The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).



This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 110.812 220.854 70.770 120.856 150.555 160.943 10.660 250.735 20.979 10.606 70.492 10.792 40.934 40.841 20.819 50.716 90.947 100.906 10.822 1
DITR ScanNet0.797 20.727 760.869 10.882 10.785 60.868 70.578 50.943 10.744 10.727 30.979 10.627 20.364 90.824 10.949 20.779 140.844 10.757 10.982 10.905 20.802 3
PTv3 ScanNet0.794 30.941 30.813 210.851 100.782 70.890 20.597 10.916 50.696 100.713 50.979 10.635 10.384 30.793 30.907 100.821 50.790 350.696 140.967 40.903 30.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
PonderV20.785 40.978 10.800 300.833 280.788 40.853 200.545 200.910 80.713 30.705 60.979 10.596 90.390 20.769 150.832 450.821 50.792 340.730 20.975 20.897 60.785 7
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 20.843 190.781 80.858 130.575 80.831 370.685 160.714 40.979 10.594 100.310 290.801 20.892 190.841 20.819 50.723 60.940 150.887 80.725 28
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 230.818 160.836 250.790 30.875 40.576 70.905 90.704 70.739 10.969 120.611 30.349 120.756 250.958 10.702 500.805 180.708 100.916 380.898 50.801 4
TTT-KD0.773 70.646 960.818 160.809 400.774 100.878 30.581 30.943 10.687 140.704 70.978 60.607 60.336 180.775 110.912 80.838 40.823 30.694 150.967 40.899 40.794 6
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 70.771 110.840 340.564 120.900 110.686 150.677 140.961 180.537 350.348 130.769 150.903 120.785 120.815 80.676 260.939 160.880 130.772 11
OctFormerpermissive0.766 90.925 70.808 260.849 120.786 50.846 300.566 110.876 180.690 120.674 160.960 190.576 210.226 710.753 270.904 110.777 150.815 80.722 70.923 310.877 160.776 10
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
PPT-SpUNet-Joint0.766 90.932 50.794 360.829 300.751 260.854 180.540 240.903 100.630 380.672 170.963 160.565 250.357 100.788 50.900 140.737 300.802 190.685 200.950 80.887 80.780 8
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OccuSeg+Semantic0.764 110.758 610.796 340.839 230.746 300.907 10.562 130.850 280.680 180.672 170.978 60.610 40.335 200.777 90.819 490.847 10.830 20.691 170.972 30.885 100.727 26
CU-Hybrid Net0.764 110.924 80.819 140.840 220.757 210.853 200.580 40.848 290.709 50.643 270.958 230.587 150.295 370.753 270.884 230.758 220.815 80.725 50.927 270.867 270.743 19
O-CNNpermissive0.762 130.924 80.823 80.844 180.770 120.852 220.577 60.847 310.711 40.640 310.958 230.592 110.217 770.762 200.888 200.758 220.813 120.726 40.932 250.868 260.744 18
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 780.789 410.843 190.762 170.856 150.562 130.920 40.657 280.658 210.958 230.589 130.337 170.782 60.879 240.787 100.779 400.678 220.926 290.880 130.799 5
DTC0.757 150.843 290.820 120.847 150.791 20.862 110.511 370.870 210.707 60.652 230.954 400.604 80.279 470.760 210.942 30.734 310.766 490.701 130.884 600.874 220.736 20
OA-CNN-L_ScanNet200.756 160.783 470.826 60.858 50.776 90.837 380.548 190.896 140.649 300.675 150.962 170.586 160.335 200.771 140.802 540.770 180.787 370.691 170.936 200.880 130.761 13
PNE0.755 170.786 450.835 50.834 270.758 190.849 250.570 100.836 360.648 310.668 190.978 60.581 190.367 70.683 380.856 330.804 70.801 230.678 220.961 60.889 70.716 34
