Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail ioualarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefloorfolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwallwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DITR0.449 10.629 10.392 10.289 10.650 10.168 20.862 10.000 30.313 30.000 10.580 10.568 20.564 30.766 70.867 10.238 50.949 10.000 30.866 30.300 10.000 90.664 10.482 10.508 120.317 10.420 10.551 20.000 10.000 30.486 20.519 10.662 40.000 10.385 10.000 30.901 30.079 90.727 10.000 70.160 30.606 30.417 40.967 20.000 10.000 20.498 50.596 110.130 20.728 30.998 10.805 10.000 170.314 10.934 20.000 10.278 40.636 10.000 70.403 120.367 10.741 20.484 10.500 21.000 10.113 120.828 10.815 10.000 70.733 20.969 40.374 20.000 10.579 11.000 10.230 50.617 50.983 10.729 10.423 40.855 10.508 60.622 20.018 30.000 10.591 30.034 40.028 100.066 110.869 10.904 70.334 20.651 50.716 10.514 20.871 60.315 30.000 10.664 30.128 30.014 100.000 40.000 10.392 20.851 20.817 10.153 30.823 10.991 10.318 30.680 10.134 30.913 10.157 20.448 40.000 10.000 80.000 30.826 10.978 10.091 60.000 10.660 40.647 30.571 20.804 40.001 90.000 10.480 30.700 10.421 50.947 10.433 140.411 30.148 60.262 50.000 10.849 10.709 60.138 100.150 20.714 30.889 10.000 10.698 10.222 40.000 70.000 10.720 20.000 20.000 10.805 10.600 10.642 30.268 90.904 10.982 20.477 10.632 60.718 20.139 90.776 20.000 10.178 10.886 10.962 10.839 80.000 10.851 20.043 120.869 40.000 10.710 10.315 60.348 30.753 20.397 8
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation.
ALS-MinkowskiNetcopyleft0.414 20.610 20.322 30.271 20.542 20.153 30.159 110.000 30.000 70.000 10.404 40.503 50.532 60.672 160.804 50.285 10.888 20.000 30.900 20.226 20.087 20.598 40.342 50.671 10.217 100.087 30.449 40.000 10.000 30.253 30.477 61.000 10.000 10.118 50.000 30.905 10.071 130.710 20.076 20.047 160.665 10.376 80.981 10.000 10.000 20.466 70.632 70.113 40.769 10.956 40.795 20.031 90.314 10.936 10.000 10.390 20.601 30.000 70.458 80.366 20.719 30.440 50.564 10.699 40.314 10.464 70.784 20.200 10.283 60.973 10.142 90.000 10.250 70.285 60.220 70.718 10.752 60.723 20.460 10.248 150.475 100.463 130.000 40.000 10.446 80.021 50.025 110.285 10.000 40.972 10.149 80.769 10.230 30.535 10.879 20.252 80.000 10.693 10.129 20.000 140.000 40.000 10.447 10.958 10.662 90.159 20.598 30.780 110.344 20.646 30.106 60.893 30.135 30.455 30.000 10.194 30.259 10.726 30.475 40.000 90.000 10.741 10.865 10.571 20.817 30.445 30.000 10.506 20.630 30.230 120.916 20.728 10.635 11.000 10.252 60.000 10.804 20.697 70.137 110.043 70.717 20.807 30.000 10.510 130.245 20.000 70.000 10.709 30.000 20.000 10.703 20.572 40.646 20.223 100.531 50.984 10.397 30.813 10.798 10.135 120.800 10.000 10.097 20.832 20.752 80.842 70.000 10.852 10.149 90.846 100.000 10.666 50.359 50.252 80.777 10.690 2
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. CVPR 2025
L3DETR-ScanNet_2000.336 80.533 110.279 60.155 100.508 50.073 110.101 170.000 30.058 60.000 10.294 140.233 140.548 40.927 10.788 100.264 20.463 110.000 30.638 120.098 130.014 70.411 120.226 130.525 100.225 90.010 70.397 60.000 10.000 30.192 60.380 140.598 60.000 10.117 60.000 30.883 60.082 80.689 40.000 70.032 170.549 60.417 40.910 50.000 10.000 20.448 80.613 90.000 100.697 70.960 30.759 40.158 20.293 30.883 70.000 10.312 30.583 40.079 40.422 110.068 170.660 70.418 70.298 120.430 120.114 110.526 50.776 30.051 30.679 30.946 60.152 70.000 10.183 80.000 150.211 80.511 100.409 160.565 120.355 80.448 80.512 50.557 30.000 40.000 10.420 90.000 110.007 170.104 60.000 40.125 170.330 30.514 150.146 120.321 130.860 80.174 110.000 10.629 60.075 140.000 140.000 40.000 10.002 100.671 80.712 70.141 60.339 120.856 40.261 120.529 100.067 100.835 60.000 60.369 120.000 10.259 20.000 30.629 60.000 50.487 10.000 10.579 110.646 40.107 170.720 110.122 70.000 10.333 140.505 100.303 90.908 30.503 130.565 20.074 80.324 10.000 10.740 80.661 110.109 130.000 100.427 130.563 170.000 10.579 110.108 80.000 70.000 10.664 60.000 20.000 10.641 70.539 110.416 70.515 20.256 110.940 120.312 60.209 170.620 30.138 110.636 110.000 10.000 120.775 130.861 50.765 120.000 10.801 90.119 110.860 80.000 10.687 20.001 140.192 140.679 90.699 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
BFANet ScanNet200permissive0.360 50.553 70.293 50.193 50.483 100.096 60.266 60.000 30.000 70.000 10.298 130.255 120.661 10.810 50.810 30.194 100.785 70.000 30.000 170.161 60.000 90.494 90.382 30.574 30.258 50.000 90.372 90.000 10.000 30.043 140.436 80.000 110.000 10.239 30.000 30.901 30.105 10.689 40.025 40.128 40.614 20.436 10.493 170.000 10.000 20.526 40.546 130.109 50.651 140.953 50.753 60.101 50.143 130.897 50.000 10.431 10.469 150.000 70.522 60.337 50.661 60.459 30.409 60.666 50.102 140.508 60.757 40.000 70.060 140.970 30.497 10.000 10.376 30.511 30.262 40.688 20.921 20.617 100.321 120.590 60.491 90.556 40.000 40.000 10.481 50.093 10.043 30.284 20.000 40.875 140.135 90.669 40.124 130.394 60.849 110.298 40.000 10.476 170.088 130.042 70.000 40.000 10.254 40.653 100.741 60.215 10.573 50.852 50.266 100.654 20.056 120.835 60.000 60.492 10.000 10.000 80.000 30.612 90.000 50.000 90.000 10.616 60.469 170.460 50.698 140.516 20.000 10.378 80.563 40.476 40.863 50.574 90.330 60.000 110.282 30.000 10.760 40.710 50.233 10.000 100.641 50.814 20.000 10.585 100.053 110.000 70.000 10.629 100.000 20.000 10.678 30.528 130.534 50.129 140.596 40.973 40.264 120.772 20.526 100.139 90.707 40.000 10.000 120.764 140.591 160.848 60.000 10.827 40.338 30.806 120.000 10.568 90.151 100.358 20.659 100.510 4
Weiguang Zhao, Rui Zhang, Qiufeng Wang, Guangliang Cheng, Kaizhu Huang: BFANet: Revisiting 3D Semantic Segmentation with Boundary Feature Analysis. CVPR 2025
OA-CNN-L_ScanNet2000.333 110.558 50.269 90.124 130.448 140.080 90.272 50.000 30.000 70.000 10.342 80.515 40.524 70.713 130.789 90.158 120.384 120.000 30.806 60.125 70.000 90.496 80.332 70.498 140.227 80.024 60.474 30.000 10.003 20.071 90.487 30.000 110.000 10.110 80.000 30.876 70.013 170.703 30.000 70.076 90.473 120.355 110.906 60.000 10.000 20.476 60.706 10.000 100.672 100.835 130.748 90.015 130.223 70.860 110.000 10.000 110.572 70.000 70.509 70.313 70.662 40.398 130.396 80.411 130.276 20.527 40.711 50.000 70.076 130.946 60.166 60.000 10.022 100.160 70.183 130.493 130.699 90.637 60.403 60.330 120.406 130.526 60.024 20.000 10.392 110.000 110.016 160.000 120.196 30.915 50.112 120.557 100.197 60.352 100.877 30.000 120.000 10.592 120.103 110.000 140.067 10.000 10.089 70.735 70.625 110.130 90.568 60.836 70.271 80.534 90.043 130.799 110.001 50.445 50.000 10.000 80.024 20.661 40.000 50.262 30.000 10.591 80.517 130.373 80.788 70.021 80.000 10.455 40.517 90.320 80.823 120.200 160.001 170.150 50.100 120.000 10.736 90.668 100.103 140.052 60.662 40.720 80.000 10.602 60.112 70.002 60.000 10.637 90.000 20.000 10.621 100.569 50.398 90.412 50.234 120.949 60.363 50.492 140.495 110.251 40.665 90.000 10.001 110.805 70.833 60.794 110.000 10.821 50.314 50.843 110.000 10.560 100.245 70.262 60.713 40.370 11
ODIN - Sem200permissive0.368 40.562 40.297 40.207 40.380 170.196 10.828 20.000 30.321 20.000 10.400 50.775 10.460 130.501 170.769 120.065 150.870 30.000 30.913 10.213 30.000 90.000 170.389 20.554 40.312 30.000 90.591 10.000 10.000 30.491 10.487 30.894 20.000 10.378 20.303 10.796 170.088 60.669 130.081 10.216 10.256 170.334 130.898 70.000 10.000 20.370 140.599 100.000 100.581 160.988 20.749 80.090 60.242 50.921 40.000 10.202 50.609 20.000 70.655 10.214 130.654 90.346 150.408 70.485 90.169 80.631 20.704 60.000 70.814 10.940 100.127 160.000 10.000 120.462 40.227 60.641 40.885 30.657 50.434 30.000 170.550 20.393 150.000 40.000 10.590 40.000 110.048 20.077 90.000 40.784 160.131 100.557 100.316 20.359 80.833 140.373 20.000 10.661 40.108 90.001 120.000 40.000 10.301 30.612 110.565 150.129 100.482 80.468 160.274 50.561 80.376 10.912 20.181 10.440 60.000 10.166 40.000 30.641 50.000 50.426 20.000 10.642 50.626 70.259 110.787 80.429 40.000 10.589 10.523 80.246 110.857 60.000 170.228 90.000 110.265 40.000 10.752 60.832 10.090 160.157 10.791 10.578 160.000 10.373 150.539 10.000 70.000 10.685 50.000 20.000 10.632 80.575 30.663 10.152 110.358 90.926 130.397 30.454 150.610 40.119 150.685 70.000 10.000 120.803 80.740 90.441 140.000 10.800 100.000 170.871 30.000 10.220 170.487 10.862 10.682 60.054 17
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
PTv3 ScanNet2000.393 30.592 30.330 20.216 30.520 30.109 50.108 160.000 30.337 10.000 10.310 120.394 90.494 110.753 90.848 20.256 30.717 80.000 30.842 40.192 50.065 30.449 100.346 40.546 60.190 130.000 90.384 70.000 10.000 30.218 40.505 20.791 30.000 10.136 40.000 30.903 20.073 120.687 60.000 70.168 20.551 50.387 70.941 30.000 10.000 20.397 120.654 30.000 100.714 50.759 150.752 70.118 40.264 40.926 30.000 10.048 60.575 50.000 70.597 20.366 20.755 10.469 20.474 30.798 20.140 100.617 30.692 70.000 70.592 40.971 20.188 40.000 10.133 90.593 20.349 10.650 30.717 80.699 30.455 20.790 20.523 40.636 10.301 10.000 10.622 20.000 110.017 150.259 30.000 40.921 30.337 10.733 20.210 40.514 20.860 80.407 10.000 10.688 20.109 80.000 140.000 40.000 10.151 50.671 80.782 20.115 130.641 20.903 20.349 10.616 40.088 70.832 80.000 60.480 20.000 10.428 10.000 30.497 100.000 50.000 90.000 10.662 30.690 20.612 10.828 10.575 10.000 10.404 70.644 20.325 70.887 40.728 10.009 160.134 70.026 170.000 10.761 30.731 40.172 60.077 40.528 80.727 70.000 10.603 50.220 50.022 30.000 10.740 10.000 20.000 10.661 40.586 20.566 40.436 40.531 50.978 30.457 20.708 30.583 60.141 70.748 30.000 10.026 50.822 30.871 40.879 50.000 10.851 20.405 20.914 10.000 10.682 30.000 150.281 40.738 30.463 6
