The 3D semantic instance prediction task involves detecting and segmenting the object in an 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the average precision for each class. We report the mean average precision AP at overlap 0.25 (AP 25%), overlap 0.5 (AP 50%), and over overlaps in the range [0.5:0.95:0.05] (AP). Note that multiple predictions of the same ground truth instance are penalized as false positives.



This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Competitor-MAFT0.816 11.000 10.983 40.872 110.718 50.941 10.588 50.652 400.819 20.776 30.720 50.780 50.769 121.000 10.797 110.813 300.798 81.000 10.659 4
PointRel0.816 11.000 10.971 90.908 60.743 20.923 80.573 90.714 220.695 190.734 110.747 20.725 120.809 11.000 10.814 90.899 40.820 41.000 10.610 18
: Relation3D: Enhancing Relation Modeling for Point Cloud Instance Segmentation. CVPR 2025
Spherical Mask(CtoF)0.812 31.000 10.973 80.852 150.718 60.917 100.574 70.677 310.748 120.729 150.715 80.795 20.809 11.000 10.831 40.854 100.787 121.000 10.638 7
EV3D0.811 41.000 10.968 100.852 150.717 70.921 90.574 80.677 310.748 120.730 140.703 140.795 20.809 11.000 10.831 40.854 100.778 161.000 10.638 8
VDG-Uni3DSeg0.804 51.000 10.990 10.886 90.688 200.912 120.602 20.703 260.786 70.771 40.708 110.700 170.669 260.981 400.789 170.903 10.772 191.000 10.609 19
SIM3D0.803 61.000 10.967 110.863 140.692 190.924 70.552 130.732 210.667 240.732 130.662 180.796 10.789 91.000 10.803 100.864 70.766 221.000 10.643 6
OneFormer3Dcopyleft0.801 71.000 10.973 70.909 50.698 150.928 50.582 60.668 360.685 200.780 20.687 160.698 210.702 151.000 10.794 130.900 30.784 140.986 540.635 9
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
Competitor-SPFormer0.800 81.000 10.986 30.845 170.705 130.915 110.532 150.733 200.757 110.733 120.708 100.698 200.648 380.981 400.890 10.830 200.796 90.997 410.644 5
UniPerception0.800 81.000 10.930 130.872 110.727 40.862 260.454 210.764 130.820 10.746 80.706 120.750 70.772 100.926 480.764 200.818 280.826 20.997 410.660 3
InsSSM0.799 101.000 10.915 150.710 430.729 30.925 60.664 10.670 340.770 80.766 50.739 30.737 80.700 161.000 10.792 140.829 220.815 50.997 410.625 11
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
DCD0.798 111.000 10.878 220.792 290.693 180.936 20.596 30.685 300.663 260.736 90.717 60.788 40.693 211.000 10.825 70.840 160.837 11.000 10.689 1
TST3D0.795 121.000 10.929 140.918 40.709 100.884 210.596 40.704 250.769 90.734 100.644 230.699 190.751 131.000 10.794 120.876 60.757 250.997 410.550 35
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
MG-Former0.791 131.000 10.980 60.837 200.626 280.897 140.543 140.759 150.800 60.766 60.659 190.769 60.697 191.000 10.791 150.707 510.791 111.000 10.610 17
ExtMask3D0.789 141.000 10.988 20.756 360.706 120.912 130.429 220.647 420.806 50.755 70.673 170.689 220.772 111.000 10.789 160.852 120.811 61.000 10.617 14
Queryformer0.787 151.000 10.933 120.601 530.754 10.886 190.558 120.661 380.767 100.665 210.716 70.639 280.808 51.000 10.844 30.897 50.804 71.000 10.624 12
MAFT0.786 161.000 10.894 200.807 240.694 170.893 170.486 170.674 330.740 140.786 10.704 130.727 110.739 141.000 10.707 270.849 140.756 261.000 10.685 2
KmaxOneFormerNetpermissive0.783 170.903 580.981 50.794 280.706 110.931 40.561 110.701 270.706 170.727 160.697 150.731 100.689 231.000 10.856 20.750 420.761 241.000 10.599 23
Mask3D0.780 181.000 10.786 460.716 410.696 160.885 200.500 160.714 220.810 40.672 200.715 80.679 230.809 11.000 10.831 40.833 190.787 121.000 10.602 21
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
SPFormerpermissive0.770 190.903 580.903 170.806 250.609 350.886 180.568 100.815 60.705 180.711 170.655 200.652 270.685 241.000 10.789 180.809 310.776 181.000 10.583 27