P. Hermosilla: Point Neighborhood Embeddings.
LSK3DNetpermissive0.755 170.899 160.823 80.843 190.764 160.838 370.584 20.845 320.717 20.638 330.956 300.580 200.229 700.640 470.900 140.750 250.813 120.729 30.920 350.872 240.757 14
Tuo Feng, Wenguan Wang, Fan Ma, Yi Yang: LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels. CVPR 2024
ConDaFormer0.755 170.927 60.822 100.836 250.801 10.849 250.516 340.864 250.651 290.680 130.958 230.584 180.282 440.759 230.855 350.728 330.802 190.678 220.880 650.873 230.756 16
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
PointTransformerV20.752 200.742 680.809 250.872 20.758 190.860 120.552 170.891 160.610 450.687 80.960 190.559 290.304 320.766 180.926 60.767 190.797 270.644 370.942 130.876 190.722 30
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
DMF-Net0.752 200.906 140.793 380.802 460.689 440.825 510.556 150.867 220.681 170.602 490.960 190.555 310.365 80.779 80.859 300.747 260.795 310.717 80.917 370.856 350.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
BPNetcopyleft0.749 220.909 120.818 160.811 380.752 240.839 360.485 520.842 330.673 200.644 260.957 280.528 410.305 310.773 120.859 300.788 90.818 70.693 160.916 380.856 350.723 29
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
PointConvFormer0.749 220.793 430.790 390.807 420.750 280.856 150.524 300.881 170.588 570.642 300.977 100.591 120.274 500.781 70.929 50.804 70.796 280.642 380.947 100.885 100.715 35
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
MSP0.748 240.623 990.804 280.859 40.745 310.824 530.501 410.912 70.690 120.685 100.956 300.567 240.320 260.768 170.918 70.720 380.802 190.676 260.921 330.881 120.779 9
StratifiedFormerpermissive0.747 250.901 150.803 290.845 170.757 210.846 300.512 360.825 400.696 100.645 250.956 300.576 210.262 610.744 330.861 290.742 280.770 470.705 110.899 500.860 320.734 21
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
VMNetpermissive0.746 260.870 210.838 30.858 50.729 360.850 240.501 410.874 190.587 580.658 210.956 300.564 260.299 340.765 190.900 140.716 410.812 140.631 430.939 160.858 330.709 36
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
Virtual MVFusion0.746 260.771 550.819 140.848 140.702 420.865 100.397 890.899 120.699 80.664 200.948 610.588 140.330 220.746 320.851 390.764 200.796 280.704 120.935 210.866 280.728 24
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
DiffSeg3D20.745 280.725 780.814 200.837 240.751 260.831 450.514 350.896 140.674 190.684 110.960 190.564 260.303 330.773 120.820 480.713 440.798 260.690 190.923 310.875 200.757 14
Retro-FPN0.744 290.842 300.800 300.767 600.740 320.836 400.541 220.914 60.672 210.626 370.958 230.552 320.272 520.777 90.886 220.696 510.801 230.674 290.941 140.858 330.717 32
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 300.620 1000.799 330.849 120.730 350.822 550.493 490.897 130.664 220.681 120.955 340.562 280.378 40.760 210.903 120.738 290.801 230.673 300.907 420.877 160.745 17
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
SAT0.742 310.860 240.765 550.819 330.769 140.848 270.533 260.829 380.663 230.631 360.955 340.586 160.274 500.753 270.896 170.729 320.760 550.666 320.921 330.855 370.733 22
LRPNet0.742 310.816 380.806 270.807 420.752 240.828 490.575 80.839 350.699 80.637 340.954 400.520 440.320 260.755 260.834 430.760 210.772 440.676 260.915 400.862 300.717 32
LargeKernel3D0.739 330.909 120.820 120.806 440.740 320.852 220.545 200.826 390.594 560.643 270.955 340.541 340.263 600.723 360.858 320.775 170.767 480.678 220.933 230.848 420.694 41
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
