This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
One-Thing-One-Click0.694 40.760 90.815 20.706 130.684 50.840 60.492 40.701 90.557 70.596 50.972 20.497 40.281 40.709 20.757 80.689 60.789 40.600 70.907 70.864 10.671 4
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Q2E0.743 20.984 10.803 40.770 10.725 10.881 10.572 10.806 20.663 20.665 10.972 20.506 30.305 20.652 60.829 40.761 20.809 20.660 10.951 20.862 20.682 2
ActiveST0.748 10.984 10.804 30.759 50.720 20.849 50.516 20.791 30.670 10.654 20.974 10.495 50.382 10.811 10.828 50.787 10.780 60.640 20.952 10.861 30.701 1
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
DE-3DLearner LA0.709 30.877 40.772 80.744 90.694 30.836 70.453 60.787 40.623 40.598 40.953 40.490 70.216 110.682 50.879 10.727 30.802 30.604 50.922 30.845 40.676 3
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
GaIA0.685 80.759 100.834 10.759 50.650 80.859 30.427 100.694 100.524 100.575 70.948 60.537 10.304 30.534 120.853 20.678 70.820 10.581 100.914 40.828 50.626 8
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
WS3D_LA_Sempermissive0.694 40.895 30.743 100.767 20.675 60.826 100.496 30.817 10.612 50.613 30.947 100.460 90.254 60.558 110.811 70.710 50.776 80.616 30.874 110.822 60.603 12
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
LE0.688 70.856 70.779 60.754 70.687 40.834 80.438 80.732 70.536 90.577 60.948 60.508 20.248 70.699 30.831 30.636 80.752 110.586 90.895 90.821 70.643 6
Scratch_LA_SEM0.643 120.699 130.793 50.718 120.636 100.816 110.411 110.707 80.490 120.574 80.948 60.448 100.173 130.559 100.689 120.604 110.722 120.556 110.853 120.820 80.651 5
VIBUSpermissive0.691 60.860 50.731 120.738 100.672 70.860 20.470 50.766 50.625 30.547 110.949 50.491 60.255 50.693 40.715 100.712 40.778 70.597 80.911 50.816 90.635 7
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
PointContrast_LA_SEM0.653 110.717 120.775 70.754 70.626 110.804 130.391 120.689 110.485 130.572 90.945 120.448 100.232 90.603 80.813 60.591 120.775 90.537 120.885 100.816 90.608 10
CSC_LA_SEM0.665 100.857 60.756 90.763 40.647 90.852 40.432 90.684 120.543 80.514 120.948 60.469 80.179 120.599 90.702 110.620 100.789 40.614 40.911 50.815 110.607 11
Viewpoint_BN_LA_AIR0.669 90.847 80.732 110.724 110.613 120.827 90.443 70.742 60.562 60.551 100.947 100.441 120.218 100.650 70.753 90.621 90.765 100.601 60.905 80.814 120.618 9
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
SQN_LA0.598 130.741 110.681 130.766 30.482 130.805 120.389 130.658 130.499 110.437 130.936 130.386 130.243 80.422 130.663 130.552 130.700 130.519 130.809 130.750 130.515 13


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_Inspermissive0.668 11.000 10.786 10.845 10.647 10.777 10.137 10.618 20.432 10.506 10.564 20.561 10.546 31.000 10.562 10.786 20.675 11.000 10.577 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
Box2Mask_LA0.592 21.000 10.619 50.820 20.471 20.773 20.104 20.618 10.377 20.409 20.591 10.364 20.515 40.857 20.443 30.782 30.524 41.000 10.382 2
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
CSC_LA_INS0.494 30.528 40.766 30.800 30.408 40.611 30.045 30.547 40.055 50.368 30.429 30.126 30.389 50.819 30.421 40.775 40.550 21.000 10.253 4
PointContrast_LA_INS0.471 40.667 30.773 20.646 50.330 50.490 40.032 40.470 50.122 30.368 40.349 50.048 50.592 10.614 50.338 50.789 10.536 30.997 40.316 3
Scratch_LA_INS0.464 50.222 50.763 40.714 40.464 30.469 50.027 50.591 30.079 40.303 50.395 40.075 40.550 20.777 40.458 20.712 50.512 50.997 40.243 5


