This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
GaIA0.685 80.759 100.834 10.759 50.650 80.859 30.427 100.694 100.524 100.575 70.948 60.537 10.304 30.534 120.853 20.678 70.820 10.581 100.914 40.828 50.626 8
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
Q2E0.743 20.984 10.803 40.770 10.725 10.881 10.572 10.806 20.663 20.665 10.972 20.506 30.305 20.652 60.829 40.761 20.809 20.660 10.951 20.862 20.682 2
DE-3DLearner LA0.709 30.877 40.772 80.744 90.694 30.836 70.453 60.787 40.623 40.598 40.953 40.490 70.216 110.682 50.879 10.727 30.802 30.604 50.922 30.845 40.676 3
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
CSC_LA_SEM0.665 100.857 60.756 90.763 40.647 90.852 40.432 90.684 120.543 80.514 120.948 60.469 80.179 120.599 90.702 110.620 100.789 40.614 40.911 50.815 110.607 11
One-Thing-One-Click0.694 40.760 90.815 20.706 130.684 50.840 60.492 40.701 90.557 70.596 50.972 20.497 40.281 40.709 20.757 80.689 60.789 40.600 70.907 70.864 10.671 4
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
ActiveST0.748 10.984 10.804 30.759 50.720 20.849 50.516 20.791 30.670 10.654 20.974 10.495 50.382 10.811 10.828 50.787 10.780 60.640 20.952 10.861 30.701 1
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
VIBUSpermissive0.691 60.860 50.731 120.738 100.672 70.860 20.470 50.766 50.625 30.547 110.949 50.491 60.255 50.693 40.715 100.712 40.778 70.597 80.911 50.816 90.635 7
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
WS3D_LA_Sempermissive0.694 40.895 30.743 100.767 20.675 60.826 100.496 30.817 10.612 50.613 30.947 100.460 90.254 60.558 110.811 70.710 50.776 80.616 30.874 110.822 60.603 12
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_SEM0.653 110.717 120.775 70.754 70.626 110.804 130.391 120.689 110.485 130.572 90.945 120.448 100.232 90.603 80.813 60.591 120.775 90.537 120.885 100.816 90.608 10
Viewpoint_BN_LA_AIR0.669 90.847 80.732 110.724 110.613 120.827 90.443 70.742 60.562 60.551 100.947 100.441 120.218 100.650 70.753 90.621 90.765 100.601 60.905 80.814 120.618 9
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
LE0.688 70.856 70.779 60.754 70.687 40.834 80.438 80.732 70.536 90.577 60.948 60.508 20.248 70.699 30.831 30.636 80.752 110.586 90.895 90.821 70.643 6
Scratch_LA_SEM0.643 120.699 130.793 50.718 120.636 100.816 110.411 110.707 80.490 120.574 80.948 60.448 100.173 130.559 100.689 120.604 110.722 120.556 110.853 120.820 80.651 5
SQN_LA0.598 130.741 110.681 130.766 30.482 130.805 120.389 130.658 130.499 110.437 130.936 130.386 130.243 80.422 130.663 130.552 130.700 130.519 130.809 130.750 130.515 13


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
PointContrast_LA_INS0.471 40.667 30.773 20.646 50.330 50.490 40.032 40.470 50.122 30.368 40.349 50.048 50.592 10.614 50.338 50.789 10.536 30.997 40.316 3
WS3D_LA_Inspermissive0.668 11.000 10.786 10.845 10.647 10.777 10.137 10.618 20.432 10.506 10.564 20.561 10.546 31.000 10.562 10.786 20.675 11.000 10.577 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Box2Mask_LA0.592 21.000 10.619 50.820 20.471 20.773 20.104 20.618 10.377 20.409 20.591 10.364 20.515 40.857 20.443 30.782 30.524 41.000 10.382 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
CSC_LA_INS0.494 30.528 40.766 30.800 30.408 40.611 30.045 30.547 40.055 50.368 30.429 30.126 30.389 50.819 30.421 40.775 40.550 21.000 10.253 4
Scratch_LA_INS0.464 50.222 50.763 40.714 40.464 30.469 50.027 50.591 30.079 40.303 50.395 40.075 40.550 20.777 40.458 20.712 50.512 50.997 40.243 5


