Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail ioualarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefloorfolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwallwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3 ScanNet2000.393 30.592 30.330 20.216 30.520 30.109 40.108 150.000 30.337 10.000 10.310 110.394 80.494 110.753 90.848 20.256 30.717 70.000 30.842 30.192 40.065 30.449 100.346 30.546 50.190 120.000 90.384 60.000 10.000 30.218 30.505 20.791 20.000 10.136 30.000 20.903 20.073 110.687 60.000 60.168 10.551 50.387 70.941 30.000 10.000 20.397 120.654 30.000 100.714 50.759 140.752 70.118 40.264 40.926 30.000 10.048 50.575 40.000 70.597 10.366 20.755 10.469 20.474 30.798 20.140 90.617 20.692 60.000 70.592 30.971 20.188 40.000 10.133 90.593 20.349 10.650 30.717 70.699 30.455 20.790 20.523 30.636 10.301 10.000 10.622 20.000 110.017 140.259 30.000 40.921 30.337 10.733 20.210 30.514 20.860 80.407 10.000 10.688 20.109 80.000 130.000 40.000 10.151 40.671 80.782 20.115 120.641 20.903 20.349 10.616 40.088 60.832 70.000 50.480 20.000 10.428 10.000 30.497 90.000 50.000 80.000 10.662 30.690 20.612 10.828 10.575 10.000 10.404 60.644 20.325 70.887 40.728 10.009 150.134 70.026 160.000 10.761 30.731 30.172 60.077 30.528 70.727 70.000 10.603 50.220 40.022 30.000 10.740 10.000 20.000 10.661 40.586 20.566 30.436 40.531 50.978 30.457 20.708 30.583 50.141 70.748 30.000 10.026 50.822 30.871 40.879 50.000 10.851 20.405 20.914 10.000 10.682 30.000 140.281 30.738 30.463 6
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
OA-CNN-L_ScanNet2000.333 100.558 40.269 80.124 120.448 140.080 80.272 40.000 30.000 60.000 10.342 70.515 30.524 70.713 130.789 90.158 120.384 110.000 30.806 50.125 60.000 90.496 80.332 60.498 130.227 70.024 60.474 20.000 10.003 20.071 80.487 30.000 100.000 10.110 70.000 20.876 70.013 160.703 30.000 60.076 80.473 120.355 110.906 60.000 10.000 20.476 60.706 10.000 100.672 100.835 120.748 80.015 120.223 60.860 100.000 10.000 100.572 60.000 70.509 60.313 70.662 40.398 130.396 70.411 120.276 20.527 30.711 50.000 70.076 120.946 60.166 60.000 10.022 100.160 60.183 120.493 120.699 80.637 50.403 50.330 120.406 120.526 60.024 20.000 10.392 100.000 110.016 150.000 110.196 30.915 50.112 110.557 100.197 50.352 90.877 30.000 110.000 10.592 110.103 100.000 130.067 10.000 10.089 60.735 70.625 110.130 90.568 60.836 70.271 70.534 80.043 120.799 100.001 40.445 50.000 10.000 70.024 20.661 40.000 50.262 20.000 10.591 70.517 120.373 80.788 70.021 70.000 10.455 30.517 80.320 80.823 110.200 160.001 160.150 50.100 110.000 10.736 80.668 90.103 140.052 50.662 30.720 80.000 10.602 60.112 60.002 60.000 10.637 80.000 20.000 10.621 90.569 40.398 80.412 50.234 110.949 60.363 40.492 140.495 100.251 40.665 80.000 10.001 110.805 70.833 60.794 110.000 10.821 50.314 50.843 100.000 10.560 100.245 60.262 50.713 40.370 11