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LA_ODpermissive0.341 11.000 10.629 10.426 10.070 10.608 10.063 10.176 10.503 10.132 10.084 10.001 10.337 10.220 10.103 10.628 10.282 10.739 10.131 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_DET0.135 20.667 20.296 30.145 20.002 30.330 30.000 40.000 30.050 30.049 20.023 20.000 30.002 40.006 40.034 30.472 20.052 20.285 40.011 2
CSC_LA_DET0.135 20.444 30.336 20.029 40.001 40.356 20.008 20.000 20.011 40.045 30.010 40.000 20.032 20.011 30.043 20.458 30.028 30.602 20.010 3
Scratch_LA_DET0.098 40.167 40.253 40.074 30.002 20.257 40.004 30.000 40.080 20.038 40.013 30.000 30.006 30.143 20.002 40.243 40.017 40.473 30.001 4


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
WS3D_LR_Sem0.684 10.865 10.761 10.780 10.644 10.810 20.445 10.796 10.596 10.594 10.945 20.456 10.234 10.541 10.793 10.723 10.761 10.618 10.906 10.822 10.598 2
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
DE-3DLearner LR0.508 30.824 20.530 80.314 50.479 20.746 70.334 20.490 40.508 20.477 20.950 10.269 30.221 20.324 30.029 60.421 50.626 60.490 30.727 30.782 20.620 1
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
NWSYY0.517 20.725 30.619 60.396 40.455 30.766 50.327 30.570 20.477 50.427 30.943 30.288 20.220 30.274 50.135 30.471 30.697 30.504 20.714 50.767 30.566 3
PointContrast_LR_SEM0.438 70.517 60.659 50.251 60.332 80.783 30.244 80.408 60.411 70.409 40.935 60.206 80.119 70.200 70.048 50.355 60.682 40.414 80.647 60.743 40.391 5
CSC_LR_SEM0.460 50.472 70.731 20.465 30.398 40.817 10.292 50.442 50.311 80.387 60.939 40.218 70.181 40.302 40.076 40.449 40.743 20.430 70.444 80.737 50.368 7
Scratch_LR_SEM0.401 80.240 80.674 40.095 80.347 70.763 60.271 70.204 70.449 60.406 50.936 50.220 50.127 60.199 80.004 70.348 80.665 50.477 40.493 70.730 60.366 8
Viewpoint_BN_LR_AIR0.452 60.587 40.569 70.172 70.391 50.769 40.290 60.512 30.501 30.373 70.935 60.251 40.173 50.201 60.003 80.352 70.619 70.454 60.783 20.719 70.390 6
CSG_3DSegNet0.480 40.521 50.715 30.562 20.389 60.693 80.307 40.157 80.501 30.321 80.927 80.219 60.074 80.329 20.485 20.504 20.596 80.458 50.715 40.714 80.418 4


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_Ins0.581 11.000 10.667 40.730 10.492 10.782 20.029 10.765 10.287 10.398 20.414 20.183 30.456 11.000 10.514 10.736 10.577 10.975 10.448 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
InstTeacher3D0.443 21.000 10.617 50.341 20.382 20.785 10.000 40.333 40.158 40.485 10.458 10.420 10.250 30.000 30.384 30.630 30.467 20.875 30.394 2
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
TWIST+CSC0.421 30.667 30.757 10.333 30.358 30.770 30.008 30.436 20.254 20.361 30.372 30.224 20.378 20.143 20.303 40.643 20.446 30.889 20.242 3
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
CSC_LR_INS0.325 40.667 30.698 30.106 40.198 50.708 40.000 40.244 50.194 30.279 40.292 40.179 40.107 40.000 30.446 20.600 40.328 60.693 60.108 4
PointContrast_LR_INS0.298 50.667 30.752 20.005 60.186 60.644 60.000 40.359 30.118 60.223 60.266 50.131 50.012 60.000 30.256 50.550 60.333 50.791 40.073 5
Scratch_LR_INS0.273 60.667 30.567 60.106 50.203 40.685 50.013 20.002 60.130 50.269 50.234 60.129 60.103 50.000 30.063 60.557 50.385 40.753 50.057 6


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
WS3D_LR_ODpermissive0.374 10.867 10.797 10.655 10.104 10.678 10.046 10.215 10.406 10.186 10.219 10.034 10.354 10.160 10.101 10.741 10.306 10.679 10.181 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LR_DET0.191 20.667 20.468 30.226 20.036 20.420 30.025 20.010 30.081 30.066 30.045 20.000 20.162 30.010 30.017 20.657 20.109 20.420 30.013 2
PointContrast_LR_DET0.187 30.667 20.523 20.109 30.027 30.435 20.005 30.013 20.199 20.070 20.035 30.000 40.183 20.033 20.003 40.497 30.078 30.488 20.005 3
Scratch_LR_DET0.076 40.667 20.099 40.015 40.005 40.190 40.000 40.000 40.033 40.007 40.001 40.000 30.000 40.010 40.004 30.094 40.014 40.237 40.000 4