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
CeCo0.340 70.551 90.247 130.181 60.475 120.057 150.142 120.000 30.000 70.000 10.387 60.463 60.499 90.924 20.774 110.213 60.257 130.000 30.546 150.100 110.006 80.615 20.177 170.534 70.246 60.000 90.400 50.000 10.338 10.006 160.484 50.609 50.000 10.083 110.000 30.873 90.089 50.661 140.000 70.048 150.560 40.408 60.892 80.000 10.000 20.586 10.616 80.000 100.692 80.900 80.721 120.162 10.228 60.860 110.000 10.000 110.575 50.083 30.550 40.347 40.624 130.410 100.360 90.740 30.109 130.321 150.660 80.000 70.121 90.939 130.143 80.000 10.400 20.003 130.190 110.564 60.652 100.615 110.421 50.304 130.579 10.547 50.000 40.000 10.296 140.000 110.030 90.096 70.000 40.916 40.037 130.551 120.171 90.376 70.865 70.286 50.000 10.633 50.102 120.027 80.011 30.000 10.000 110.474 140.742 50.133 70.311 130.824 80.242 130.503 140.068 90.828 90.000 60.429 70.000 10.063 50.000 30.781 20.000 50.000 90.000 10.665 20.633 60.450 60.818 20.000 100.000 10.429 50.532 70.226 130.825 110.510 110.377 50.709 20.079 140.000 10.753 50.683 80.102 150.063 50.401 160.620 130.000 10.619 30.000 140.000 70.000 10.595 130.000 20.000 10.345 140.564 60.411 80.603 10.384 80.945 90.266 110.643 50.367 140.304 10.663 100.000 10.010 70.726 150.767 70.898 30.000 10.784 130.435 10.861 70.000 10.447 110.000 150.257 70.656 110.377 10
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
OctFormer ScanNet200permissive0.326 130.539 100.265 100.131 120.499 60.110 40.522 30.000 30.000 70.000 10.318 110.427 70.455 150.743 110.765 130.175 110.842 40.000 30.828 50.204 40.033 60.429 110.335 60.601 20.312 30.000 90.357 100.000 10.000 30.047 110.423 90.000 110.000 10.105 90.000 30.873 90.079 90.670 120.000 70.117 50.471 130.432 30.829 110.000 10.000 20.584 20.417 170.089 60.684 90.837 120.705 160.021 120.178 110.892 60.000 10.028 80.505 130.000 70.457 90.200 140.662 40.412 90.244 150.496 80.000 170.451 80.626 90.000 70.102 110.943 90.138 130.000 10.000 120.149 80.291 30.534 90.722 70.632 70.331 100.253 140.453 110.487 110.000 40.000 10.479 60.000 110.022 130.000 120.000 40.900 100.128 110.684 30.164 100.413 40.854 100.000 120.000 10.512 160.074 150.003 110.000 40.000 10.000 110.469 150.613 120.132 80.529 70.871 30.227 160.582 70.026 170.787 120.000 60.339 150.000 10.000 80.000 30.626 70.000 50.029 80.000 10.587 90.612 80.411 70.724 100.000 100.000 10.407 60.552 50.513 30.849 100.655 40.408 40.000 110.296 20.000 10.686 150.645 140.145 80.022 80.414 140.633 110.000 10.637 20.224 30.000 70.000 10.650 80.000 20.000 10.622 90.535 120.343 120.483 30.230 130.943 100.289 100.618 70.596 50.140 80.679 80.000 10.022 60.783 110.620 120.906 10.000 10.806 80.137 100.865 50.000 10.378 120.000 150.168 150.680 80.227 13
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
PonderV2 ScanNet2000.346 60.552 80.270 80.175 90.497 70.070 120.239 70.000 30.000 70.000 10.232 170.412 80.584 20.842 30.804 50.212 70.540 100.000 30.433 160.106 100.000 90.590 50.290 120.548 50.243 70.000 90.356 110.000 10.000 30.062 100.398 130.441 100.000 10.104 100.000 30.888 50.076 110.682 90.030 30.094 70.491 110.351 120.869 100.000 10.063 10.403 110.700 20.000 100.660 130.881 90.761 30.050 80.186 100.852 130.000 10.007 90.570 80.100 20.565 30.326 60.641 100.431 60.290 140.621 60.259 30.408 110.622 100.125 20.082 120.950 50.179 50.000 10.263 60.424 50.193 90.558 70.880 40.545 130.375 70.727 30.445 120.499 80.000 40.000 10.475 70.002 90.034 60.083 80.000 40.924 20.290 40.636 60.115 140.400 50.874 40.186 100.000 10.611 80.128 30.113 20.000 40.000 10.000 110.584 120.636 100.103 140.385 100.843 60.283 40.603 60.080 80.825 100.000 60.377 100.000 10.000 80.000 30.457 110.000 50.000 90.000 10.574 120.608 90.481 40.792 50.394 50.000 10.357 100.503 110.261 100.817 130.504 120.304 70.472 40.115 110.000 10.750 70.677 90.202 20.000 100.509 90.729 60.000 10.519 120.000 140.000 70.000 10.620 120.000 20.000 10.660 60.560 70.486 60.384 60.346 100.952 50.247 140.667 40.436 120.269 30.691 60.000 10.010 70.787 100.889 30.880 40.000 10.810 70.336 40.860 80.000 10.606 80.009 110.248 90.681 70.392 9
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
PPT-SpUNet-F.T.0.332 120.556 60.270 70.123 140.519 40.091 70.349 40.000 30.000 70.000 10.339 90.383 100.498 100.833 40.807 40.241 40.584 90.000 30.755 70.124 80.000 90.608 30.330 80.530 90.314 20.000 90.374 80.000 10.000 30.197 50.459 70.000 110.000 10.117 60.000 30.876 70.095 20.682 90.000 70.086 80.518 70.433 20.930 40.000 10.000 20.563 30.542 140.077 70.715 40.858 110.756 50.008 160.171 120.874 80.000 10.039 70.550 110.000 70.545 50.256 80.657 80.453 40.351 100.449 110.213 60.392 120.611 110.000 70.037 150.946 60.138 130.000 10.000 120.063 110.308 20.537 80.796 50.673 40.323 110.392 100.400 140.509 70.000 40.000 10.649 10.000 110.023 120.000 120.000 40.914 60.002 160.506 160.163 110.359 80.872 50.000 120.000 10.623 70.112 60.001 120.000 40.000 10.021 90.753 50.565 150.150 40.579 40.806 90.267 90.616 40.042 140.783 130.000 60.374 110.000 10.000 80.000 30.620 80.000 50.000 90.000 10.572 130.634 50.350 90.792 50.000 100.000 10.376 90.535 60.378 60.855 70.672 30.074 130.000 110.185 100.000 10.727 120.660 120.076 170.000 100.432 120.646 100.000 10.594 80.006 130.000 70.000 10.658 70.000 20.000 10.661 40.549 100.300 140.291 80.045 140.942 110.304 80.600 80.572 70.135 120.695 50.000 10.008 90.793 90.942 20.899 20.000 10.816 60.181 70.897 20.000 10.679 40.223 80.264 50.691 50.345 12
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
AWCS0.305 140.508 140.225 140.142 110.463 130.063 130.195 90.000 30.000 70.000 10.467 30.551 30.504 80.773 60.764 140.142 130.029 170.000 30.626 130.100 110.000 90.360 130.179 150.507 130.137 150.006 80.300 120.000 10.000 30.172 80.364 150.512 90.000 10.056 140.000 30.865 130.093 40.634 170.000 70.071 130.396 140.296 160.876 90.000 10.000 20.373 130.436 160.063 90.749 20.877 100.721 120.131 30.124 140.804 150.000 10.000 110.515 120.010 60.452 100.252 90.578 140.417 80.179 170.484 100.171 70.337 140.606 120.000 70.115 100.937 140.142 90.000 10.008 110.000 150.157 160.484 140.402 170.501 150.339 90.553 70.529 30.478 120.000 40.000 10.404 100.001 100.022 130.077 90.000 40.894 120.219 70.628 70.093 150.305 140.886 10.233 90.000 10.603 90.112 60.023 90.000 40.000 10.000 110.741 60.664 80.097 150.253 140.782 100.264 110.523 110.154 20.707 160.000 60.411 80.000 10.000 80.000 30.332 160.000 50.000 90.000 10.602 70.595 100.185 130.656 160.159 60.000 10.355 110.424 150.154 150.729 150.516 100.220 100.620 30.084 130.000 10.707 140.651 130.173 50.014 90.381 170.582 140.000 10.619 30.049 120.000 70.000 10.702 40.000 20.000 10.302 160.489 150.317 130.334 70.392 70.922 140.254 130.533 130.394 130.129 140.613 150.000 10.000 120.820 50.649 110.749 130.000 10.782 140.282 60.863 60.000 10.288 150.006 120.220 110.633 140.542 3
: Long-Tailed 3D Semantic Segmentation with Adaptive Weight Constraint and Sampling. ICRA 2024
IMFSegNet0.334 90.532 130.251 110.179 70.486 90.041 160.139 130.003 10.283 40.000 10.274 150.191 150.457 140.704 140.795 70.197 90.830 60.000 30.710 90.055 160.064 40.518 60.305 100.458 170.216 120.027 50.284 130.000 10.000 30.044 120.406 100.561 70.000 10.080 120.000 30.873 90.021 150.683 80.000 70.076 90.494 100.363 90.648 160.000 10.000 20.425 90.649 40.000 100.668 120.908 70.740 110.010 140.206 80.862 100.000 10.000 110.560 90.000 70.359 130.237 110.631 120.408 110.411 40.322 150.246 40.439 100.599 130.047 40.213 70.940 100.139 110.000 10.369 50.124 100.188 120.495 110.624 110.626 80.320 140.595 40.495 80.496 100.000 40.000 10.340 120.014 60.032 70.135 50.000 40.903 80.277 60.612 80.196 70.344 120.848 130.260 60.000 10.574 130.073 160.062 40.000 40.000 10.091 60.839 30.776 30.123 120.392 90.756 120.274 50.518 120.029 160.842 40.000 60.357 130.000 10.035 70.000 30.444 120.793 20.245 50.000 10.512 160.512 150.159 150.713 130.000 100.000 10.336 130.484 120.569 20.852 90.615 60.120 120.068 100.228 80.000 10.733 100.773 20.190 40.000 100.608 60.792 40.000 10.597 70.000 140.025 20.000 10.573 170.000 20.000 10.508 110.555 80.363 100.139 120.610 20.947 80.305 70.594 90.527 90.009 170.633 130.000 10.060 30.820 50.604 150.799 90.000 10.799 110.034 140.784 130.000 10.618 60.424 20.134 160.646 130.214 14
GSTran0.334 100.533 120.250 120.179 80.487 80.041 160.139 130.003 10.273 50.000 10.273 160.189 160.465 120.704 140.794 80.198 80.831 50.000 30.712 80.055 160.063 50.518 60.306 90.459 160.217 100.028 40.282 140.000 10.000 30.044 120.405 110.558 80.000 10.080 120.000 30.873 90.020 160.684 70.000 70.075 120.496 90.363 90.651 150.000 10.000 20.425 90.648 50.000 100.669 110.914 60.741 100.009 150.200 90.864 90.000 10.000 110.560 90.000 70.357 140.233 120.633 110.408 110.411 40.320 160.242 50.440 90.598 140.047 40.205 80.940 100.139 110.000 10.372 40.138 90.191 100.495 110.618 130.624 90.321 120.595 40.496 70.499 80.000 40.000 10.340 120.014 60.032 70.136 40.000 40.903 80.279 50.601 90.198 50.345 110.849 110.260 60.000 10.573 140.072 170.060 50.000 40.000 10.089 70.838 40.775 40.125 110.381 110.752 130.274 50.517 130.032 150.841 50.000 60.354 140.000 10.047 60.000 30.439 130.787 30.252 40.000 10.512 160.507 160.158 160.717 120.000 100.000 10.337 120.483 130.570 10.853 80.614 70.121 110.070 90.229 70.000 10.732 110.773 20.193 30.000 100.606 70.791 50.000 10.593 90.000 140.010 50.000 10.574 160.000 20.000 10.507 120.554 90.361 110.136 130.608 30.948 70.304 80.593 100.533 80.011 160.634 120.000 10.060 30.821 40.613 130.797 100.000 10.799 110.036 130.782 140.000 10.609 70.423 30.133 170.647 120.213 15