DITR0.449 10.629 10.392 10.289 10.650 10.168 10.862 10.000 30.313 20.000 10.580 10.568 10.564 30.766 70.867 10.238 50.949 10.000 30.866 20.300 10.000 90.664 10.482 10.508 110.317 10.420 10.551 10.000 10.000 30.486 10.519 10.662 30.000 10.385 10.000 20.901 30.079 80.727 10.000 60.160 20.606 30.417 40.967 20.000 10.000 20.498 50.596 100.130 20.728 30.998 10.805 10.000 160.314 10.934 20.000 10.278 40.636 10.000 70.403 110.367 10.741 20.484 10.500 21.000 10.113 110.828 10.815 10.000 70.733 10.969 40.374 20.000 10.579 11.000 10.230 50.617 40.983 10.729 10.423 30.855 10.508 50.622 20.018 30.000 10.591 30.034 40.028 90.066 100.869 10.904 70.334 20.651 50.716 10.514 20.871 60.315 20.000 10.664 30.128 30.014 100.000 40.000 10.392 20.851 20.817 10.153 30.823 10.991 10.318 30.680 10.134 20.913 10.157 10.448 40.000 10.000 70.000 30.826 10.978 10.091 50.000 10.660 40.647 30.571 20.804 40.001 80.000 10.480 20.700 10.421 50.947 10.433 140.411 30.148 60.262 40.000 10.849 10.709 50.138 100.150 10.714 20.889 10.000 10.698 10.222 30.000 70.000 10.720 20.000 20.000 10.805 10.600 10.642 20.268 90.904 10.982 20.477 10.632 60.718 20.139 90.776 20.000 10.178 10.886 10.962 10.839 80.000 10.851 20.043 120.869 30.000 10.710 10.315 50.348 20.753 20.397 8
IMFSegNet0.334 80.532 120.251 100.179 60.486 90.041 150.139 120.003 10.283 30.000 10.274 140.191 140.457 130.704 140.795 70.197 90.830 50.000 30.710 80.055 150.064 40.518 60.305 90.458 160.216 110.027 50.284 120.000 10.000 30.044 110.406 90.561 60.000 10.080 110.000 20.873 90.021 140.683 80.000 60.076 80.494 100.363 90.648 150.000 10.000 20.425 90.649 40.000 100.668 120.908 60.740 100.010 130.206 70.862 90.000 10.000 100.560 80.000 70.359 120.237 110.631 110.408 110.411 40.322 140.246 40.439 90.599 120.047 40.213 60.940 100.139 110.000 10.369 50.124 90.188 110.495 100.624 100.626 70.320 130.595 40.495 70.496 100.000 40.000 10.340 110.014 60.032 60.135 50.000 40.903 80.277 60.612 80.196 60.344 110.848 130.260 50.000 10.574 120.073 150.062 40.000 40.000 10.091 50.839 30.776 30.123 110.392 80.756 120.274 50.518 110.029 150.842 30.000 50.357 120.000 10.035 60.000 30.444 110.793 20.245 40.000 10.512 150.512 140.159 140.713 120.000 90.000 10.336 120.484 110.569 20.852 80.615 60.120 110.068 100.228 70.000 10.733 90.773 10.190 40.000 90.608 50.792 40.000 10.597 70.000 130.025 20.000 10.573 160.000 20.000 10.508 100.555 70.363 90.139 110.610 20.947 80.305 60.594 90.527 80.009 160.633 120.000 10.060 30.820 50.604 140.799 90.000 10.799 100.034 140.784 120.000 10.618 60.424 10.134 150.646 120.214 14
