.727 30.445 60.847 10.380 70.602 50.512 50.447 50.942 40.291 50.184 40.353 80.468 80.508 60.745 40.602 20.855 30.765 50.420 8
CSG_3DSegNet0.570 50.717 60.730 40.697 40.521 30.823 50.377 80.419 80.531 30.452 40.935 80.316 30.147 50.359 70.551 70.551 40.692 70.513 50.797 60.764 60.508 4
Viewpoint_BN_LR_AIR0.566 60.780 30.659 80.677 50.484 40.799 80.419 50.636 40.480 60.432 70.940 50.238 80.124 60.396 50.609 30.432 80.735 50.527 40.787 70.752 80.423 7
PointContrast_LR_SEM0.555 70.711 70.668 60.622 60.425 70.830 20.433 40.552 60.273 80.440 60.938 60.287 70.096 70.470 30.576 50.612 30.687 80.438 80.781 80.785 40.474 5
Scratch_LR_SEM0.531 80.750 50.666 70.553 80.409 80.816 60.387 60.487 70.285 70.368 80.938 60.310 40.074 80.388 60.564 60.468 70.698 60.448 70.804 50.761 70.454 6


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
InstTeacher3D0.738 21.000 10.770 60.714 40.583 20.885 10.608 10.636 20.649 20.654 10.612 20.637 10.541 31.000 10.824 10.896 10.639 31.000 10.634 2
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
WS3D_LR_Ins0.773 11.000 10.885 30.783 30.738 10.840 40.402 40.793 10.804 10.605 20.676 10.636 20.593 21.000 10.805 30.894 20.761 11.000 10.696 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
TWIST+CSC0.669 31.000 10.885 20.784 20.541 40.862 30.541 20.574 30.502 40.589 30.517 30.462 30.500 50.714 30.749 40.822 50.708 20.944 40.352 4
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
CSC_LR_INS0.615 41.000 10.933 10.604 50.436 60.865 20.469 30.438 60.296 60.425 60.478 40.333 40.612 10.688 50.824 10.774 60.590 41.000 10.309 6
Scratch_LR_INS0.584 50.667 50.798 50.604 60.512 50.814 60.292 50.507 50.511 30.506 50.423 50.306 50.485 60.714 30.639 50.866 40.565 50.944 40.352 3
PointContrast_LR_INS0.573 60.667 50.818 40.831 10.558 30.815 50.273 60.550 40.464 50.583 40.414 60.152 60.527 40.429 60.543 60.873 30.552 60.944 40.320 5


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_ODpermissive0.550 10.867 10.892 10.728 10.346 10.837 10.384 10.305 10.539 10.444 10.425 10.155 10.464 10.294 10.507 10.865 10.486 10.897 10.461 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LR_DET0.361 30.667 30.695 30.358 30.156 30.757 20.070 30.186 20.432 20.253 20.225 30.016 20.322 30.269 20.156 40.730 30.199 20.793 30.210 2
Scratch_LR_DET0.215 40.667 30.238 40.178 40.079 40.577 40.012 40.022 40.251 30.104 40.027 40.007 30.013 40.229 30.218 30.498 40.156 40.564 40.035 4
CSC_LR_DET0.365 20.722 20.717 20.379 20.238 20.747 30.089 20.131 30.250 40.179 30.259 20.006 40.391 20.090 40.300 20.837 20.197 30.877 20.153 3