RPN0.736 340.776 510.790 390.851 100.754 230.854 180.491 510.866 230.596 550.686 90.955 340.536 360.342 150.624 540.869 260.787 100.802 190.628 440.927 270.875 200.704 38
MinkowskiNetpermissive0.736 340.859 250.818 160.832 290.709 400.840 340.521 320.853 270.660 250.643 270.951 510.544 330.286 420.731 340.893 180.675 590.772 440.683 210.874 710.852 400.727 26
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
IPCA0.731 360.890 170.837 40.864 30.726 370.873 50.530 290.824 410.489 910.647 240.978 60.609 50.336 180.624 540.733 630.758 220.776 420.570 690.949 90.877 160.728 24
online3d0.727 370.715 830.777 480.854 70.748 290.858 130.497 460.872 200.572 640.639 320.957 280.523 420.297 360.750 300.803 530.744 270.810 150.587 650.938 180.871 250.719 31
SparseConvNet0.725 380.647 950.821 110.846 160.721 380.869 60.533 260.754 620.603 510.614 410.955 340.572 230.325 240.710 370.870 250.724 360.823 30.628 440.934 220.865 290.683 44
PointTransformer++0.725 380.727 760.811 240.819 330.765 150.841 330.502 400.814 460.621 410.623 390.955 340.556 300.284 430.620 560.866 270.781 130.757 590.648 350.932 250.862 300.709 36
MatchingNet0.724 400.812 400.812 220.810 390.735 340.834 420.495 480.860 260.572 640.602 490.954 400.512 460.280 460.757 240.845 410.725 350.780 390.606 540.937 190.851 410.700 40
INS-Conv-semantic0.717 410.751 640.759 580.812 370.704 410.868 70.537 250.842 330.609 470.608 450.953 440.534 380.293 380.616 570.864 280.719 400.793 320.640 390.933 230.845 460.663 49
PointMetaBase0.714 420.835 310.785 430.821 310.684 460.846 300.531 280.865 240.614 420.596 530.953 440.500 490.246 660.674 390.888 200.692 520.764 510.624 460.849 860.844 470.675 46
contrastBoundarypermissive0.705 430.769 580.775 490.809 400.687 450.820 580.439 770.812 470.661 240.591 550.945 690.515 450.171 960.633 510.856 330.720 380.796 280.668 310.889 570.847 430.689 42
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 440.774 530.800 300.793 510.760 180.847 290.471 560.802 500.463 980.634 350.968 140.491 520.271 540.726 350.910 90.706 460.815 80.551 810.878 660.833 480.570 81
RFCR0.702 450.889 180.745 680.813 360.672 490.818 620.493 490.815 450.623 390.610 430.947 630.470 610.249 650.594 610.848 400.705 470.779 400.646 360.892 550.823 540.611 64
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 460.825 350.796 340.723 670.716 390.832 440.433 790.816 430.634 360.609 440.969 120.418 870.344 140.559 730.833 440.715 420.808 170.560 750.902 470.847 430.680 45
JSENetpermissive0.699 470.881 200.762 560.821 310.667 500.800 750.522 310.792 530.613 430.607 460.935 890.492 510.205 830.576 660.853 370.691 530.758 570.652 340.872 740.828 510.649 53
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 480.743 670.794 360.655 900.684 460.822 550.497 460.719 720.622 400.617 400.977 100.447 740.339 160.750 300.664 800.703 490.790 350.596 580.946 120.855 370.647 54
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 490.732 720.772 500.786 520.677 480.866 90.517 330.848 290.509 840.626 370.952 490.536 360.225 730.545 790.704 700.689 560.810 150.564 740.903 460.854 390.729 23
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 500.884 190.754 620.795 490.647 570.818 620.422 810.802 500.612 440.604 470.945 690.462 640.189 910.563 720.853 370.726 340.765 500.632 420.904 440.821 570.606 68
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 510.704 850.741 720.754 640.656 520.829 470.501 410.741 670.609 470.548 620.950 550.522 430.371 50.633 510.756 580.715 420.771 460.623 470.861 820.814 600.658 50
