This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DE-3DLearner LA0.695 30.897 30.784 20.728 50.697 30.846 40.441 70.770 30.615 20.585 30.951 40.504 10.232 40.672 30.760 40.655 40.772 50.599 30.877 70.834 40.678 2
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
Q2E0.739 10.984 10.797 10.761 20.716 10.884 10.588 10.843 10.589 30.656 10.971 20.487 20.271 20.772 10.807 20.726 20.795 20.630 10.945 20.856 10.693 1
GaIA0.643 70.704 110.776 30.670 100.597 90.842 50.382 90.688 90.413 120.556 40.950 50.471 30.334 10.478 100.728 60.640 50.787 40.557 70.937 30.812 60.531 11
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
VIBUSpermissive0.651 60.868 40.728 110.675 90.624 70.861 30.247 130.734 60.561 50.520 80.948 60.464 40.216 60.670 40.742 50.589 90.746 70.579 40.877 70.800 70.568 6
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
One-Thing-One-Click0.642 80.725 100.735 70.717 60.635 60.829 60.457 50.639 110.421 110.552 60.967 30.460 50.240 30.558 70.788 30.621 60.720 80.477 110.915 50.842 30.539 8
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
ActiveST0.725 20.980 20.764 40.753 30.699 20.863 20.521 20.773 20.671 10.625 20.974 10.456 60.182 90.721 20.874 10.746 10.808 10.628 20.960 10.846 20.664 3
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
LE0.652 50.816 70.760 50.747 40.648 50.807 80.455 60.765 40.517 70.523 70.941 110.452 70.190 80.586 50.691 70.525 110.762 60.552 80.930 40.795 90.580 4
WS3D_LA_Sempermissive0.670 40.842 60.732 80.825 10.657 40.794 100.506 30.762 50.584 40.553 50.947 70.451 80.219 50.585 60.652 80.670 30.791 30.570 50.857 110.816 50.579 5
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Viewpoint_BN_LA_AIR0.623 90.812 80.743 60.654 110.579 110.800 90.462 40.713 70.533 60.516 90.944 80.434 90.215 70.437 110.521 120.601 70.720 80.563 60.884 60.800 70.534 10
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
CSC_LA_SEM0.612 110.747 90.731 90.679 80.603 80.815 70.400 80.648 100.453 90.481 110.944 80.421 100.173 100.504 80.623 100.588 100.690 120.545 90.877 70.778 110.541 7
PointContrast_LA_SEM0.614 100.844 50.731 90.681 70.590 100.791 110.348 110.689 80.503 80.502 100.942 100.361 110.154 120.484 90.624 90.591 80.708 100.524 100.874 100.793 100.536 9
SQN_LA0.542 120.568 130.674 130.618 130.462 120.772 120.351 100.567 120.443 100.378 130.931 130.335 120.173 100.392 120.623 100.455 130.688 130.466 120.769 130.720 130.450 12
Scratch_LA_SEM0.524 130.640 120.690 120.636 120.442 130.756 130.326 120.544 130.365 130.396 120.940 120.284 130.085 130.333 130.479 130.502 120.696 110.453 130.785 120.746 120.372 13


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_Inspermissive0.730 11.000 10.939 20.703 30.638 20.822 10.464 30.756 10.727 20.580 20.601 10.545 10.530 10.857 20.819 20.856 20.686 10.991 30.623 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Box2Mask_LA0.695 21.000 10.996 10.798 10.561 40.801 20.579 10.684 20.745 10.637 10.523 20.387 20.505 41.000 10.310 50.727 40.658 20.979 40.622 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
CSC_LA_INS0.620 31.000 10.699 50.623 40.665 10.673 30.541 20.552 40.150 50.520 30.499 30.203 30.529 20.857 20.793 30.865 10.549 30.997 20.449 4
PointContrast_LA_INS0.603 41.000 10.773 40.576 50.613 30.666 40.156 50.683 30.385 30.499 40.495 40.192 40.521 30.618 40.882 10.843 30.528 40.957 50.469 3
Scratch_LA_INS0.501 50.667 50.796 30.711 20.560 50.607 50.198 40.324 50.253 40.361 50.346 50.038 50.415 50.576 50.630 40.725 50.505 51.000 10.303 5