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
WS3D_LA_ODpermissive0.341 11.000 10.629 10.426 10.070 10.608 10.063 10.176 10.503 10.132 10.084 10.001 10.337 10.220 10.103 10.628 10.282 10.739 10.131 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_DET0.135 20.667 20.296 30.145 20.002 30.330 30.000 40.000 30.050 30.049 20.023 20.000 30.002 40.006 40.034 30.472 20.052 20.285 40.011 2
CSC_LA_DET0.135 20.444 30.336 20.029 40.001 40.356 20.008 20.000 20.011 40.045 30.010 40.000 20.032 20.011 30.043 20.458 30.028 30.602 20.010 3
Scratch_LA_DET0.098 40.167 40.253 40.074 30.002 20.257 40.004 30.000 40.080 20.038 40.013 30.000 30.006 30.143 20.002 40.243 40.017 40.473 30.001 4


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
NWSYY0.670 20.745 40.784 20.780 30.611 30.829 50.463 10.692 20.585 30.542 30.948 20.448 20.219 20.554 20.828 10.702 20.758 10.573 30.844 70.825 20.674 1
WS3D_LR_Sem0.682 10.864 20.766 40.785 10.645 10.805 70.443 20.793 10.600 10.588 10.944 70.457 10.222 10.537 30.773 20.724 10.755 20.622 10.907 20.821 30.597 3
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
DE-3DLearner LR0.663 30.851 30.770 30.760 40.615 20.830 40.439 30.670 30.546 50.587 20.955 10.406 40.177 40.627 10.758 30.606 40.740 30.549 40.888 30.840 10.652 2
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
CSG_3DSegNet0.594 80.732 80.755 50.697 70.548 50.790 80.363 70.432 80.576 40.448 80.933 80.414 30.168 50.486 70.621 60.574 60.727 40.539 60.807 80.779 80.498 6
CSC_LR_SEM0.612 50.739 70.794 10.687 80.564 40.850 10.347 80.590 70.587 20.521 40.945 60.358 70.140 60.522 60.496 80.627 30.725 50.598 20.850 40.792 40.508 5
Scratch_LR_SEM0.596 70.745 40.722 70.783 20.486 80.834 30.414 50.667 40.398 80.492 70.948 20.359 60.124 70.406 80.636 50.574 60.708 60.503 80.849 60.784 60.490 7
PointContrast_LR_SEM0.603 60.740 60.700 80.700 60.546 60.843 20.419 40.592 60.462 70.513 50.946 40.374 50.104 80.530 50.687 40.571 80.694 70.519 70.850 40.781 70.484 8
Viewpoint_BN_LR_AIR0.625 40.873 10.727 60.709 50.535 70.820 60.402 60.643 50.540 60.501 60.946 40.352 80.181 30.535 40.594 70.596 50.685 80.543 50.927 10.792 40.592 4


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
CSC_LR_INS0.529 41.000 10.773 10.704 20.414 40.786 40.050 30.412 40.394 30.376 50.442 40.179 40.542 30.539 50.394 50.793 10.564 40.944 60.217 6
WS3D_LR_Ins0.656 11.000 10.766 40.736 10.656 10.793 30.091 20.561 20.389 40.533 10.582 10.531 20.592 10.981 10.622 10.782 20.638 20.997 40.558 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LR_INS0.488 50.472 60.773 10.594 50.374 60.774 60.013 60.353 60.252 60.327 60.416 50.087 60.435 60.857 20.444 40.779 30.560 61.000 10.282 4
InstTeacher3D0.646 21.000 10.764 50.699 30.563 20.849 10.177 10.694 10.449 10.509 20.561 20.575 10.550 20.714 30.595 20.777 40.650 10.997 40.513 2
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
TWIST+CSC0.550 31.000 10.758 60.570 60.462 30.797 20.050 30.389 50.436 20.433 30.484 30.253 30.491 40.571 40.538 30.760 50.561 51.000 10.354 3
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
Scratch_LR_INS0.473 60.528 50.773 10.632 40.391 50.784 50.050 30.515 30.271 50.392 40.400 60.123 50.486 50.387 60.322 60.627 60.573 31.000 10.268 5


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
WS3D_LR_ODpermissive0.374 10.867 10.797 10.655 10.104 10.678 10.046 10.215 10.406 10.186 10.219 10.034 10.354 10.160 10.101 10.741 10.306 10.679 10.181 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LR_DET0.191 20.667 20.468 30.226 20.036 20.420 30.025 20.010 30.081 30.066 30.045 20.000 20.162 30.010 30.017 20.657 20.109 20.420 30.013 2
PointContrast_LR_DET0.187 30.667 20.523 20.109 30.027 30.435 20.005 30.013 20.199 20.070 20.035 30.000 40.183 20.033 20.003 40.497 30.078 30.488 20.005 3
Scratch_LR_DET0.076 40.667 20.099 40.015 40.005 40.190 40.000 40.000 40.033 40.007 40.001 40.000 30.000 40.010 40.004 30.094 40.014 40.237 40.000 4