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 520.866 220.748 650.819 330.645 590.794 780.450 670.802 500.587 580.604 470.945 690.464 630.201 860.554 750.840 420.723 370.732 700.602 560.907 420.822 560.603 71
VACNN++0.684 530.728 750.757 610.776 570.690 430.804 730.464 610.816 430.577 630.587 560.945 690.508 480.276 490.671 400.710 680.663 640.750 630.589 630.881 630.832 500.653 52
KP-FCNN0.684 530.847 280.758 600.784 540.647 570.814 650.473 550.772 560.605 490.594 540.935 890.450 720.181 940.587 620.805 520.690 540.785 380.614 500.882 620.819 580.632 60
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
DGNet0.684 530.712 840.784 440.782 560.658 510.835 410.499 450.823 420.641 330.597 520.950 550.487 540.281 450.575 670.619 840.647 720.764 510.620 490.871 770.846 450.688 43
PointContrast_LA_SEM0.683 560.757 620.784 440.786 520.639 610.824 530.408 840.775 550.604 500.541 640.934 930.532 390.269 560.552 760.777 560.645 750.793 320.640 390.913 410.824 530.671 47
Superpoint Network0.683 560.851 270.728 760.800 480.653 540.806 710.468 580.804 480.572 640.602 490.946 660.453 710.239 690.519 840.822 460.689 560.762 540.595 600.895 530.827 520.630 61
VI-PointConv0.676 580.770 570.754 620.783 550.621 650.814 650.552 170.758 600.571 670.557 600.954 400.529 400.268 580.530 820.682 740.675 590.719 730.603 550.888 580.833 480.665 48
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 590.789 440.748 650.763 620.635 630.814 650.407 860.747 640.581 620.573 570.950 550.484 550.271 540.607 580.754 590.649 690.774 430.596 580.883 610.823 540.606 68
SALANet0.670 600.816 380.770 530.768 590.652 550.807 700.451 640.747 640.659 270.545 630.924 990.473 600.149 1060.571 690.811 510.635 790.746 640.623 470.892 550.794 730.570 81
O3DSeg0.668 610.822 360.771 520.496 1100.651 560.833 430.541 220.761 590.555 730.611 420.966 150.489 530.370 60.388 1030.580 870.776 160.751 610.570 690.956 70.817 590.646 55
PointConvpermissive0.666 620.781 480.759 580.699 750.644 600.822 550.475 540.779 540.564 700.504 810.953 440.428 810.203 850.586 640.754 590.661 650.753 600.588 640.902 470.813 620.642 56
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 620.703 860.781 460.751 660.655 530.830 460.471 560.769 570.474 940.537 660.951 510.475 590.279 470.635 490.698 730.675 590.751 610.553 800.816 930.806 640.703 39
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 640.746 650.708 790.722 680.638 620.820 580.451 640.566 1000.599 530.541 640.950 550.510 470.313 280.648 450.819 490.616 840.682 880.590 620.869 780.810 630.656 51
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
DCM-Net0.658 650.778 490.702 820.806 440.619 660.813 680.468 580.693 800.494 870.524 720.941 810.449 730.298 350.510 860.821 470.675 590.727 720.568 720.826 910.803 660.637 58
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 660.698 880.743 700.650 910.564 830.820 580.505 390.758 600.631 370.479 850.945 690.480 570.226 710.572 680.774 570.690 540.735 680.614 500.853 850.776 880.597 74
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 670.752 630.734 740.664 880.583 780.815 640.399 880.754 620.639 340.535 680.942 790.470 610.309 300.665 410.539 900.650 680.708 780.635 410.857 840.793 750.642 56
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 680.778 490.731 750.699 750.577 790.829 470.446 690.736 680.477 930.523 740.945 690.454 680.269 560.484 930.749 620.618 820.738 660.599 570.827 900.792 780.621 63
MVPNetpermissive0.641 690.831 320.715 770.671 850.590 740.781 840.394 900.679 820.642 320.553 610.937 860.462 640.256 620.649 440.406 1030.626 800.691 850.666 320.877 670.792 780.608 67