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_ODpermissive0.538 11.000 10.880 10.653 10.289 10.832 10.393 10.293 10.583 10.426 10.363 10.079 10.419 10.357 10.534 10.831 10.433 10.894 10.429 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_DET0.246 20.667 20.497 30.265 30.014 20.580 30.005 40.006 40.169 30.148 30.140 20.002 30.005 40.353 20.288 20.598 30.128 20.488 40.074 2
CSC_LA_DET0.239 30.444 30.405 40.269 20.013 40.595 20.029 20.024 20.150 40.178 20.094 30.029 20.089 30.296 40.220 30.624 20.076 40.707 20.066 3
Scratch_LA_DET0.206 40.333 40.500 20.183 40.014 30.504 40.021 30.018 30.315 20.100 40.046 40.002 40.090 20.348 30.112 40.376 40.109 30.613 30.029 4


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_Sem0.682 10.863 10.765 20.782 10.648 10.803 70.438 30.793 10.607 10.589 10.944 30.455 10.223 20.536 20.768 10.726 10.758 20.623 10.906 10.821 20.596 3
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
NWSYY0.678 20.779 40.782 10.774 20.637 20.827 40.491 10.736 20.597 20.561 20.947 20.438 20.206 30.610 10.758 20.667 20.773 10.594 30.880 20.824 10.673 1
CSG_3DSegNet0.570 50.717 60.730 40.697 40.521 30.823 50.377 80.419 80.531 30.452 40.935 80.316 30.147 50.359 70.551 70.551 40.692 70.513 50.797 60.764 60.508 4
Scratch_LR_SEM0.531 80.750 50.666 70.553 80.409 80.816 60.387 60.487 70.285 70.368 80.938 60.310 40.074 80.388 60.564 60.468 70.698 60.448 70.804 50.761 70.454 6
CSC_LR_SEM0.575 40.671 80.740 30.727 30.445 60.847 10.380 70.602 50.512 50.447 50.942 40.291 50.184 40.353 80.468 80.508 60.745 40.602 20.855 30.765 50.420 8
DE-3DLearner LR0.608 30.853 20.689 50.593 70.483 50.830 20.466 20.652 30.528 40.482 30.954 10.288 60.250 10.448 40.595 40.532 50.748 30.503 60.822 40.806 30.647 2
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
PointContrast_LR_SEM0.555 70.711 70.668 60.622 60.425 70.830 20.433 40.552 60.273 80.440 60.938 60.287 70.096 70.470 30.576 50.612 30.687 80.438 80.781 80.785 40.474 5
Viewpoint_BN_LR_AIR0.566 60.780 30.659 80.677 50.484 40.799 80.419 50.636 40.480 60.432 70.940 50.238 80.124 60.396 50.609 30.432 80.735 50.527 40.787 70.752 80.423 7


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_Ins0.773 11.000 10.885 30.783 30.738 10.840 40.402 40.793 10.804 10.605 20.676 10.636 20.593 21.000 10.805 30.894 20.761 11.000 10.696 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
InstTeacher3D0.738 21.000 10.770 60.714 40.583 20.885 10.608 10.636 20.649 20.654 10.612 20.637 10.541 31.000 10.824 10.896 10.639 31.000 10.634 2
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
TWIST+CSC0.669 31.000 10.885 20.784 20.541 40.862 30.541 20.574 30.502 40.589 30.517 30.462 30.500 50.714 30.749 40.822 50.708 20.944 40.352 4
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
CSC_LR_INS0.615 41.000 10.933 10.604 50.436 60.865 20.469 30.438 60.296 60.425 60.478 40.333 40.612 10.688 50.824 10.774 60.590 41.000 10.309 6
Scratch_LR_INS0.584 50.667 50.798 50.604 60.512 50.814 60.292 50.507 50.511 30.506 50.423 50.306 50.485 60.714 30.639 50.866 40.565 50.944 40.352 3
PointContrast_LR_INS0.573 60.667 50.818 40.831 10.558 30.815 50.273 60.550 40.464 50.583 40.414 60.152 60.527 40.429 60.543 60.873 30.552 60.944 40.320 5


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_ODpermissive0.550 10.867 10.892 10.728 10.346 10.837 10.384 10.305 10.539 10.444 10.425 10.155 10.464 10.294 10.507 10.865 10.486 10.897 10.461 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LR_DET0.365 20.722 20.717 20.379 20.238 20.747 30.089 20.131 30.250 40.179 30.259 20.006 40.391 20.090 40.300 20.837 20.197 30.877 20.153 3
PointContrast_LR_DET0.361 30.667 30.695 30.358 30.156 30.757 20.070 30.186 20.432 20.253 20.225 30.016 20.322 30.269 20.156 40.730 30.199 20.793 30.210 2
Scratch_LR_DET0.215 40.667 30.238 40.178 40.079 40.577 40.012 40.022 40.251 30.104 40.027 40.007 30.013 40.229 30.218 30.498 40.156 40.564 40.035 4