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
SoftGroup++0.769 201.000 10.803 390.937 10.684 210.865 230.213 380.870 20.664 250.571 280.758 10.702 160.807 61.000 10.653 340.902 20.792 101.000 10.626 10
SoftGrouppermissive0.761 211.000 10.808 350.845 170.716 80.862 250.243 350.824 40.655 280.620 220.734 40.699 180.791 80.981 400.716 240.844 150.769 201.000 10.594 25
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
ISBNetpermissive0.757 221.000 10.904 160.731 390.678 220.895 150.458 190.644 440.670 230.710 180.620 280.732 90.650 281.000 10.756 210.778 340.779 151.000 10.614 15
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
TD3Dpermissive0.751 231.000 10.774 470.867 130.621 300.934 30.404 230.706 240.812 30.605 250.633 260.626 290.690 221.000 10.640 360.820 250.777 171.000 10.612 16
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
PBNetpermissive0.747 241.000 10.818 310.837 210.713 90.844 280.457 200.647 420.711 160.614 230.617 300.657 260.650 281.000 10.692 280.822 240.765 231.000 10.595 24
Weiguang Zhao, Yuyao Yan, Chaolong Yang, Jianan Ye, Xi Yang, Kaizhu Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
GraphCut0.732 251.000 10.788 440.724 400.642 270.859 270.248 340.787 110.618 310.596 260.653 220.722 140.583 501.000 10.766 190.861 80.825 31.000 10.504 41
IPCA-Inst0.731 261.000 10.788 450.884 100.698 140.788 440.252 330.760 140.646 290.511 360.637 250.665 250.804 71.000 10.644 350.778 350.747 281.000 10.561 31
TopoSeg0.725 271.000 10.806 380.933 20.668 240.758 490.272 320.734 190.630 300.549 320.654 210.606 300.697 200.966 450.612 400.839 170.754 271.000 10.573 28
DKNet0.718 281.000 10.814 320.782 300.619 320.872 220.224 360.751 170.569 350.677 190.585 350.724 130.633 400.981 400.515 500.819 260.736 291.000 10.617 13
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
SSEC0.707 291.000 10.850 240.924 30.648 250.747 520.162 400.862 30.572 340.520 340.624 270.549 330.649 371.000 10.560 450.706 520.768 211.000 10.591 26
HAISpermissive0.699 301.000 10.849 250.820 220.675 230.808 380.279 300.757 160.465 410.517 350.596 320.559 320.600 441.000 10.654 330.767 370.676 330.994 500.560 32
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
SSTNetpermissive0.698 311.000 10.697 630.888 80.556 420.803 390.387 240.626 460.417 460.556 310.585 360.702 150.600 441.000 10.824 80.720 500.692 311.000 10.509 40
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
DualGroup0.694 321.000 10.799 410.811 230.622 290.817 330.376 250.805 90.590 330.487 400.568 390.525 370.650 280.835 580.600 410.829 210.655 361.000 10.526 37
ODIN - Inspermissive0.693 331.000 10.880 210.647 480.620 310.779 460.336 270.501 610.681 210.577 270.595 330.679 240.683 251.000 10.709 260.816 290.637 400.770 700.557 33
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
DANCENET0.680 341.000 10.807 360.733 380.600 360.768 480.375 260.543 540.538 360.610 240.599 310.498 380.632 420.981 400.739 230.856 90.633 430.882 650.454 50
SphereSeg0.680 341.000 10.856 230.744 370.618 330.893 160.151 410.651 410.713 150.537 330.579 380.430 470.651 271.000 10.389 610.744 450.697 300.991 520.601 22
Box2Mask0.677 361.000 10.847 260.771 320.509 510.816 340.277 310.558 530.482 380.562 300.640 240.448 430.700 161.000 10.666 290.852 130.578 500.997 410.488 45
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
OccuSeg+instance0.672 371.000 10.758 550.682 450.576 400.842 290.477 180.504 600.524 370.567 290.585 370.451 420.557 521.000 10.751 220.797 320.563 531.000 10.467 49
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
Mask-Group0.664 381.000 10.822 300.764 350.616 340.815 350.139 450.694 290.597 320.459 440.566 400.599 310.600 440.516 680.715 250.819 270.635 411.000 10.603 20
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