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointConv-SFPN0.641 690.776 510.703 810.721 690.557 860.826 500.451 640.672 850.563 710.483 840.943 780.425 840.162 1010.644 460.726 640.659 660.709 770.572 680.875 690.786 830.559 87
PointMRNet0.640 710.717 820.701 830.692 780.576 800.801 740.467 600.716 730.563 710.459 910.953 440.429 800.169 980.581 650.854 360.605 850.710 750.550 820.894 540.793 750.575 79
FPConvpermissive0.639 720.785 460.760 570.713 730.603 690.798 760.392 920.534 1050.603 510.524 720.948 610.457 660.250 640.538 800.723 660.598 890.696 830.614 500.872 740.799 680.567 84
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 730.797 420.769 540.641 960.590 740.820 580.461 620.537 1040.637 350.536 670.947 630.388 940.206 820.656 420.668 780.647 720.732 700.585 660.868 790.793 750.473 107
PointSPNet0.637 740.734 710.692 900.714 720.576 800.797 770.446 690.743 660.598 540.437 960.942 790.403 900.150 1050.626 530.800 550.649 690.697 820.557 780.846 870.777 870.563 85
SConv0.636 750.830 330.697 860.752 650.572 820.780 860.445 710.716 730.529 770.530 690.951 510.446 750.170 970.507 880.666 790.636 780.682 880.541 880.886 590.799 680.594 75
Supervoxel-CNN0.635 760.656 930.711 780.719 700.613 670.757 950.444 740.765 580.534 760.566 580.928 970.478 580.272 520.636 480.531 920.664 630.645 980.508 960.864 810.792 780.611 64
joint point-basedpermissive0.634 770.614 1010.778 470.667 870.633 640.825 510.420 820.804 480.467 960.561 590.951 510.494 500.291 390.566 700.458 980.579 950.764 510.559 770.838 880.814 600.598 73
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 780.731 730.688 930.675 820.591 730.784 830.444 740.565 1010.610 450.492 820.949 590.456 670.254 630.587 620.706 690.599 880.665 940.612 530.868 790.791 810.579 78
PointNet2-SFPN0.631 790.771 550.692 900.672 830.524 920.837 380.440 760.706 780.538 750.446 930.944 750.421 860.219 760.552 760.751 610.591 910.737 670.543 870.901 490.768 900.557 88
3DSM_DMMF0.631 790.626 980.745 680.801 470.607 680.751 960.506 380.729 710.565 690.491 830.866 1130.434 760.197 890.595 600.630 830.709 450.705 800.560 750.875 690.740 980.491 102
APCF-Net0.631 790.742 680.687 950.672 830.557 860.792 810.408 840.665 870.545 740.508 780.952 490.428 810.186 920.634 500.702 710.620 810.706 790.555 790.873 720.798 700.581 77
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
FusionAwareConv0.630 820.604 1030.741 720.766 610.590 740.747 970.501 410.734 690.503 860.527 700.919 1030.454 680.323 250.550 780.420 1020.678 580.688 860.544 850.896 520.795 720.627 62
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 830.800 410.625 1050.719 700.545 890.806 710.445 710.597 950.448 1010.519 760.938 850.481 560.328 230.489 920.499 970.657 670.759 560.592 610.881 630.797 710.634 59
SegGroup_sempermissive0.627 840.818 370.747 670.701 740.602 700.764 920.385 960.629 920.490 890.508 780.931 960.409 890.201 860.564 710.725 650.618 820.692 840.539 890.873 720.794 730.548 91
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 850.830 330.694 880.757 630.563 840.772 900.448 680.647 900.520 800.509 770.949 590.431 790.191 900.496 900.614 850.647 720.672 920.535 920.876 680.783 840.571 80
Weakly-Openseg v30.625 850.924 80.787 420.620 980.555 880.811 690.393 910.666 860.382 1090.520 750.953 440.250 1130.208 800.604 590.670 760.644 760.742 650.538 900.919 360.803 660.513 99
dtc_net0.625 850.703 860.751 640.794 500.535 900.848 270.480 530.676 840.528 780.469 880.944 750.454 680.004 1180.464 950.636 820.704 480.758 570.548 840.924 300.787 820.492 101
HPEIN0.618 880.729 740.668 960.647 930.597 720.766 910.414 830.680 810.520 800.525 710.946 660.432 770.215 780.493 910.599 860.638 770.617 1030.570 690.897 510.806 640.605 70