LGroundpermissive0.272 150.485 150.184 150.106 150.476 110.077 100.218 80.000 30.000 70.000 10.547 20.295 110.540 50.746 100.745 150.058 160.112 160.005 10.658 110.077 150.000 90.322 140.178 160.512 110.190 130.199 20.277 150.000 10.000 30.173 70.399 120.000 110.000 10.039 160.000 30.858 140.085 70.676 110.002 50.103 60.498 80.323 140.703 120.000 10.000 20.296 150.549 120.216 10.702 60.768 140.718 140.028 100.092 160.786 160.000 10.000 110.453 160.022 50.251 170.252 90.572 150.348 140.321 110.514 70.063 150.279 160.552 150.000 70.019 160.932 150.132 150.000 10.000 120.000 150.156 170.457 150.623 120.518 140.265 160.358 110.381 150.395 140.000 40.000 10.127 170.012 80.051 10.000 120.000 40.886 130.014 140.437 170.179 80.244 150.826 150.000 120.000 10.599 100.136 10.085 30.000 40.000 10.000 110.565 130.612 130.143 50.207 150.566 140.232 150.446 150.127 40.708 150.000 60.384 90.000 10.000 80.000 30.402 140.000 50.059 70.000 10.525 150.566 110.229 120.659 150.000 100.000 10.265 150.446 140.147 160.720 170.597 80.066 140.000 110.187 90.000 10.726 130.467 170.134 120.000 100.413 150.629 120.000 10.363 160.055 100.022 30.000 10.626 110.000 20.000 10.323 150.479 170.154 160.117 150.028 160.901 150.243 150.415 160.295 170.143 60.610 160.000 10.000 120.777 120.397 170.324 160.000 10.778 150.179 80.702 160.000 10.274 160.404 40.233 100.622 150.398 7
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
Minkowski 34Dpermissive0.253 160.463 160.154 170.102 160.381 160.084 80.134 150.000 30.000 70.000 10.386 70.141 170.279 170.737 120.703 160.014 170.164 150.000 30.663 100.092 140.000 90.224 150.291 110.531 80.056 170.000 90.242 160.000 10.000 30.013 150.331 160.000 110.000 10.035 170.001 20.858 140.059 140.650 160.000 70.056 140.353 150.299 150.670 130.000 10.000 20.284 160.484 150.071 80.594 150.720 160.710 150.027 110.068 170.813 140.000 10.005 100.492 140.164 10.274 160.111 160.571 160.307 170.293 130.307 170.150 90.163 170.531 160.002 60.545 50.932 150.093 170.000 10.000 120.002 140.159 150.368 170.581 150.440 170.228 170.406 90.282 170.294 160.000 40.000 10.189 160.060 20.036 50.000 120.000 40.897 110.000 170.525 140.025 170.205 170.771 170.000 120.000 10.593 110.108 90.044 60.000 40.000 10.000 110.282 170.589 140.094 160.169 160.466 170.227 160.419 170.125 50.757 140.002 40.334 160.000 10.000 80.000 30.357 150.000 50.000 90.000 10.582 100.513 140.337 100.612 170.000 100.000 10.250 160.352 170.136 170.724 160.655 40.280 80.000 110.046 160.000 10.606 170.559 150.159 70.102 30.445 100.655 90.000 10.310 170.117 60.000 70.000 10.581 150.026 10.000 10.265 170.483 160.084 170.097 170.044 150.865 170.142 170.588 110.351 150.272 20.596 170.000 10.003 100.622 160.720 100.096 170.000 10.771 160.016 150.772 150.000 10.302 140.194 90.214 120.621 160.197 16
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrainpermissive0.249 170.455 170.171 160.079 170.418 150.059 140.186 100.000 30.000 70.000 10.335 100.250 130.316 160.766 70.697 170.142 130.170 140.003 20.553 140.112 90.097 10.201 160.186 140.476 150.081 160.000 90.216 170.000 10.000 30.001 170.314 170.000 110.000 10.055 150.000 30.832 160.094 30.659 150.002 50.076 90.310 160.293 170.664 140.000 10.000 20.175 170.634 60.130 20.552 170.686 170.700 170.076 70.110 150.770 170.000 10.000 110.430 170.000 70.319 150.166 150.542 170.327 160.205 160.332 140.052 160.375 130.444 170.000 70.012 170.930 170.203 30.000 10.000 120.046 120.175 140.413 160.592 140.471 160.299 150.152 160.340 160.247 170.000 40.000 10.225 150.058 30.037 40.000 120.207 20.862 150.014 140.548 130.033 160.233 160.816 160.000 120.000 10.542 150.123 50.121 10.019 20.000 10.000 110.463 160.454 170.045 170.128 170.557 150.235 140.441 160.063 110.484 170.000 60.308 170.000 10.000 80.000 30.318 170.000 50.000 90.000 10.545 140.543 120.164 140.734 90.000 100.000 10.215 170.371 160.198 140.743 140.205 150.062 150.000 110.079 140.000 10.683 160.547 160.142 90.000 100.441 110.579 150.000 10.464 140.098 90.041 10.000 10.590 140.000 20.000 10.373 130.494 140.174 150.105 160.001 170.895 160.222 160.537 120.307 160.180 50.625 140.000 10.000 120.591 170.609 140.398 150.000 10.766 170.014 160.638 170.000 10.377 130.004 130.206 130.609 170.465 5
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg aphead apcommon aptail apalarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TD3D Scannet200permissive0.211 30.332 30.177 30.103 30.337 30.036 30.222 50.000 10.000 20.000 10.031 20.342 20.093 50.852 10.452 50.559 20.000 30.004 20.000 40.039 10.000 20.309 20.047 50.380 20.028 30.000 10.080 30.000 10.000 20.147 20.192 40.000 30.000 10.083 20.000 20.395 20.039 50.662 10.000 20.000 30.074 20.135 20.296 30.000 20.000 10.231 50.646 10.139 40.633 31.000 10.705 10.048 10.088 30.439 20.184 20.039 30.266 20.551 20.260 40.026 60.463 30.046 40.252 20.249 30.083 30.372 10.411 10.000 20.414 20.323 10.000 10.052 20.000 20.157 20.278 30.278 30.237 30.015 30.321 20.253 10.060 50.000 10.000 10.272 30.008 10.169 20.032 30.000 10.404 10.356 20.283 30.073 40.028 60.617 20.038 30.000 10.494 20.037 20.215 10.083 30.000 20.003 30.486 30.694 10.000 30.040 50.083 50.219 60.209 30.007 20.483 20.000 30.125 40.000 10.150 30.014 10.544 20.000 10.000 30.000 10.260 50.143 60.200 20.610 30.028 30.032 10.145 20.059 30.046 40.740 30.806 10.543 20.000 20.108 30.008 10.222 60.669 20.456 10.074 10.224 10.586 10.006 20.451 30.000 20.002 10.889 10.282 30.000 10.000 10.252 30.413 20.111 30.074 20.240 20.893 10.266 30.144 40.293 30.281 20.604 30.000 10.000 20.379 60.963 10.250 50.000 10.160 10.420 30.000 10.343 30.207 30.079 60.315 20.052 3
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
Mask3D Scannet2000.278 10.383 10.263 20.168 10.506 10.068 10.083 60.000 10.000 20.000 10.023 30.149 50.302 10.778 30.647 10.569 10.500 20.031 10.014 30.027 30.173 10.311 10.195 10.351 30.258 20.000 10.082 20.000 10.003 10.037 30.391 21.000 10.000 10.014 30.000 20.572 10.573 10.661 20.000 20.003 20.005 50.082 50.349 20.028 10.000 10.605 10.515 40.509 10.711 11.000 10.665 30.015 30.107 20.402 40.201 10.083 20.304 10.759 10.491 10.378 10.572 10.119 10.277 10.013 60.089 20.283 20.411 20.267 10.006 40.156 20.000 10.116 10.000 20.105 40.556 20.514 10.396 10.275 10.323 10.215 20.380 10.000 10.000 10.356 20.005 20.208 10.325 10.000 10.050 50.400 10.561 10.258 20.179 10.722 10.147 20.000 10.586 10.063 10.015 20.139 20.016 10.028 20.708 10.418 30.016 20.048 40.500 10.489 10.349 10.001 30.475 30.086 20.365 10.000 10.500 10.000 20.323 40.000 10.222 20.000 10.497 10.626 10.044 40.795 10.556 20.008 20.121 50.265 10.667 10.789 10.568 20.579 10.444 10.176 20.004 20.474 10.752 10.233 20.014 20.002 50.570 20.007 10.377 60.000 20.000 20.000 20.337 20.000 10.000 10.384 10.465 10.287 20.085 10.048 30.816 60.467 10.810 10.377 20.415 10.744 10.000 10.004 10.724 10.778 20.590 10.000 10.032 20.441 20.000 10.377 20.391 10.427 20.321 10.192 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
ODIN - Ins200permissive0.265 20.349 20.268 10.163 20.360 20.054 20.278 10.000 10.125 10.000 10.031 10.506 10.266 20.630 40.609 20.481 30.903 10.000 31.000 10.032 20.000 20.022 50.138 20.314 50.310 10.000 10.178 10.000 10.000 20.552 10.421 10.889 20.000 10.451 10.097 10.357 30.054 30.485 60.052 10.040 10.210 10.160 10.370 10.000 20.000 10.191 60.529 20.250 20.617 41.000 10.492 60.016 20.197 10.324 50.000 30.250 10.265 30.167 30.317 20.200 30.549 20.107 20.231 30.119 50.141 10.253 30.267 30.000 20.565 10.111 30.000 10.000 30.278 10.285 10.665 10.389 20.306 20.077 20.037 60.186 60.156 30.000 10.000 10.478 10.000 30.091 30.204 20.000 10.345 20.200 30.550 20.674 10.160 20.526 30.438 10.000 10.476 30.035 30.003 30.444 10.000 20.333 10.361 40.606 20.083 10.332 10.417 30.327 20.297 20.035 10.615 10.281 10.083 50.000 10.250 20.000 20.610 10.000 10.333 10.000 10.238 60.481 20.218 10.440 51.000 10.000 30.229 10.257 20.000 50.746 20.361 60.188 30.000 20.221 10.000 30.320 20.655 30.193 30.000 30.067 20.389 40.000 30.594 10.037 10.000 20.000 20.371 10.000 10.000 10.344 20.366 40.506 10.074 20.250 10.848 40.451 20.389 20.546 10.205 30.698 20.000 10.000 20.494 40.769 40.493 20.000 10.000 30.463 10.000 10.333 40.333 20.640 10.251 30.115 2
LGround Inst.permissive0.154 40.275 40.108 40.060 40.295 60.002 50.278 10.000 10.000 20.000 10.006 50.272 30.064 60.815 20.503 40.333 60.000 30.000 30.556 20.001 50.000 20.148 30.078 30.448 10.007 40.000 10.024 40.000 10.000 20.000 40.190 50.000 30.000 10.000 40.000 20.209 60.031 60.573 30.000 20.000 30.041 30.099 40.037 50.000 20.000 10.327 20.364 60.181 30.642 21.000 10.654 40.000 40.023 40.429 30.000 30.000 40.097 40.000 40.278 30.267 20.434 40.048 30.092 40.257 20.030 40.097 50.189 40.000 20.089 30.000 60.000 10.000 30.000 20.115 30.166 40.222 60.222 40.003 40.127 30.213 40.169 20.000 10.000 10.000 40.000 30.044 40.000 40.000 10.000 60.000 50.268 60.222 30.130 30.494 40.000 40.000 10.363 40.015 40.000 40.000 40.000 20.000 40.611 20.400 40.000 30.056 30.278 40.242 50.180 40.000 40.383 50.000 30.209 20.000 10.000 40.000 20.364 30.000 10.000 30.000 10.323 40.302 40.019 50.654 20.000 40.000 30.141 30.045 40.000 50.427 60.514 30.143 40.000 20.028 50.000 30.252 40.402 50.156 50.000 30.028 30.470 30.000 30.444 40.000 20.000 20.000 20.205 40.000 10.000 10.203 40.381 30.026 40.037 40.000 40.881 30.099 50.135 50.239 40.000 50.585 50.000 10.000 20.616 20.778 20.322 30.000 10.000 30.407 40.000 10.333 40.148 40.177 40.242 40.028 4
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.