INS-Conv-instance0.657 391.000 10.760 530.667 470.581 380.863 240.323 280.655 390.477 390.473 420.549 420.432 460.650 281.000 10.655 320.738 460.585 490.944 570.472 48
CSC-Pretrained0.648 401.000 10.810 330.768 330.523 490.813 360.143 440.819 50.389 490.422 530.511 460.443 440.650 281.000 10.624 380.732 470.634 421.000 10.375 57
PE0.645 411.000 10.773 490.798 270.538 440.786 450.088 530.799 100.350 530.435 510.547 430.545 340.646 390.933 470.562 440.761 400.556 580.997 410.501 43
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
RPGN0.643 421.000 10.758 540.582 590.539 430.826 320.046 580.765 120.372 510.436 500.588 340.539 360.650 281.000 10.577 420.750 430.653 380.997 410.495 44
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
Dyco3Dcopyleft0.641 431.000 10.841 270.893 70.531 460.802 400.115 500.588 510.448 430.438 480.537 450.430 480.550 530.857 500.534 480.764 390.657 350.987 530.568 29
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
GICN0.638 441.000 10.895 190.800 260.480 550.676 570.144 430.737 180.354 520.447 450.400 590.365 540.700 161.000 10.569 430.836 180.599 451.000 10.473 47
PointGroup0.636 451.000 10.765 500.624 500.505 530.797 410.116 490.696 280.384 500.441 460.559 410.476 400.596 471.000 10.666 290.756 410.556 570.997 410.513 39
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
DD-UNet+Group0.635 460.667 610.797 430.714 420.562 410.774 470.146 420.810 80.429 450.476 410.546 440.399 500.633 401.000 10.632 370.722 490.609 441.000 10.514 38
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
Mask3D_evaluation0.631 471.000 10.829 290.606 520.646 260.836 300.068 540.511 580.462 420.507 370.619 290.389 520.610 431.000 10.432 560.828 230.673 340.788 690.552 34
DENet0.629 481.000 10.797 420.608 510.589 370.627 610.219 370.882 10.310 550.402 580.383 610.396 510.650 281.000 10.663 310.543 690.691 321.000 10.568 30
3D-MPA0.611 491.000 10.833 280.765 340.526 480.756 500.136 470.588 510.470 400.438 490.432 550.358 560.650 280.857 500.429 570.765 380.557 561.000 10.430 52
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
OSIS0.605 501.000 10.801 400.599 540.535 450.728 540.286 290.436 650.679 220.491 380.433 530.256 580.404 650.857 500.620 390.724 480.510 631.000 10.539 36
AOIA0.601 511.000 10.761 520.687 440.485 540.828 310.008 650.663 370.405 480.405 570.425 560.490 390.596 470.714 610.553 470.779 330.597 460.992 510.424 54
PCJC0.578 521.000 10.810 340.583 580.449 580.813 370.042 590.603 490.341 540.490 390.465 500.410 490.650 280.835 580.264 670.694 560.561 540.889 620.504 42
SSEN0.575 531.000 10.761 510.473 610.477 560.795 420.066 550.529 560.658 270.460 430.461 510.380 530.331 670.859 490.401 600.692 580.653 371.000 10.348 59
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
RWSeg0.567 540.528 710.708 620.626 490.580 390.745 530.063 560.627 450.240 590.400 590.497 470.464 410.515 541.000 10.475 520.745 440.571 511.000 10.429 53
NeuralBF0.555 550.667 610.896 180.843 190.517 500.751 510.029 600.519 570.414 470.439 470.465 490.000 770.484 560.857 500.287 650.693 570.651 391.000 10.485 46
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
MTML0.549 561.000 10.807 370.588 570.327 630.647 590.004 670.815 70.180 620.418 540.364 630.182 610.445 591.000 10.442 550.688 590.571 521.000 10.396 55
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
ClickSeg_Instance0.539 571.000 10.621 660.300 640.530 470.698 550.127 480.533 550.222 600.430 520.400 580.365 540.574 510.938 460.472 530.659 610.543 590.944 570.347 60
One_Thing_One_Clickpermissive0.529 580.667 610.718 580.777 310.399 590.683 560.000 700.669 350.138 650.391 600.374 620.539 350.360 660.641 650.556 460.774 360.593 470.997 410.251 65