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 890.858 260.772 500.489 1110.532 910.792 810.404 870.643 910.570 680.507 800.935 890.414 880.046 1150.510 860.702 710.602 870.705 800.549 830.859 830.773 890.534 94
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 900.760 600.667 970.649 920.521 930.793 790.457 630.648 890.528 780.434 980.947 630.401 910.153 1040.454 960.721 670.648 710.717 740.536 910.904 440.765 910.485 103
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 910.634 970.743 700.697 770.601 710.781 840.437 780.585 980.493 880.446 930.933 940.394 920.011 1170.654 430.661 810.603 860.733 690.526 930.832 890.761 930.480 104
LAP-D0.594 920.720 800.692 900.637 970.456 1020.773 890.391 940.730 700.587 580.445 950.940 830.381 950.288 400.434 990.453 1000.591 910.649 960.581 670.777 970.749 970.610 66
DPC0.592 930.720 800.700 840.602 1020.480 980.762 940.380 970.713 760.585 610.437 960.940 830.369 970.288 400.434 990.509 960.590 930.639 1010.567 730.772 980.755 950.592 76
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 940.766 590.659 1000.683 800.470 1010.740 990.387 950.620 940.490 890.476 860.922 1010.355 1000.245 670.511 850.511 950.571 960.643 990.493 1000.872 740.762 920.600 72
ROSMRF0.580 950.772 540.707 800.681 810.563 840.764 920.362 990.515 1060.465 970.465 900.936 880.427 830.207 810.438 970.577 880.536 990.675 910.486 1010.723 1040.779 850.524 96
SD-DETR0.576 960.746 650.609 1090.445 1150.517 940.643 1100.366 980.714 750.456 990.468 890.870 1120.432 770.264 590.558 740.674 750.586 940.688 860.482 1020.739 1020.733 1000.537 93
SQN_0.1%0.569 970.676 900.696 870.657 890.497 950.779 870.424 800.548 1020.515 820.376 1030.902 1100.422 850.357 100.379 1040.456 990.596 900.659 950.544 850.685 1070.665 1110.556 89
TextureNetpermissive0.566 980.672 920.664 980.671 850.494 960.719 1000.445 710.678 830.411 1070.396 1010.935 890.356 990.225 730.412 1010.535 910.565 970.636 1020.464 1040.794 960.680 1080.568 83
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 990.648 940.700 840.770 580.586 770.687 1040.333 1030.650 880.514 830.475 870.906 1070.359 980.223 750.340 1060.442 1010.422 1100.668 930.501 970.708 1050.779 850.534 94
Pointnet++ & Featurepermissive0.557 1000.735 700.661 990.686 790.491 970.744 980.392 920.539 1030.451 1000.375 1040.946 660.376 960.205 830.403 1020.356 1060.553 980.643 990.497 980.824 920.756 940.515 97
GMLPs0.538 1010.495 1110.693 890.647 930.471 1000.793 790.300 1060.477 1070.505 850.358 1050.903 1090.327 1030.081 1120.472 940.529 930.448 1080.710 750.509 940.746 1000.737 990.554 90
PanopticFusion-label0.529 1020.491 1120.688 930.604 1010.386 1070.632 1110.225 1170.705 790.434 1040.293 1110.815 1150.348 1010.241 680.499 890.669 770.507 1010.649 960.442 1100.796 950.602 1150.561 86
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1030.676 900.591 1120.609 990.442 1030.774 880.335 1020.597 950.422 1060.357 1060.932 950.341 1020.094 1110.298 1080.528 940.473 1060.676 900.495 990.602 1130.721 1030.349 115
Online SegFusion0.515 1040.607 1020.644 1030.579 1040.434 1040.630 1120.353 1000.628 930.440 1020.410 990.762 1180.307 1050.167 990.520 830.403 1040.516 1000.565 1060.447 1080.678 1080.701 1050.514 98
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1050.558 1070.608 1100.424 1170.478 990.690 1030.246 1130.586 970.468 950.450 920.911 1050.394 920.160 1020.438 970.212 1130.432 1090.541 1110.475 1030.742 1010.727 1010.477 105
PCNN0.498 1060.559 1060.644 1030.560 1060.420 1060.711 1020.229 1150.414 1080.436 1030.352 1070.941 810.324 1040.155 1030.238 1130.387 1050.493 1020.529 1120.509 940.813 940.751 960.504 100