CSC-Pretrain Inst.permissive0.123 60.223 60.082 60.046 50.308 40.004 40.278 10.000 10.000 20.000 10.000 60.032 60.105 40.537 50.348 60.378 50.000 30.000 30.000 40.000 60.000 20.000 60.037 60.323 40.000 50.000 10.013 60.000 10.000 20.000 40.235 30.000 30.000 10.000 40.000 20.231 40.045 40.564 40.000 20.000 30.006 40.078 60.065 40.000 20.000 10.259 30.516 30.000 50.600 51.000 10.578 50.000 40.000 60.184 60.000 30.000 40.034 60.000 40.211 50.089 40.394 60.018 60.064 50.171 40.001 60.144 40.172 50.000 20.000 50.044 50.000 10.000 30.000 20.064 60.126 50.278 30.093 60.000 50.094 40.214 30.011 60.000 10.000 10.000 40.000 30.022 60.000 40.000 10.275 40.000 50.275 50.000 60.098 50.407 50.000 40.000 10.250 60.007 60.000 40.000 40.000 20.000 40.333 50.376 50.000 30.000 60.042 60.285 40.119 50.000 40.224 60.000 30.184 30.000 10.000 40.000 20.244 50.000 10.000 30.000 10.377 30.378 30.051 30.424 60.000 40.000 30.116 60.030 50.125 20.441 50.444 50.063 60.000 20.042 40.000 30.297 30.483 40.096 60.000 30.028 30.338 50.000 30.444 40.000 20.000 20.000 20.189 50.000 10.000 10.141 50.152 60.017 50.000 60.000 40.838 50.193 40.111 60.105 60.198 40.588 40.000 10.000 20.542 30.343 60.267 40.000 10.000 30.108 60.000 10.333 40.000 60.228 30.202 60.022 5
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
Minkowski 34D Inst.permissive0.130 50.246 50.083 50.043 60.299 50.000 60.278 10.000 10.000 20.000 10.022 40.175 40.122 30.537 50.521 30.400 40.000 30.000 30.000 40.008 40.000 20.048 40.076 40.182 60.000 50.000 10.022 50.000 10.000 20.000 40.141 60.000 30.000 10.000 40.000 20.210 50.063 20.547 50.000 20.000 30.000 60.100 30.026 60.000 20.000 10.241 40.488 50.000 50.564 61.000 10.672 20.000 40.021 50.486 10.000 30.000 40.067 50.000 40.194 60.033 50.415 50.026 50.025 60.271 10.004 50.094 60.142 60.000 20.000 50.111 30.000 10.000 30.000 20.088 50.083 60.278 30.110 50.000 50.082 50.199 50.137 40.000 10.000 10.000 40.000 30.041 50.000 40.000 10.308 30.067 40.280 40.016 50.101 40.373 60.000 40.000 10.319 50.007 50.000 40.000 40.000 20.000 40.028 60.355 60.000 30.101 20.444 20.289 30.114 60.000 40.394 40.000 30.032 60.000 10.000 40.000 20.201 60.000 10.000 30.000 10.384 20.248 50.000 60.529 40.000 40.000 30.133 40.020 60.089 30.720 40.500 40.099 50.000 20.000 60.000 30.238 50.334 60.190 40.000 30.000 60.317 60.000 30.472 20.000 20.000 20.000 20.094 60.000 10.000 10.082 60.236 50.004 60.019 50.000 40.883 20.061 60.262 30.217 50.000 50.557 60.000 10.000 20.460 50.761 50.156 60.000 10.000 30.259 50.000 10.394 10.019 50.084 50.232 50.000 6
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 110.812 230.854 80.770 120.856 150.555 170.943 10.660 260.735 20.979 10.606 70.492 10.792 40.934 40.841 20.819 60.716 90.947 100.906 10.822 1
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. CVPR 2025
DITR ScanNet0.797 20.727 770.869 10.882 10.785 60.868 70.578 50.943 10.744 10.727 30.979 10.627 20.364 90.824 10.949 20.779 150.844 10.757 10.982 10.905 20.802 3
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation.
PTv3 ScanNet0.794 30.941 30.813 220.851 110.782 70.890 20.597 10.916 60.696 110.713 50.979 10.635 10.384 30.793 30.907 100.821 50.790 370.696 140.967 40.903 30.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
PonderV20.785 40.978 10.800 310.833 300.788 40.853 200.545 210.910 90.713 30.705 60.979 10.596 90.390 20.769 150.832 450.821 50.792 360.730 20.975 20.897 60.785 7
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 20.843 200.781 80.858 130.575 80.831 400.685 170.714 40.979 10.594 100.310 310.801 20.892 190.841 20.819 60.723 60.940 150.887 80.725 29
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 240.818 170.836 270.790 30.875 40.576 70.905 100.704 70.739 10.969 120.611 30.349 120.756 250.958 10.702 520.805 200.708 100.916 390.898 50.801 4
TTT-KD0.773 70.646 980.818 170.809 420.774 100.878 30.581 30.943 10.687 150.704 70.978 60.607 60.336 200.775 110.912 80.838 40.823 40.694 150.967 40.899 40.794 6
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 80.771 110.840 350.564 130.900 120.686 160.677 140.961 180.537 360.348 130.769 150.903 120.785 130.815 90.676 260.939 160.880 130.772 11
PPT-SpUNet-Joint0.766 90.932 50.794 370.829 320.751 260.854 180.540 250.903 110.630 390.672 180.963 160.565 260.357 100.788 50.900 140.737 310.802 210.685 200.950 80.887 80.780 8
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormerpermissive0.766 90.925 70.808 270.849 130.786 50.846 300.566 120.876 190.690 130.674 170.960 190.576 220.226 740.753 270.904 110.777 160.815 90.722 70.923 310.877 170.776 10
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CU-Hybrid Net0.764 110.924 80.819 140.840 230.757 210.853 200.580 40.848 320.709 50.643 280.958 240.587 160.295 390.753 270.884 230.758 230.815 90.725 50.927 270.867 280.743 20
OccuSeg+Semantic0.764 110.758 620.796 350.839 240.746 300.907 10.562 140.850 310.680 190.672 180.978 60.610 40.335 220.777 90.819 490.847 10.830 30.691 170.972 30.885 100.727 27
O-CNNpermissive0.762 130.924 80.823 80.844 190.770 120.852 220.577 60.847 340.711 40.640 320.958 240.592 110.217 800.762 200.888 200.758 230.813 130.726 40.932 250.868 270.744 19
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 790.789 420.843 200.762 170.856 150.562 140.920 40.657 290.658 220.958 240.589 140.337 190.782 60.879 240.787 110.779 420.678 220.926 290.880 130.799 5
DTC0.757 150.843 300.820 120.847 160.791 20.862 110.511 390.870 230.707 60.652 240.954 410.604 80.279 500.760 210.942 30.734 320.766 510.701 130.884 620.874 230.736 21
OA-CNN-L_ScanNet200.756 160.783 480.826 60.858 60.776 90.837 400.548 200.896 150.649 310.675 160.962 170.586 170.335 220.771 140.802 540.770 190.787 390.691 170.936 200.880 130.761 14
PNE0.755 170.786 460.835 50.834 290.758 190.849 250.570 100.836 390.648 320.668 200.978 60.581 200.367 70.683 400.856 330.804 80.801 250.678 220.961 60.889 70.716 36
