This table lists the benchmark results for the 3D semantic label with limited annotations scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
Q2E0.739 10.984 10.797 10.761 20.716 10.884 10.588 10.843 10.589 30.656 10.971 20.487 20.271 20.772 10.807 20.726 20.795 20.630 10.945 20.856 10.693 1
DE-3DLearner LA0.695 30.897 30.784 20.728 50.697 30.846 40.441 70.770 30.615 20.585 30.951 40.504 10.232 40.672 30.760 40.655 40.772 50.599 30.877 70.834 40.678 2
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
ActiveST0.725 20.980 20.764 40.753 30.699 20.863 20.521 20.773 20.671 10.625 20.974 10.456 60.182 90.721 20.874 10.746 10.808 10.628 20.960 10.846 20.664 3
Gengxin Liu, Oliver van Kaick, Hui Huang, Ruizhen Hu: Active Self-Training for Weakly Supervised 3D Scene Semantic Segmentation.
LE0.652 50.816 70.760 50.747 40.648 50.807 80.455 60.765 40.517 70.523 70.941 110.452 70.190 80.586 50.691 70.525 110.762 60.552 80.930 40.795 90.580 4
WS3D_LA_Sempermissive0.670 40.842 60.732 80.825 10.657 40.794 100.506 30.762 50.584 40.553 50.947 70.451 80.219 50.585 60.652 80.670 30.791 30.570 50.857 110.816 50.579 5
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
VIBUSpermissive0.651 60.868 40.728 110.675 90.624 70.861 30.247 130.734 60.561 50.520 80.948 60.464 40.216 60.670 40.742 50.589 90.746 70.579 40.877 70.800 70.568 6
Beiwen Tian,Liyi Luo,Hao Zhao,Guyue Zhou: VIBUS: Data-efficient 3D Scene Parsing with VIewpoint Bottleneck and Uncertainty-Spectrum Modeling. ISPRS Journal of Photogrammetry and Remote Sensing
CSC_LA_SEM0.612 110.747 90.731 90.679 80.603 80.815 70.400 80.648 100.453 90.481 110.944 80.421 100.173 100.504 80.623 100.588 100.690 120.545 90.877 70.778 110.541 7
One-Thing-One-Click0.642 80.725 100.735 70.717 60.635 60.829 60.457 50.639 110.421 110.552 60.967 30.460 50.240 30.558 70.788 30.621 60.720 80.477 110.915 50.842 30.539 8
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PointContrast_LA_SEM0.614 100.844 50.731 90.681 70.590 100.791 110.348 110.689 80.503 80.502 100.942 100.361 110.154 120.484 90.624 90.591 80.708 100.524 100.874 100.793 100.536 9
Viewpoint_BN_LA_AIR0.623 90.812 80.743 60.654 110.579 110.800 90.462 40.713 70.533 60.516 90.944 80.434 90.215 70.437 110.521 120.601 70.720 80.563 60.884 60.800 70.534 10
Liyi Luo, Beiwen Tian, Hao Zhao, Guyue Zhou: Pointly-supervised 3D Scene Parsing with Viewpoint Bottleneck.
GaIA0.643 70.704 110.776 30.670 100.597 90.842 50.382 90.688 90.413 120.556 40.950 50.471 30.334 10.478 100.728 60.640 50.787 40.557 70.937 30.812 60.531 11
Min Seok Lee*, Seok Woo Yang*, and Sung Won Han: GaIA: Graphical Information gain based Attention Network for Weakly Supervised 3D Point Cloud Semantic Segmentation. WACV 2023
SQN_LA0.542 120.568 130.674 130.618 130.462 120.772 120.351 100.567 120.443 100.378 130.931 130.335 120.173 100.392 120.623 100.455 130.688 130.466 120.769 130.720 130.450 12
Scratch_LA_SEM0.524 130.640 120.690 120.636 120.442 130.756 130.326 120.544 130.365 130.396 120.940 120.284 130.085 130.333 130.479 130.502 120.696 110.453 130.785 120.746 120.372 13


This table lists the benchmark results for the 3D semantic instance with limited annotations scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
Box2Mask_LA0.498 21.000 10.658 20.675 10.264 40.675 20.065 20.446 40.261 20.308 30.441 10.304 20.488 21.000 10.135 50.576 40.335 30.921 50.410 1
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
WS3D_LA_Inspermissive0.548 10.667 20.766 10.540 20.446 10.754 10.018 30.628 10.370 10.419 10.436 20.407 10.450 30.714 20.533 20.724 10.596 10.991 20.407 2
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LA_INS0.414 30.667 20.563 50.417 30.395 20.546 30.085 10.551 20.014 40.213 40.262 40.043 40.364 40.571 30.532 30.629 20.392 20.997 10.215 3
PointContrast_LA_INS0.400 40.667 20.637 40.411 40.335 30.534 40.018 40.526 30.031 30.318 20.327 30.056 30.488 10.260 50.555 10.602 30.278 50.957 30.196 4
Scratch_LA_INS0.311 50.667 20.651 30.411 50.262 50.486 50.006 50.257 50.006 50.134 50.168 50.000 50.060 50.343 40.296 40.459 50.321 40.944 40.126 5


This table lists the benchmark results for the 3D object detection with limited annotations scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
WS3D_LA_ODpermissive0.341 11.000 10.629 10.426 10.070 10.608 10.063 10.176 10.503 10.132 10.084 10.001 10.337 10.220 10.103 10.628 10.282 10.739 10.131 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
PointContrast_LA_DET0.135 20.667 20.296 30.145 20.002 30.330 30.000 40.000 30.050 30.049 20.023 20.000 30.002 40.006 40.034 30.472 20.052 20.285 40.011 2
CSC_LA_DET0.135 20.444 30.336 20.029 40.001 40.356 20.008 20.000 20.011 40.045 30.010 40.000 20.032 20.011 30.043 20.458 30.028 30.602 20.010 3
Scratch_LA_DET0.098 40.167 40.253 40.074 30.002 20.257 40.004 30.000 40.080 20.038 40.013 30.000 30.006 30.143 20.002 40.243 40.017 40.473 30.001 4


This table lists the benchmark results for the 3D semantic label with limited reconstructions scenario.




Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
DE-3DLearner LR0.508 30.824 20.530 80.314 50.479 20.746 70.334 20.490 40.508 20.477 20.950 10.269 30.221 20.324 30.029 60.421 50.626 60.490 30.727 30.782 20.620 1
Ping-Chung Yu, Cheng Sun, Min Sun: Data Efficient 3D Learner via Knowledge Transferred from 2D Model. ECCV 2022
WS3D_LR_Sem0.684 10.865 10.761 10.780 10.644 10.810 20.445 10.796 10.596 10.594 10.945 20.456 10.234 10.541 10.793 10.723 10.761 10.618 10.906 10.822 10.598 2
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
NWSYY0.517 20.725 30.619 60.396 40.455 30.766 50.327 30.570 20.477 50.427 30.943 30.288 20.220 30.274 50.135 30.471 30.697 30.504 20.714 50.767 30.566 3
CSG_3DSegNet0.480 40.521 50.715 30.562 20.389 60.693 80.307 40.157 80.501 30.321 80.927 80.219 60.074 80.329 20.485 20.504 20.596 80.458 50.715 40.714 80.418 4
PointContrast_LR_SEM0.438 70.517 60.659 50.251 60.332 80.783 30.244 80.408 60.411 70.409 40.935 60.206 80.119 70.200 70.048 50.355 60.682 40.414 80.647 60.743 40.391 5
Viewpoint_BN_LR_AIR0.452 60.587 40.569 70.172 70.391 50.769 40.290 60.512 30.501 30.373 70.935 60.251 40.173 50.201 60.003 80.352 70.619 70.454 60.783 20.719 70.390 6
CSC_LR_SEM0.460 50.472 70.731 20.465 30.398 40.817 10.292 50.442 50.311 80.387 60.939 40.218 70.181 40.302 40.076 40.449 40.743 20.430 70.444 80.737 50.368 7
Scratch_LR_SEM0.401 80.240 80.674 40.095 80.347 70.763 60.271 70.204 70.449 60.406 50.936 50.220 50.127 60.199 80.004 70.348 80.665 50.477 40.493 70.730 60.366 8


This table lists the benchmark results for the 3D semantic instance with limited reconstructions scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
WS3D_LR_Ins0.581 11.000 10.667 40.730 10.492 10.782 20.029 10.765 10.287 10.398 20.414 20.183 30.456 11.000 10.514 10.736 10.577 10.975 10.448 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
InstTeacher3D0.443 21.000 10.617 50.341 20.382 20.785 10.000 40.333 40.158 40.485 10.458 10.420 10.250 30.000 30.384 30.630 30.467 20.875 30.394 2
Yizheng Wu, Zhiyu Pan, Kewei Wang, Xingyi Li, Jiahao Cui, Liwen Xiao, Guosheng Lin, Zhiguo Cao: Instance Consistency Regularization for Semi-Supervised 3D Instance Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
TWIST+CSC0.421 30.667 30.757 10.333 30.358 30.770 30.008 30.436 20.254 20.361 30.372 30.224 20.378 20.143 20.303 40.643 20.446 30.889 20.242 3
Ruihang Chu: TWIST: Two-Way Inter-label Self-Training for Semi-supervised 3D Instance Segmentation. CVPR 2022
CSC_LR_INS0.325 40.667 30.698 30.106 40.198 50.708 40.000 40.244 50.194 30.279 40.292 40.179 40.107 40.000 30.446 20.600 40.328 60.693 60.108 4
PointContrast_LR_INS0.298 50.667 30.752 20.005 60.186 60.644 60.000 40.359 30.118 60.223 60.266 50.131 50.012 60.000 30.256 50.550 60.333 50.791 40.073 5
Scratch_LR_INS0.273 60.667 30.567 60.106 50.203 40.685 50.013 20.002 60.130 50.269 50.234 60.129 60.103 50.000 30.063 60.557 50.385 40.753 50.057 6


This table lists the benchmark results for the 3D object detection with limited reconstructions scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
WS3D_LR_ODpermissive0.374 10.867 10.797 10.655 10.104 10.678 10.046 10.215 10.406 10.186 10.219 10.034 10.354 10.160 10.101 10.741 10.306 10.679 10.181 1
Kangcheng Liu: WS3D: Weakly Supervised 3D Scene Segmentation with Region-Level Boundary Awareness and Instance Discrimination. European Conference on Computer Vision (ECCV), 2022
CSC_LR_DET0.191 20.667 20.468 30.226 20.036 20.420 30.025 20.010 30.081 30.066 30.045 20.000 20.162 30.010 30.017 20.657 20.109 20.420 30.013 2
PointContrast_LR_DET0.187 30.667 20.523 20.109 30.027 30.435 20.005 30.013 20.199 20.070 20.035 30.000 40.183 20.033 20.003 40.497 30.078 30.488 20.005 3
Scratch_LR_DET0.076 40.667 20.099 40.015 40.005 40.190 40.000 40.000 40.033 40.007 40.001 40.000 30.000 40.010 40.004 30.094 40.014 40.237 40.000 4