3DMV0.484 1070.484 1130.538 1150.643 950.424 1050.606 1150.310 1040.574 990.433 1050.378 1020.796 1160.301 1060.214 790.537 810.208 1140.472 1070.507 1150.413 1130.693 1060.602 1150.539 92
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1080.577 1050.611 1080.356 1190.321 1150.715 1010.299 1080.376 1120.328 1150.319 1090.944 750.285 1080.164 1000.216 1160.229 1110.484 1040.545 1100.456 1060.755 990.709 1040.475 106
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1090.679 890.604 1110.578 1050.380 1080.682 1050.291 1090.106 1190.483 920.258 1170.920 1020.258 1120.025 1160.231 1150.325 1070.480 1050.560 1080.463 1050.725 1030.666 1100.231 119
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1100.474 1140.623 1060.463 1130.366 1100.651 1080.310 1040.389 1110.349 1130.330 1080.937 860.271 1100.126 1080.285 1090.224 1120.350 1150.577 1050.445 1090.625 1110.723 1020.394 111
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1110.548 1080.548 1140.597 1030.363 1110.628 1130.300 1060.292 1140.374 1100.307 1100.881 1110.268 1110.186 920.238 1130.204 1150.407 1110.506 1160.449 1070.667 1090.620 1140.462 109
SurfaceConvPF0.442 1110.505 1100.622 1070.380 1180.342 1130.654 1070.227 1160.397 1100.367 1110.276 1130.924 990.240 1140.198 880.359 1050.262 1090.366 1120.581 1040.435 1110.640 1100.668 1090.398 110
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1130.437 1160.646 1020.474 1120.369 1090.645 1090.353 1000.258 1160.282 1180.279 1120.918 1040.298 1070.147 1070.283 1100.294 1080.487 1030.562 1070.427 1120.619 1120.633 1130.352 114
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1140.525 1090.647 1010.522 1070.324 1140.488 1190.077 1200.712 770.353 1120.401 1000.636 1200.281 1090.176 950.340 1060.565 890.175 1190.551 1090.398 1140.370 1200.602 1150.361 113
SPLAT Netcopyleft0.393 1150.472 1150.511 1160.606 1000.311 1160.656 1060.245 1140.405 1090.328 1150.197 1180.927 980.227 1160.000 1200.001 1210.249 1100.271 1180.510 1130.383 1160.593 1140.699 1060.267 117
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1160.297 1180.491 1170.432 1160.358 1120.612 1140.274 1110.116 1180.411 1070.265 1140.904 1080.229 1150.079 1130.250 1110.185 1160.320 1160.510 1130.385 1150.548 1150.597 1180.394 111
PointNet++permissive0.339 1170.584 1040.478 1180.458 1140.256 1180.360 1200.250 1120.247 1170.278 1190.261 1160.677 1190.183 1170.117 1090.212 1170.145 1180.364 1130.346 1200.232 1200.548 1150.523 1190.252 118
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
GrowSP++0.323 1180.114 1200.589 1130.499 1090.147 1200.555 1160.290 1100.336 1130.290 1170.262 1150.865 1140.102 1200.000 1200.037 1190.000 1210.000 1210.462 1170.381 1170.389 1190.664 1120.473 107
SSC-UNetpermissive0.308 1190.353 1170.290 1200.278 1200.166 1190.553 1170.169 1190.286 1150.147 1200.148 1200.908 1060.182 1180.064 1140.023 1200.018 1200.354 1140.363 1180.345 1180.546 1170.685 1070.278 116
ScanNetpermissive0.306 1200.203 1190.366 1190.501 1080.311 1160.524 1180.211 1180.002 1210.342 1140.189 1190.786 1170.145 1190.102 1100.245 1120.152 1170.318 1170.348 1190.300 1190.460 1180.437 1200.182 120
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1210.000 1210.041 1210.172 1210.030 1210.062 1220.001 1210.035 1200.004 1210.051 1210.143 1210.019 1210.003 1190.041 1180.050 1190.003 1200.054 1210.018 1210.005 1220.264 1210.082 121
MVF-GNN0.014 1220.000 1210.000 1220.000 1220.007 1220.086 1210.000 1220.000 1220.001 1220.000 1220.029 1220.001 1220.000 1200.000 1220.000 1210.000 1210.000 1220.018 1210.015 1210.115 1220.000 122