P. Hermosilla: Point Neighborhood Embeddings.
LSK3DNetpermissive0.755 170.899 170.823 80.843 200.764 160.838 380.584 20.845 350.717 20.638 340.956 310.580 210.229 730.640 500.900 140.750 260.813 130.729 30.920 350.872 250.757 15
Tuo Feng, Wenguan Wang, Fan Ma, Yi Yang: LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels. CVPR 2024
ConDaFormer0.755 170.927 60.822 100.836 270.801 10.849 250.516 360.864 280.651 300.680 130.958 240.584 190.282 470.759 230.855 350.728 340.802 210.678 220.880 670.873 240.756 17
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
DMF-Net0.752 200.906 150.793 390.802 480.689 470.825 530.556 160.867 240.681 180.602 510.960 190.555 320.365 80.779 80.859 300.747 270.795 330.717 80.917 380.856 360.764 13
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PointTransformerV20.752 200.742 690.809 260.872 20.758 190.860 120.552 180.891 170.610 460.687 80.960 190.559 300.304 340.766 180.926 60.767 200.797 290.644 390.942 130.876 200.722 32
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
PointConvFormer0.749 220.793 440.790 400.807 440.750 280.856 150.524 320.881 180.588 590.642 310.977 100.591 120.274 530.781 70.929 50.804 80.796 300.642 400.947 100.885 100.715 37
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
BPNetcopyleft0.749 220.909 130.818 170.811 400.752 240.839 370.485 540.842 360.673 210.644 270.957 290.528 430.305 330.773 120.859 300.788 100.818 80.693 160.916 390.856 360.723 31
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MSP0.748 240.623 1010.804 290.859 50.745 310.824 550.501 430.912 80.690 130.685 100.956 310.567 250.320 280.768 170.918 70.720 390.802 210.676 260.921 330.881 120.779 9
StratifiedFormerpermissive0.747 250.901 160.803 300.845 180.757 210.846 300.512 380.825 430.696 110.645 260.956 310.576 220.262 640.744 330.861 290.742 290.770 490.705 110.899 510.860 330.734 22
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
Virtual MVFusion0.746 260.771 560.819 140.848 150.702 430.865 100.397 920.899 130.699 90.664 210.948 630.588 150.330 240.746 320.851 390.764 210.796 300.704 120.935 210.866 290.728 25
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
VMNetpermissive0.746 260.870 220.838 30.858 60.729 360.850 240.501 430.874 200.587 600.658 220.956 310.564 270.299 360.765 190.900 140.716 420.812 150.631 450.939 160.858 340.709 38
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
DiffSeg3D20.745 280.725 790.814 210.837 250.751 260.831 470.514 370.896 150.674 200.684 110.960 190.564 270.303 350.773 120.820 480.713 450.798 280.690 190.923 310.875 210.757 15
ODINpermissive0.744 290.658 940.752 650.870 30.714 400.843 330.569 110.919 50.703 80.622 410.949 600.591 120.343 150.736 340.784 560.816 70.838 20.672 310.918 370.854 400.725 29
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
Retro-FPN0.744 290.842 310.800 310.767 620.740 320.836 420.541 230.914 70.672 220.626 380.958 240.552 330.272 550.777 90.886 220.696 530.801 250.674 290.941 140.858 340.717 34
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 310.620 1020.799 340.849 130.730 350.822 570.493 510.897 140.664 230.681 120.955 350.562 290.378 40.760 210.903 120.738 300.801 250.673 300.907 430.877 170.745 18
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
SAT0.742 320.860 250.765 560.819 350.769 140.848 270.533 270.829 410.663 240.631 370.955 350.586 170.274 530.753 270.896 170.729 330.760 570.666 330.921 330.855 380.733 23
LRPNet0.742 320.816 390.806 280.807 440.752 240.828 510.575 80.839 380.699 90.637 350.954 410.520 470.320 280.755 260.834 430.760 220.772 460.676 260.915 410.862 310.717 34
LargeKernel3D0.739 340.909 130.820 120.806 460.740 320.852 220.545 210.826 420.594 580.643 280.955 350.541 350.263 630.723 380.858 320.775 180.767 500.678 220.933 230.848 440.694 43
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
RPN0.736 350.776 520.790 400.851 110.754 230.854 180.491 530.866 260.596 570.686 90.955 350.536 370.342 160.624 570.869 260.787 110.802 210.628 460.927 270.875 210.704 40
MinkowskiNetpermissive0.736 350.859 260.818 170.832 310.709 410.840 350.521 340.853 300.660 260.643 280.951 520.544 340.286 450.731 360.893 180.675 620.772 460.683 210.874 740.852 420.727 27
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
IPCA0.731 370.890 180.837 40.864 40.726 370.873 50.530 310.824 440.489 940.647 250.978 60.609 50.336 200.624 570.733 640.758 230.776 440.570 720.949 90.877 170.728 25
MS-SFA-net0.730 380.910 120.819 140.837 250.698 440.838 380.532 290.872 210.605 500.676 150.959 230.535 390.341 170.649 460.598 880.708 470.810 160.664 350.895 540.879 160.771 12
online3d0.727 390.715 840.777 490.854 80.748 290.858 130.497 480.872 210.572 670.639 330.957 290.523 440.297 380.750 300.803 530.744 280.810 160.587 680.938 180.871 260.719 33
SparseConvNet0.725 400.647 970.821 110.846 170.721 380.869 60.533 270.754 650.603 530.614 430.955 350.572 240.325 260.710 390.870 250.724 370.823 40.628 460.934 220.865 300.683 46
PointTransformer++0.725 400.727 770.811 250.819 350.765 150.841 340.502 420.814 490.621 420.623 400.955 350.556 310.284 460.620 590.866 270.781 140.757 610.648 370.932 250.862 310.709 38
MatchingNet0.724 420.812 410.812 230.810 410.735 340.834 440.495 500.860 290.572 670.602 510.954 410.512 490.280 490.757 240.845 410.725 360.780 410.606 560.937 190.851 430.700 42
INS-Conv-semantic0.717 430.751 650.759 590.812 390.704 420.868 70.537 260.842 360.609 480.608 470.953 450.534 400.293 400.616 600.864 280.719 410.793 340.640 410.933 230.845 480.663 52
PointMetaBase0.714 440.835 320.785 440.821 330.684 490.846 300.531 300.865 270.614 430.596 550.953 450.500 520.246 690.674 410.888 200.692 540.764 530.624 480.849 890.844 490.675 48
contrastBoundarypermissive0.705 450.769 590.775 500.809 420.687 480.820 600.439 800.812 500.661 250.591 570.945 710.515 480.171 990.633 540.856 330.720 390.796 300.668 320.889 590.847 450.689 44
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 460.774 540.800 310.793 530.760 180.847 290.471 580.802 530.463 1010.634 360.968 140.491 550.271 570.726 370.910 90.706 480.815 90.551 840.878 680.833 500.570 84
RFCR0.702 470.889 190.745 710.813 380.672 520.818 640.493 510.815 480.623 400.610 450.947 650.470 640.249 680.594 640.848 400.705 490.779 420.646 380.892 570.823 560.611 67
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 480.825 360.796 350.723 690.716 390.832 460.433 820.816 460.634 370.609 460.969 120.418 900.344 140.559 760.833 440.715 430.808 190.560 780.902 480.847 450.680 47
JSENetpermissive0.699 490.881 210.762 570.821 330.667 530.800 770.522 330.792 560.613 440.607 480.935 910.492 540.205 860.576 690.853 370.691 560.758 590.652 360.872 770.828 530.649 56
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 500.743 680.794 370.655 920.684 490.822 570.497 480.719 750.622 410.617 420.977 100.447 770.339 180.750 300.664 810.703 510.790 370.596 610.946 120.855 380.647 57
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 510.732 730.772 510.786 540.677 510.866 90.517 350.848 320.509 870.626 380.952 500.536 370.225 760.545 820.704 710.689 590.810 160.564 770.903 470.854 400.729 24
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 520.884 200.754 630.795 510.647 600.818 640.422 840.802 530.612 450.604 490.945 710.462 670.189 940.563 750.853 370.726 350.765 520.632 440.904 450.821 590.606 71
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 530.704 860.741 750.754 660.656 550.829 490.501 430.741 700.609 480.548 650.950 560.522 460.371 50.633 540.756 590.715 430.771 480.623 490.861 850.814 620.658 53
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 540.866 230.748 680.819 350.645 620.794 800.450 700.802 530.587 600.604 490.945 710.464 660.201 890.554 780.840 420.723 380.732 720.602 590.907 430.822 580.603 74
VACNN++0.684 550.728 760.757 620.776 590.690 450.804 750.464 630.816 460.577 660.587 580.945 710.508 510.276 520.671 420.710 690.663 670.750 650.589 660.881 650.832 520.653 55
KP-FCNN0.684 550.847 290.758 610.784 560.647 600.814 670.473 570.772 590.605 500.594 560.935 910.450 750.181 970.587 650.805 520.690 570.785 400.614 520.882 640.819 600.632 63
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
DGNet0.684 550.712 850.784 450.782 580.658 540.835 430.499 470.823 450.641 340.597 540.950 560.487 570.281 480.575 700.619 850.647 750.764 530.620 510.871 800.846 470.688 45
PointContrast_LA_SEM0.683 580.757 630.784 450.786 540.639 640.824 550.408 870.775 580.604 520.541 670.934 950.532 410.269 590.552 790.777 570.645 780.793 340.640 410.913 420.824 550.671 49
Superpoint Network0.683 580.851 280.728 790.800 500.653 570.806 730.468 600.804 510.572 670.602 510.946 680.453 740.239 720.519 870.822 460.689 590.762 560.595 630.895 540.827 540.630 64
VI-PointConv0.676 600.770 580.754 630.783 570.621 680.814 670.552 180.758 630.571 700.557 630.954 410.529 420.268 610.530 850.682 750.675 620.719 750.603 580.888 600.833 500.665 51
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 610.789 450.748 680.763 640.635 660.814 670.407 890.747 670.581 640.573 600.950 560.484 580.271 570.607 610.754 600.649 720.774 450.596 610.883 630.823 560.606 71
SALANet0.670 620.816 390.770 540.768 610.652 580.807 720.451 670.747 670.659 280.545 660.924 1010.473 630.149 1090.571 720.811 510.635 820.746 660.623 490.892 570.794 760.570 84
O3DSeg0.668 630.822 370.771 530.496 1130.651 590.833 450.541 230.761 620.555 760.611 440.966 150.489 560.370 60.388 1060.580 890.776 170.751 630.570 720.956 70.817 610.646 58
PointConvpermissive0.666 640.781 490.759 590.699 770.644 630.822 570.475 560.779 570.564 730.504 840.953 450.428 840.203 880.586 670.754 600.661 680.753 620.588 670.902 480.813 640.642 59
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 640.703 870.781 470.751 680.655 560.830 480.471 580.769 600.474 970.537 690.951 520.475 620.279 500.635 520.698 740.675 620.751 630.553 830.816 960.806 660.703 41
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 660.746 660.708 820.722 700.638 650.820 600.451 670.566 1030.599 550.541 670.950 560.510 500.313 300.648 480.819 490.616 870.682 900.590 650.869 810.810 650.656 54
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
MVF-GNN0.658 670.558 1090.751 660.655 920.690 450.722 1020.453 660.867 240.579 650.576 590.893 1130.523 440.293 400.733 350.571 910.692 540.659 970.606 560.875 710.804 680.668 50
DCM-Net0.658 670.778 500.702 850.806 460.619 690.813 700.468 600.693 830.494 900.524 750.941 830.449 760.298 370.510 890.821 470.675 620.727 740.568 750.826 940.803 690.637 61
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 690.698 890.743 730.650 940.564 860.820 600.505 410.758 630.631 380.479 880.945 710.480 600.226 740.572 710.774 580.690 570.735 700.614 520.853 880.776 910.597 77
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 700.752 640.734 770.664 900.583 810.815 660.399 910.754 650.639 350.535 710.942 810.470 640.309 320.665 430.539 930.650 710.708 800.635 430.857 870.793 780.642 59