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Sparse R-CNN0.515 591.000 10.538 710.282 650.468 570.790 430.173 390.345 670.429 440.413 560.484 480.176 620.595 490.591 660.522 490.668 600.476 640.986 550.327 61
Occipital-SCS0.512 601.000 10.716 590.509 600.506 520.611 620.092 520.602 500.177 630.346 630.383 600.165 630.442 600.850 570.386 620.618 650.543 600.889 620.389 56
3D-BoNet0.488 611.000 10.672 650.590 560.301 650.484 720.098 510.620 470.306 560.341 640.259 670.125 650.434 620.796 600.402 590.499 710.513 620.909 610.439 51
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
PanopticFusion-inst0.478 620.667 610.712 610.595 550.259 680.550 680.000 700.613 480.175 640.250 690.434 520.437 450.411 640.857 500.485 510.591 680.267 740.944 570.359 58
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
SPG_WSIS0.470 630.667 610.685 640.677 460.372 610.562 660.000 700.482 620.244 580.316 660.298 640.052 720.442 610.857 500.267 660.702 530.559 551.000 10.287 63
SALoss-ResNet0.459 641.000 10.737 570.159 750.259 670.587 640.138 460.475 630.217 610.416 550.408 570.128 640.315 680.714 610.411 580.536 700.590 480.873 660.304 62
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MASCpermissive0.447 650.528 710.555 690.381 620.382 600.633 600.002 680.509 590.260 570.361 620.432 540.327 570.451 580.571 670.367 630.639 630.386 650.980 560.276 64
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
SegGroup_inspermissive0.445 660.667 610.773 480.185 720.317 640.656 580.000 700.407 660.134 660.381 610.267 660.217 600.476 570.714 610.452 540.629 640.514 611.000 10.222 68
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
3D-SISpermissive0.382 671.000 10.432 740.245 670.190 690.577 650.013 640.263 690.033 720.320 650.240 680.075 680.422 630.857 500.117 720.699 540.271 730.883 640.235 67
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
Hier3Dcopyleft0.323 680.667 610.542 700.264 660.157 720.550 670.000 700.205 720.009 740.270 680.218 690.075 680.500 550.688 640.007 780.698 550.301 700.459 750.200 69
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
UNet-backbone0.319 690.667 610.715 600.233 680.189 700.479 730.008 650.218 700.067 710.201 710.173 700.107 660.123 730.438 690.150 690.615 660.355 660.916 600.093 77
R-PointNet0.306 700.500 730.405 750.311 630.348 620.589 630.054 570.068 750.126 670.283 670.290 650.028 730.219 710.214 720.331 640.396 750.275 710.821 680.245 66
Region-18class0.284 710.250 770.751 560.228 700.270 660.521 690.000 700.468 640.008 760.205 700.127 710.000 770.068 750.070 760.262 680.652 620.323 680.740 710.173 70
SemRegionNet-20cls0.250 720.333 740.613 670.229 690.163 710.493 700.000 700.304 680.107 680.147 740.100 730.052 710.231 690.119 740.039 740.445 730.325 670.654 720.141 73
tmp0.248 730.667 610.437 730.188 710.153 730.491 710.000 700.208 710.094 700.153 730.099 740.057 700.217 720.119 740.039 740.466 720.302 690.640 730.140 74
3D-BEVIS0.248 730.667 610.566 680.076 760.035 780.394 760.027 620.035 770.098 690.099 760.030 770.025 740.098 740.375 710.126 710.604 670.181 760.854 670.171 71
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Sem_Recon_ins0.227 750.764 600.486 720.069 770.098 750.426 750.017 630.067 760.015 730.172 720.100 720.096 670.054 770.183 730.135 700.366 760.260 750.614 740.168 72
ASIS0.199 760.333 740.253 770.167 740.140 740.438 740.000 700.177 730.008 750.121 750.069 750.004 760.231 700.429 700.036 760.445 740.273 720.333 770.119 76
Sgpn_scannet0.143 770.208 780.390 760.169 730.065 760.275 770.029 610.069 740.000 770.087 770.043 760.014 750.027 780.000 770.112 730.351 770.168 770.438 760.138 75
MaskRCNN 2d->3d Proj0.058 780.333 740.002 780.000 780.053 770.002 780.002 690.021 780.000 770.045 780.024 780.238 590.065 760.000 770.014 770.107 780.020 780.110 780.006 78