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 710.778 500.731 780.699 770.577 820.829 490.446 720.736 710.477 960.523 770.945 710.454 710.269 590.484 960.749 630.618 850.738 680.599 600.827 930.792 810.621 66
PointConv-SFPN0.641 720.776 520.703 840.721 710.557 890.826 520.451 670.672 880.563 740.483 870.943 800.425 870.162 1040.644 490.726 650.659 690.709 790.572 710.875 710.786 860.559 90
MVPNetpermissive0.641 720.831 330.715 800.671 870.590 770.781 860.394 930.679 850.642 330.553 640.937 880.462 670.256 650.649 460.406 1060.626 830.691 870.666 330.877 690.792 810.608 70
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 740.717 830.701 860.692 800.576 830.801 760.467 620.716 760.563 740.459 940.953 450.429 830.169 1010.581 680.854 360.605 880.710 770.550 850.894 560.793 780.575 82
FPConvpermissive0.639 750.785 470.760 580.713 750.603 720.798 780.392 950.534 1080.603 530.524 750.948 630.457 690.250 670.538 830.723 670.598 920.696 850.614 520.872 770.799 710.567 87
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 760.797 430.769 550.641 990.590 770.820 600.461 640.537 1070.637 360.536 700.947 650.388 970.206 850.656 440.668 790.647 750.732 720.585 690.868 820.793 780.473 110
PointSPNet0.637 770.734 720.692 930.714 740.576 830.797 790.446 720.743 690.598 560.437 990.942 810.403 930.150 1080.626 560.800 550.649 720.697 840.557 810.846 900.777 900.563 88
SConv0.636 780.830 340.697 890.752 670.572 850.780 880.445 740.716 760.529 800.530 720.951 520.446 780.170 1000.507 910.666 800.636 810.682 900.541 910.886 610.799 710.594 78
Supervoxel-CNN0.635 790.656 950.711 810.719 720.613 700.757 970.444 770.765 610.534 790.566 610.928 990.478 610.272 550.636 510.531 950.664 660.645 1010.508 990.864 840.792 810.611 67
joint point-basedpermissive0.634 800.614 1030.778 480.667 890.633 670.825 530.420 850.804 510.467 990.561 620.951 520.494 530.291 420.566 730.458 1010.579 980.764 530.559 800.838 910.814 620.598 76
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 810.731 740.688 960.675 840.591 760.784 850.444 770.565 1040.610 460.492 850.949 600.456 700.254 660.587 650.706 700.599 910.665 960.612 550.868 820.791 840.579 81
PointNet2-SFPN0.631 820.771 560.692 930.672 850.524 950.837 400.440 790.706 810.538 780.446 960.944 770.421 890.219 790.552 790.751 620.591 940.737 690.543 900.901 500.768 930.557 91
APCF-Net0.631 820.742 690.687 980.672 850.557 890.792 830.408 870.665 900.545 770.508 810.952 500.428 840.186 950.634 530.702 720.620 840.706 810.555 820.873 750.798 730.581 80
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
3DSM_DMMF0.631 820.626 1000.745 710.801 490.607 710.751 980.506 400.729 740.565 720.491 860.866 1160.434 790.197 920.595 630.630 840.709 460.705 820.560 780.875 710.740 1010.491 105
FusionAwareConv0.630 850.604 1050.741 750.766 630.590 770.747 990.501 430.734 720.503 890.527 730.919 1050.454 710.323 270.550 810.420 1050.678 610.688 880.544 880.896 530.795 750.627 65
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 860.800 420.625 1080.719 720.545 920.806 730.445 740.597 980.448 1040.519 790.938 870.481 590.328 250.489 950.499 1000.657 700.759 580.592 640.881 650.797 740.634 62
SegGroup_sempermissive0.627 870.818 380.747 700.701 760.602 730.764 940.385 990.629 950.490 920.508 810.931 980.409 920.201 890.564 740.725 660.618 850.692 860.539 920.873 750.794 760.548 94
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 880.830 340.694 910.757 650.563 870.772 920.448 710.647 930.520 830.509 800.949 600.431 820.191 930.496 930.614 860.647 750.672 940.535 950.876 700.783 870.571 83
dtc_net0.625 880.703 870.751 660.794 520.535 930.848 270.480 550.676 870.528 810.469 910.944 770.454 710.004 1210.464 980.636 830.704 500.758 590.548 870.924 300.787 850.492 104
Weakly-Openseg v30.625 880.924 80.787 430.620 1010.555 910.811 710.393 940.666 890.382 1120.520 780.953 450.250 1160.208 830.604 620.670 770.644 790.742 670.538 930.919 360.803 690.513 102
HPEIN0.618 910.729 750.668 990.647 960.597 750.766 930.414 860.680 840.520 830.525 740.946 680.432 800.215 810.493 940.599 870.638 800.617 1060.570 720.897 520.806 660.605 73
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 920.858 270.772 510.489 1140.532 940.792 830.404 900.643 940.570 710.507 830.935 910.414 910.046 1180.510 890.702 720.602 900.705 820.549 860.859 860.773 920.534 97
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 930.760 610.667 1000.649 950.521 960.793 810.457 650.648 920.528 810.434 1010.947 650.401 940.153 1070.454 990.721 680.648 740.717 760.536 940.904 450.765 940.485 106
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 940.634 990.743 730.697 790.601 740.781 860.437 810.585 1010.493 910.446 960.933 960.394 950.011 1200.654 450.661 820.603 890.733 710.526 960.832 920.761 960.480 107
LAP-D0.594 950.720 810.692 930.637 1000.456 1050.773 910.391 970.730 730.587 600.445 980.940 850.381 980.288 430.434 1020.453 1030.591 940.649 990.581 700.777 1000.749 1000.610 69
DPC0.592 960.720 810.700 870.602 1050.480 1010.762 960.380 1000.713 790.585 630.437 990.940 850.369 1000.288 430.434 1020.509 990.590 960.639 1040.567 760.772 1010.755 980.592 79
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 970.766 600.659 1030.683 820.470 1040.740 1010.387 980.620 970.490 920.476 890.922 1030.355 1030.245 700.511 880.511 980.571 990.643 1020.493 1030.872 770.762 950.600 75
ROSMRF0.580 980.772 550.707 830.681 830.563 870.764 940.362 1020.515 1090.465 1000.465 930.936 900.427 860.207 840.438 1000.577 900.536 1020.675 930.486 1040.723 1070.779 880.524 99
SD-DETR0.576 990.746 660.609 1120.445 1180.517 970.643 1130.366 1010.714 780.456 1020.468 920.870 1150.432 800.264 620.558 770.674 760.586 970.688 880.482 1050.739 1050.733 1030.537 96
SQN_0.1%0.569 1000.676 910.696 900.657 910.497 980.779 890.424 830.548 1050.515 850.376 1060.902 1120.422 880.357 100.379 1070.456 1020.596 930.659 970.544 880.685 1100.665 1140.556 92
TextureNetpermissive0.566 1010.672 930.664 1010.671 870.494 990.719 1030.445 740.678 860.411 1100.396 1040.935 910.356 1020.225 760.412 1040.535 940.565 1000.636 1050.464 1070.794 990.680 1110.568 86
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 1020.648 960.700 870.770 600.586 800.687 1070.333 1060.650 910.514 860.475 900.906 1090.359 1010.223 780.340 1090.442 1040.422 1130.668 950.501 1000.708 1080.779 880.534 97
Pointnet++ & Featurepermissive0.557 1030.735 710.661 1020.686 810.491 1000.744 1000.392 950.539 1060.451 1030.375 1070.946 680.376 990.205 860.403 1050.356 1090.553 1010.643 1020.497 1010.824 950.756 970.515 100
GMLPs0.538 1040.495 1140.693 920.647 960.471 1030.793 810.300 1090.477 1100.505 880.358 1080.903 1110.327 1060.081 1150.472 970.529 960.448 1110.710 770.509 970.746 1030.737 1020.554 93
PanopticFusion-label0.529 1050.491 1150.688 960.604 1040.386 1100.632 1140.225 1200.705 820.434 1070.293 1140.815 1180.348 1040.241 710.499 920.669 780.507 1040.649 990.442 1130.796 980.602 1180.561 89
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1060.676 910.591 1150.609 1020.442 1060.774 900.335 1050.597 980.422 1090.357 1090.932 970.341 1050.094 1140.298 1110.528 970.473 1090.676 920.495 1020.602 1160.721 1060.349 118
Online SegFusion0.515 1070.607 1040.644 1060.579 1070.434 1070.630 1150.353 1030.628 960.440 1050.410 1020.762 1210.307 1080.167 1020.520 860.403 1070.516 1030.565 1090.447 1110.678 1110.701 1080.514 101
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1080.558 1090.608 1130.424 1200.478 1020.690 1060.246 1160.586 1000.468 980.450 950.911 1070.394 950.160 1050.438 1000.212 1160.432 1120.541 1140.475 1060.742 1040.727 1040.477 108
PCNN0.498 1090.559 1080.644 1060.560 1090.420 1090.711 1050.229 1180.414 1110.436 1060.352 1100.941 830.324 1070.155 1060.238 1160.387 1080.493 1050.529 1150.509 970.813 970.751 990.504 103
3DMV0.484 1100.484 1160.538 1180.643 980.424 1080.606 1180.310 1070.574 1020.433 1080.378 1050.796 1190.301 1090.214 820.537 840.208 1170.472 1100.507 1180.413 1160.693 1090.602 1180.539 95
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1110.577 1070.611 1110.356 1220.321 1180.715 1040.299 1110.376 1150.328 1180.319 1120.944 770.285 1110.164 1030.216 1190.229 1140.484 1070.545 1130.456 1090.755 1020.709 1070.475 109
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1120.679 900.604 1140.578 1080.380 1110.682 1080.291 1120.106 1220.483 950.258 1200.920 1040.258 1150.025 1190.231 1180.325 1100.480 1080.560 1110.463 1080.725 1060.666 1130.231 122
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1130.474 1170.623 1090.463 1160.366 1130.651 1110.310 1070.389 1140.349 1160.330 1110.937 880.271 1130.126 1110.285 1120.224 1150.350 1180.577 1080.445 1120.625 1140.723 1050.394 114
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1140.548 1110.548 1170.597 1060.363 1140.628 1160.300 1090.292 1170.374 1130.307 1130.881 1140.268 1140.186 950.238 1160.204 1180.407 1140.506 1190.449 1100.667 1120.620 1170.462 112
SurfaceConvPF0.442 1140.505 1130.622 1100.380 1210.342 1160.654 1100.227 1190.397 1130.367 1140.276 1160.924 1010.240 1170.198 910.359 1080.262 1120.366 1150.581 1070.435 1140.640 1130.668 1120.398 113
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1160.437 1190.646 1050.474 1150.369 1120.645 1120.353 1030.258 1190.282 1210.279 1150.918 1060.298 1100.147 1100.283 1130.294 1110.487 1060.562 1100.427 1150.619 1150.633 1160.352 117
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1170.525 1120.647 1040.522 1100.324 1170.488 1220.077 1230.712 800.353 1150.401 1030.636 1230.281 1120.176 980.340 1090.565 920.175 1220.551 1120.398 1170.370 1230.602 1180.361 116
SPLAT Netcopyleft0.393 1180.472 1180.511 1190.606 1030.311 1190.656 1090.245 1170.405 1120.328 1180.197 1210.927 1000.227 1190.000 1230.001 1240.249 1130.271 1210.510 1160.383 1190.593 1170.699 1090.267 120
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1190.297 1210.491 1200.432 1190.358 1150.612 1170.274 1140.116 1210.411 1100.265 1170.904 1100.229 1180.079 1160.250 1140.185 1190.320 1190.510 1160.385 1180.548 1180.597 1210.394 114
PointNet++permissive0.339 1200.584 1060.478 1210.458 1170.256 1210.360 1230.250 1150.247 1200.278 1220.261 1190.677 1220.183 1200.117 1120.212 1200.145 1210.364 1160.346 1230.232 1230.548 1180.523 1220.252 121
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
GrowSP++0.323 1210.114 1230.589 1160.499 1120.147 1230.555 1190.290 1130.336 1160.290 1200.262 1180.865 1170.102 1230.000 1230.037 1220.000 1240.000 1240.462 1200.381 1200.389 1220.664 1150.473 110
SSC-UNetpermissive0.308 1220.353 1200.290 1230.278 1230.166 1220.553 1200.169 1220.286 1180.147 1230.148 1230.908 1080.182 1210.064 1170.023 1230.018 1230.354 1170.363 1210.345 1210.546 1200.685 1100.278 119
ScanNetpermissive0.306 1230.203 1220.366 1220.501 1110.311 1190.524 1210.211 1210.002 1240.342 1170.189 1220.786 1200.145 1220.102 1130.245 1150.152 1200.318 1200.348 1220.300 1220.460 1210.437 1230.182 123
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1240.000 1240.041 1240.172 1240.030 1240.062 1240.001 1240.035 1230.004 1240.051 1240.143 1240.019 1240.003 1220.041 1210.050 1220.003 1230.054 1240.018 1240.005 1240.264 1240.082 124


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PointComp0.629 10.787 250.679 100.574 50.502 30.824 10.378 10.480 390.483 30.480 160.601 10.744 10.682 80.809 80.460 210.819 10.643 20.935 130.449 3
PointRel0.622 20.926 80.710 30.541 110.502 20.772 80.314 50.598 110.425 100.504 110.565 30.650 80.716 20.809 70.476 120.747 60.618 30.963 40.364 21
: Relation3D: Enhancing Relation Modeling for Point Cloud Instance Segmentation. CVPR 2025
Competitor-MAFT0.618 30.866 160.724 10.628 10.484 50.803 30.300 90.509 320.496 10.539 10.547 70.703 20.668 90.708 340.463 180.708 180.595 50.959 60.418 9
SIM3D0.617 40.952 40.629 190.539 120.426 170.768 120.302 80.681 20.425 110.473 180.511 170.701 30.717 10.821 60.467 150.774 20.559 160.914 200.448 4
Spherical Mask(CtoF)0.616 50.946 50.654 140.555 70.434 140.769 110.271 140.604 80.447 60.505 90.549 40.698 40.716 20.775 170.480 90.747 70.575 120.925 150.436 6
EV3D0.615 60.946 50.652 150.555 70.433 150.773 70.271 150.604 80.447 60.506 80.544 80.698 40.716 20.775 170.480 90.747 70.572 140.925 150.435 7
DCD0.614 70.892 130.633 180.434 300.495 40.810 20.292 100.501 330.408 120.525 50.582 20.688 60.625 110.801 90.608 10.672 220.649 10.965 30.476 1
ExtMask3D0.598 80.852 170.692 80.433 330.461 90.791 50.264 160.488 360.493 20.508 70.528 160.594 140.706 60.791 110.483 70.734 110.595 60.911 220.437 5
MAFT0.596 90.889 140.721 20.448 250.460 100.768 130.251 180.558 210.408 130.504 100.539 100.616 120.618 130.858 30.482 80.684 210.551 190.931 140.450 2
UniPerception0.588 100.963 30.667 120.493 160.472 80.750 170.229 210.528 270.468 50.498 140.542 90.643 90.530 230.661 410.463 170.695 200.599 40.972 10.420 8
MG-Former0.587 110.852 170.639 170.454 240.393 230.758 160.338 30.572 160.480 40.527 30.491 240.671 70.527 240.867 10.485 60.601 330.590 90.938 120.390 13
InsSSM0.586 121.000 10.593 230.440 280.480 60.771 90.345 20.437 420.444 90.495 150.548 60.579 180.621 120.720 300.409 250.712 130.593 70.960 50.395 11
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
Queryformer0.583 130.926 80.702 50.393 390.504 10.733 230.276 130.527 280.373 190.479 170.534 120.533 250.697 70.720 310.436 230.745 90.592 80.958 70.363 22
KmaxOneFormerNetpermissive0.581 140.745 300.692 90.551 90.458 110.798 40.264 170.531 260.369 210.513 60.531 150.632 100.494 270.798 100.567 30.648 260.558 180.950 90.362 24
Competitor-SPFormer0.580 150.721 370.705 40.593 40.444 130.786 60.286 110.564 190.376 180.498 130.534 130.546 230.390 470.785 130.577 20.708 170.579 110.954 80.388 14
VDG-Uni3DSeg0.576 160.833 210.699 60.483 180.412 210.767 140.313 60.461 410.446 80.526 40.498 220.584 150.551 190.743 260.464 160.766 30.538 230.919 180.363 23
PBNetpermissive0.573 170.926 80.575 290.619 20.472 70.736 210.239 200.487 370.383 170.459 210.506 200.533 240.585 150.767 190.404 260.717 120.559 170.969 20.381 17
Weiguang Zhao, Yuyao Yan, Chaolong Yang, Jianan Ye, Xi Yang, Kaizhu Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
TST3D0.569 180.778 270.675 110.598 30.451 120.727 240.280 120.476 400.395 140.472 190.457 300.583 160.580 170.777 140.462 200.735 100.547 210.919 190.333 30
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
Mask3D0.566 190.926 80.597 220.408 360.420 190.737 200.239 190.598 110.386 160.458 220.549 40.568 210.716 20.601 470.480 90.646 270.575 120.922 170.364 20
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
OneFormer3Dcopyleft0.566 190.781 260.697 70.562 60.431 160.770 100.331 40.400 480.373 200.529 20.504 210.568 200.475 310.732 280.470 130.762 40.550 200.871 370.379 18
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
ISBNetpermissive0.559 210.939 70.655 130.383 420.426 180.763 150.180 230.534 250.386 150.499 120.509 190.621 110.427 410.704 360.467 140.649 250.571 150.948 100.401 10
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
GraphCut0.552 221.000 10.611 210.438 290.392 240.714 250.139 270.598 130.327 250.389 250.510 180.598 130.427 420.754 220.463 190.761 50.588 100.903 250.329 32
SPFormerpermissive0.549 230.745 300.640 160.484 170.395 220.739 190.311 70.566 180.335 230.468 200.492 230.555 220.478 300.747 240.436 220.712 140.540 220.893 290.343 29
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
DKNet0.532 240.815 220.624 200.517 130.377 260.749 180.107 290.509 310.304 270.437 230.475 250.581 170.539 210.775 160.339 320.640 290.506 260.901 260.385 16
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
IPCA-Inst0.520 250.889 140.551 330.548 100.418 200.665 350.064 380.585 140.260 350.277 400.471 270.500 260.644 100.785 120.369 280.591 370.511 240.878 340.362 25
SoftGroup++0.513 260.704 390.578 280.398 380.363 320.704 260.061 390.647 50.297 320.378 280.537 110.343 300.614 140.828 50.295 370.710 160.505 280.875 360.394 12
SSTNetpermissive0.506 270.738 340.549 340.497 150.316 380.693 290.178 240.377 520.198 410.330 310.463 290.576 190.515 250.857 40.494 40.637 300.457 320.943 110.290 41
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
SoftGrouppermissive0.504 280.667 460.579 260.372 440.381 250.694 280.072 350.677 30.303 280.387 260.531 140.319 340.582 160.754 210.318 330.643 280.492 290.907 240.388 15
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
DANCENET0.504 280.926 80.579 250.472 200.367 290.626 450.165 250.432 430.221 370.408 240.449 320.411 280.564 180.746 250.421 240.707 190.438 350.846 450.288 42
TD3Dpermissive0.489 300.852 170.511 430.434 310.322 370.735 220.101 320.512 300.355 220.349 300.468 280.283 380.514 260.676 400.268 420.671 230.510 250.908 230.329 33
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
OccuSeg+instance0.486 310.802 240.536 360.428 340.369 280.702 270.205 220.331 570.301 290.379 270.474 260.327 310.437 360.862 20.485 50.601 340.394 430.846 470.273 45
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
TopoSeg0.479 320.704 390.564 300.467 220.366 300.633 430.068 360.554 220.262 340.328 320.447 330.323 320.534 220.722 290.288 390.614 310.482 300.912 210.358 27
DualGroup0.469 330.815 220.552 320.398 370.374 270.683 310.130 280.539 240.310 260.327 330.407 360.276 390.447 350.535 510.342 310.659 240.455 330.900 280.301 37
SSEC0.465 340.667 460.578 270.502 140.362 330.641 420.035 480.605 70.291 330.323 340.451 310.296 360.417 450.677 390.245 460.501 550.506 270.900 270.366 19
ODIN - Inspermissive0.463 350.738 340.589 240.344 480.358 340.560 540.139 260.393 510.331 240.373 290.392 390.496 270.493 280.709 330.377 270.599 350.359 490.752 570.332 31
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
HAISpermissive0.457 360.704 390.561 310.457 230.364 310.673 320.046 470.547 230.194 420.308 350.426 340.288 370.454 340.711 320.262 430.563 450.434 370.889 310.344 28
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
DD-UNet+Group0.436 370.630 540.508 460.480 190.310 400.624 470.065 370.638 60.174 430.256 440.384 410.194 510.428 390.759 200.289 380.574 420.400 410.849 440.291 40
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
INS-Conv-instance0.435 380.716 380.495 480.355 460.331 350.689 300.102 310.394 500.208 400.280 380.395 380.250 420.544 200.741 270.309 350.536 510.391 440.842 500.258 49
Mask-Group0.434 390.778 270.516 410.471 210.330 360.658 360.029 500.526 290.249 360.256 430.400 370.309 350.384 500.296 670.368 290.575 410.425 380.877 350.362 26
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
Box2Mask0.433 400.741 320.463 530.433 320.283 430.625 460.103 300.298 620.125 520.260 420.424 350.322 330.472 320.701 370.363 300.711 150.309 610.882 320.272 47
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
RPGN0.428 410.630 540.508 450.367 450.249 500.658 370.016 580.673 40.131 500.234 470.383 420.270 400.434 370.748 230.274 410.609 320.406 400.842 490.267 48
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
DENet0.413 420.741 320.520 380.237 580.284 420.523 570.097 330.691 10.138 470.209 570.229 590.238 450.390 480.707 350.310 340.448 620.470 310.892 300.310 35
PointGroup0.407 430.639 530.496 470.415 350.243 520.645 410.021 550.570 170.114 530.211 550.359 440.217 490.428 400.660 420.256 440.562 460.341 530.860 400.291 39
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
CSC-Pretrained0.405 440.738 340.465 520.331 510.205 560.655 380.051 430.601 100.092 570.211 560.329 470.198 500.459 330.775 150.195 530.524 530.400 420.878 330.184 58
PE0.396 450.667 460.467 510.446 270.243 510.624 480.022 540.577 150.106 540.219 500.340 450.239 440.487 290.475 580.225 480.541 500.350 510.818 520.273 46
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
Dyco3Dcopyleft0.395 460.642 520.518 400.447 260.259 490.666 340.050 440.251 670.166 440.231 480.362 430.232 460.331 530.535 500.229 470.587 380.438 360.850 420.317 34
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
OSIS0.392 470.778 270.530 370.220 600.278 440.567 530.083 340.330 580.299 300.270 410.310 500.143 570.260 570.624 450.277 400.568 440.361 480.865 390.301 36
AOIA0.387 480.704 390.515 420.385 410.225 550.669 330.005 650.482 380.126 510.181 600.269 560.221 480.426 430.478 570.218 490.592 360.371 460.851 410.242 51
SSEN0.384 490.852 170.494 490.192 610.226 540.648 400.022 530.398 490.299 310.277 390.317 490.231 470.194 640.514 540.196 510.586 390.444 340.843 480.184 57
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
Mask3D_evaluation0.382 500.593 560.520 390.390 400.314 390.600 490.018 570.287 650.151 460.281 370.387 400.169 550.429 380.654 430.172 570.578 400.384 450.670 640.278 44
PCJC0.375 510.704 390.542 350.284 550.197 580.649 390.006 620.426 440.138 480.242 450.304 510.183 540.388 490.629 440.141 640.546 490.344 520.738 590.283 43
ClickSeg_Instance0.366 520.654 500.375 570.184 620.302 410.592 510.050 450.300 610.093 560.283 360.277 530.249 430.426 440.615 460.299 360.504 540.367 470.832 510.191 56
SphereSeg0.357 530.651 510.411 550.345 470.264 480.630 440.059 400.289 640.212 380.240 460.336 460.158 560.305 540.557 480.159 600.455 610.341 540.726 610.294 38
3D-MPA0.355 540.457 660.484 500.299 530.277 450.591 520.047 460.332 550.212 390.217 510.278 520.193 520.413 460.410 610.195 520.574 430.352 500.849 430.213 54
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
NeuralBF0.353 550.593 560.511 440.375 430.264 470.597 500.008 600.332 560.160 450.229 490.274 550.000 780.206 610.678 380.155 610.485 570.422 390.816 530.254 50
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
RWSeg0.348 560.475 630.456 540.320 520.275 460.476 590.020 560.491 350.056 640.212 540.320 480.261 410.302 550.520 520.182 550.557 470.285 630.867 380.197 55
GICN0.341 570.580 580.371 580.344 490.198 570.469 600.052 420.564 200.093 550.212 530.212 610.127 590.347 520.537 490.206 500.525 520.329 560.729 600.241 52
One_Thing_One_Clickpermissive0.326 580.472 640.361 590.232 590.183 590.555 550.000 710.498 340.038 660.195 580.226 600.362 290.168 650.469 590.251 450.553 480.335 550.846 460.117 66
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Occipital-SCS0.320 590.679 450.352 600.334 500.229 530.436 610.025 510.412 470.058 620.161 650.240 580.085 610.262 560.496 560.187 540.467 590.328 570.775 540.231 53
Sparse R-CNN0.292 600.704 390.213 700.153 640.154 610.551 560.053 410.212 680.132 490.174 620.274 540.070 630.363 510.441 600.176 560.424 640.234 650.758 560.161 62
MTML0.282 610.577 590.380 560.182 630.107 670.430 620.001 680.422 450.057 630.179 610.162 640.070 640.229 590.511 550.161 580.491 560.313 580.650 670.162 60
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
SALoss-ResNet0.262 620.667 460.335 610.067 710.123 650.427 630.022 520.280 660.058 610.216 520.211 620.039 670.142 670.519 530.106 680.338 680.310 600.721 620.138 63
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MASCpermissive0.254 630.463 650.249 690.113 650.167 600.412 650.000 700.374 530.073 580.173 630.243 570.130 580.228 600.368 630.160 590.356 660.208 660.711 630.136 64
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
3D-BoNet0.253 640.519 610.324 640.251 570.137 640.345 700.031 490.419 460.069 590.162 640.131 660.052 650.202 630.338 650.147 630.301 710.303 620.651 660.178 59
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
SPG_WSIS0.251 650.380 680.274 670.289 540.144 620.413 640.000 710.311 590.065 600.113 670.130 670.029 700.204 620.388 620.108 670.459 600.311 590.769 550.127 65
SegGroup_inspermissive0.246 660.556 600.335 620.062 730.115 660.490 580.000 710.297 630.018 700.186 590.142 650.083 620.233 580.216 690.153 620.469 580.251 640.744 580.083 69
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
PanopticFusion-inst0.214 670.250 730.330 630.275 560.103 680.228 760.000 710.345 540.024 680.088 690.203 630.186 530.167 660.367 640.125 650.221 740.112 760.666 650.162 61
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
UNet-backbone0.161 680.519 610.259 680.084 670.059 700.325 720.002 660.093 730.009 720.077 710.064 700.045 660.044 740.161 710.045 700.331 690.180 680.566 680.033 78
3D-SISpermissive0.161 680.407 670.155 750.068 700.043 740.346 690.001 670.134 700.005 730.088 680.106 690.037 680.135 690.321 660.028 740.339 670.116 750.466 710.093 68
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
R-PointNet0.158 700.356 690.173 730.113 660.140 630.359 660.012 590.023 760.039 650.134 660.123 680.008 740.089 700.149 720.117 660.221 730.128 730.563 690.094 67
Region-18class0.146 710.175 770.321 650.080 680.062 690.357 670.000 710.307 600.002 750.066 720.044 720.000 780.018 760.036 770.054 690.447 630.133 710.472 700.060 73
SemRegionNet-20cls0.121 720.296 710.203 710.071 690.058 710.349 680.000 710.150 690.019 690.054 740.034 750.017 730.052 720.042 760.013 770.209 750.183 670.371 720.057 74
3D-BEVIS0.117 730.250 730.308 660.020 770.009 790.269 750.006 630.008 770.029 670.037 770.014 780.003 760.036 750.147 730.042 720.381 650.118 740.362 730.069 72
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Hier3Dcopyleft0.117 730.222 750.161 740.054 750.027 760.289 730.000 710.124 710.001 770.079 700.061 710.027 710.141 680.240 680.005 780.310 700.129 720.153 780.081 70
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
tmp0.113 750.333 700.151 760.056 740.053 720.344 710.000 710.105 720.016 710.049 750.035 740.020 720.053 710.048 750.013 760.183 770.173 690.344 750.054 75
Sem_Recon_ins0.098 760.295 720.187 720.015 780.036 750.213 770.005 640.038 750.003 740.056 730.037 730.036 690.015 770.051 740.044 710.209 760.098 770.354 740.071 71
ASIS0.085 770.037 780.080 780.066 720.047 730.282 740.000 710.052 740.002 760.047 760.026 760.001 770.046 730.194 700.031 730.264 720.140 700.167 770.047 77
Sgpn_scannet0.049 780.023 790.134 770.031 760.013 780.144 780.006 610.008 780.000 780.028 780.017 770.003 750.009 790.000 780.021 750.122 780.095 780.175 760.054 76
MaskRCNN 2d->3d Proj0.022 790.185 760.000 790.000 790.015 770.000 790.000 690.006 790.000 780.010 790.006 790.107 600.012 780.000 780.002 790.027 790.004 790.022 790.001 79


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 20.512 10.422 190.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 30.481 20.451 150.769 50.656 30.567 40.931 30.395 60.390 60.700 40.534 40.689 110.770 20.574 30.865 110.831 30.675 6
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MVF-GNN(2D)0.636 30.606 160.794 40.434 170.688 10.337 80.464 140.798 40.632 50.589 30.908 90.420 20.329 140.743 20.594 20.738 20.676 50.527 40.906 20.818 60.715 3
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 250.648 40.463 30.549 20.742 90.676 20.628 20.961 10.420 20.379 70.684 80.381 200.732 30.723 30.599 20.827 180.851 20.634 9
DVEFormer0.626 50.616 120.764 60.690 50.583 110.322 140.540 30.809 30.593 70.502 120.900 140.374 90.433 30.660 90.528 50.665 190.663 60.491 90.871 100.810 90.705 4
CMX0.613 60.681 90.725 130.502 130.634 60.297 190.478 120.830 20.651 40.537 70.924 40.375 70.315 160.686 70.451 150.714 50.543 230.504 60.894 70.823 50.688 5
DMMF_3d0.605 70.651 100.744 110.782 30.637 50.387 40.536 50.732 100.590 80.540 60.856 230.359 120.306 170.596 160.539 30.627 220.706 40.497 80.785 230.757 210.476 24
EMSANet0.600 80.716 40.746 100.395 200.614 90.382 50.523 60.713 130.571 120.503 100.922 70.404 50.397 50.655 100.400 170.626 230.663 60.469 140.900 40.827 40.577 16
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
MCA-Net0.595 90.533 220.756 90.746 40.590 100.334 100.506 90.670 170.587 90.500 130.905 110.366 110.352 100.601 150.506 90.669 170.648 100.501 70.839 170.769 170.516 23
RFBNet0.592 100.616 120.758 80.659 60.581 120.330 110.469 130.655 200.543 150.524 80.924 40.355 140.336 120.572 190.479 110.671 150.648 100.480 110.814 210.814 70.614 12
FAN_NV_RVC0.586 110.510 230.764 60.079 280.620 80.330 110.494 100.753 70.573 100.556 50.884 180.405 40.303 180.718 30.452 140.672 140.658 80.509 50.898 50.813 80.727 2
WSGFormer0.585 120.706 50.708 180.434 170.574 140.283 220.538 40.759 60.542 170.482 170.924 40.351 160.333 130.614 120.393 180.692 100.551 220.461 150.874 90.809 100.673 7
DCRedNet0.583 130.682 80.723 140.542 120.510 220.310 160.451 150.668 180.549 140.520 90.920 80.375 70.446 20.528 220.417 160.670 160.577 190.478 120.862 120.806 110.628 11
MIX6D_RVC0.582 140.695 60.687 190.225 230.632 70.328 130.550 10.748 80.623 60.494 160.890 160.350 170.254 250.688 60.454 130.716 40.597 180.489 100.881 80.768 180.575 17
SSMAcopyleft0.577 150.695 60.716 160.439 150.563 160.314 150.444 170.719 110.551 130.503 100.887 170.346 180.348 110.603 140.353 220.709 60.600 160.457 160.901 30.786 130.599 15
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
DMMF0.567 160.623 110.767 50.238 220.571 150.347 60.413 210.719 110.472 220.418 240.895 150.357 130.260 240.696 50.523 80.666 180.642 120.437 200.895 60.793 120.603 14
UNIV_CNP_RVC_UE0.566 170.569 210.686 210.435 160.524 190.294 200.421 200.712 140.543 150.463 190.872 190.320 190.363 90.611 130.477 120.686 120.627 130.443 190.862 120.775 160.639 8
EMSAFormer0.564 180.581 180.736 120.564 110.546 180.219 250.517 70.675 160.486 210.427 230.904 120.352 150.320 150.589 170.528 50.708 70.464 260.413 240.847 160.786 130.611 13
SN_RN152pyrx8_RVCcopyleft0.546 190.572 190.663 230.638 80.518 200.298 180.366 260.633 230.510 190.446 210.864 210.296 220.267 210.542 210.346 230.704 80.575 200.431 210.853 150.766 190.630 10
UDSSEG_RVC0.545 200.610 150.661 240.588 90.556 170.268 230.482 110.642 220.572 110.475 180.836 250.312 200.367 80.630 110.189 250.639 210.495 250.452 170.826 190.756 220.541 19
segfomer with 6d0.542 210.594 170.687 190.146 260.579 130.308 170.515 80.703 150.472 220.498 140.868 200.369 100.282 190.589 170.390 190.701 90.556 210.416 230.860 140.759 200.539 21
FuseNetpermissive0.535 220.570 200.681 220.182 240.512 210.290 210.431 180.659 190.504 200.495 150.903 130.308 210.428 40.523 230.365 210.676 130.621 150.470 130.762 240.779 150.541 19
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 230.613 140.722 150.418 190.358 280.337 80.370 250.479 260.443 240.368 260.907 100.207 250.213 270.464 260.525 70.618 240.657 90.450 180.788 220.721 250.408 27
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 240.481 260.612 250.579 100.456 240.343 70.384 230.623 240.525 180.381 250.845 240.254 240.264 230.557 200.182 260.581 260.598 170.429 220.760 250.661 270.446 26
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 250.505 240.709 170.092 270.427 250.241 240.411 220.654 210.385 280.457 200.861 220.053 280.279 200.503 240.481 100.645 200.626 140.365 260.748 260.725 240.529 22
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 260.490 250.581 260.289 210.507 230.067 280.379 240.610 250.417 260.435 220.822 270.278 230.267 210.503 240.228 240.616 250.533 240.375 250.820 200.729 230.560 18
Enet (reimpl)0.376 270.264 280.452 280.452 140.365 260.181 260.143 280.456 270.409 270.346 270.769 280.164 260.218 260.359 270.123 280.403 280.381 280.313 280.571 270.685 260.472 25
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 280.293 270.521 270.657 70.361 270.161 270.250 270.004 280.440 250.183 280.836 250.125 270.060 280.319 280.132 270.417 270.412 270.344 270.541 280.427 280.109 28
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EMSANet (Instance)0.241 10.401 10.439 10.085 10.242 10.220 10.081 10.289 20.117 20.121 10.182 10.126 10.346 10.181 20.181 20.358 10.156 10.675 20.131 1
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
UniDet_RVC0.205 20.381 20.323 30.037 30.226 30.177 30.063 20.277 30.120 10.067 30.131 30.074 30.317 20.080 30.235 10.289 30.141 30.678 10.080 3
FKNet0.204 30.334 30.358 20.038 20.234 20.184 20.025 30.318 10.042 40.088 20.141 20.053 40.300 30.207 10.171 30.292 20.149 20.636 30.109 2
MaskRCNN_ScanNetpermissive0.119 40.129 40.212 40.002 40.112 40.148 40.014 40.205 40.044 30.066 40.078 40.095 20.142 40.030 40.128 40.139 40.080 40.459 40.057 4
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LAST-PCL-type0.780 10.250 31.000 11.000 11.000 11.000 11.000 10.500 21.000 10.500 20.889 10.000 21.000 11.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12
multi-taskpermissive0.700 20.500 11.000 10.882 30.500 31.000 11.000 10.500 21.000 11.000 10.778 20.000 20.938 20.000 3
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.691 30.500 10.938 30.824 41.000 11.000 10.500 31.000 10.857 30.500 20.556 40.000 20.812 30.500 2
SE-ResNeXt-SSMA0.498 40.000 50.812 40.941 20.500 30.500 40.500 30.500 20.429 50.500 20.667 30.500 10.625 40.000 3
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.353 50.250 30.812 40.529 50.500 30.500 40.000 50.500 20.571 40.000 50.556 40.000 20.375 50.000 3