GSTran0.334 90.533 110.250 110.179 70.487 80.041 150.139 120.003 10.273 40.000 10.273 150.189 150.465 120.704 140.794 80.198 80.831 40.000 30.712 70.055 150.063 50.518 60.306 80.459 150.217 90.028 40.282 130.000 10.000 30.044 110.405 100.558 70.000 10.080 110.000 20.873 90.020 150.684 70.000 60.075 110.496 90.363 90.651 140.000 10.000 20.425 90.648 50.000 100.669 110.914 50.741 90.009 140.200 80.864 80.000 10.000 100.560 80.000 70.357 130.233 120.633 100.408 110.411 40.320 150.242 50.440 80.598 130.047 40.205 70.940 100.139 110.000 10.372 40.138 80.191 90.495 100.618 120.624 80.321 110.595 40.496 60.499 80.000 40.000 10.340 110.014 60.032 60.136 40.000 40.903 80.279 50.601 90.198 40.345 100.849 110.260 50.000 10.573 130.072 160.060 50.000 40.000 10.089 60.838 40.775 40.125 100.381 100.752 130.274 50.517 120.032 140.841 40.000 50.354 130.000 10.047 50.000 30.439 120.787 30.252 30.000 10.512 150.507 150.158 150.717 110.000 90.000 10.337 110.483 120.570 10.853 70.614 70.121 100.070 90.229 60.000 10.732 100.773 10.193 30.000 90.606 60.791 50.000 10.593 90.000 130.010 50.000 10.574 150.000 20.000 10.507 110.554 80.361 100.136 120.608 30.948 70.304 70.593 100.533 70.011 150.634 110.000 10.060 30.821 40.613 120.797 100.000 10.799 100.036 130.782 130.000 10.609 70.423 20.133 160.647 110.213 15
BFANet ScanNet200permissive0.360 40.553 60.293 40.193 40.483 100.096 50.266 50.000 30.000 60.000 10.298 120.255 110.661 10.810 50.810 30.194 100.785 60.000 30.000 160.161 50.000 90.494 90.382 20.574 30.258 40.000 90.372 80.000 10.000 30.043 130.436 70.000 100.000 10.239 20.000 20.901 30.105 10.689 40.025 30.128 30.614 20.436 10.493 160.000 10.000 20.526 40.546 120.109 50.651 140.953 40.753 60.101 50.143 120.897 40.000 10.431 10.469 140.000 70.522 50.337 50.661 60.459 30.409 60.666 50.102 130.508 50.757 40.000 70.060 130.970 30.497 10.000 10.376 30.511 30.262 40.688 20.921 20.617 90.321 110.590 60.491 80.556 40.000 40.000 10.481 40.093 10.043 20.284 20.000 40.875 140.135 90.669 40.124 120.394 60.849 110.298 30.000 10.476 160.088 120.042 70.000 40.000 10.254 30.653 100.741 60.215 10.573 50.852 50.266 90.654 20.056 110.835 50.000 50.492 10.000 10.000 70.000 30.612 80.000 50.000 80.000 10.616 50.469 160.460 50.698 130.516 20.000 10.378 70.563 40.476 40.863 50.574 90.330 60.000 110.282 30.000 10.760 40.710 40.233 10.000 90.641 40.814 20.000 10.585 100.053 100.000 70.000 10.629 90.000 20.000 10.678 30.528 120.534 40.129 130.596 40.973 40.264 110.772 20.526 90.139 90.707 40.000 10.000 120.764 130.591 150.848 60.000 10.827 40.338 30.806 110.000 10.568 90.151 90.358 10.659 90.510 4
ALS-MinkowskiNetcopyleft0.414 20.610 20.322 30.271 20.542 20.153 20.159 100.000 30.000 60.000 10.404 40.503 40.532 60.672 160.804 50.285 10.888 20.000 30.900 10.226 20.087 20.598 40.342 40.671 10.217 90.087 30.449 30.000 10.000 30.253 20.477 51.000 10.000 10.118 40.000 20.905 10.071 120.710 20.076 10.047 150.665 10.376 80.981 10.000 10.000 20.466 70.632 70.113 40.769 10.956 30.795 20.031 80.314 10.936 10.000 10.390 20.601 20.000 70.458 70.366 20.719 30.440 50.564 10.699 40.314 10.464 60.784 20.200 10.283 50.973 10.142 90.000 10.250 70.285 50.220 60.718 10.752 50.723 20.460 10.248 150.475 90.463 130.000 40.000 10.446 70.021 50.025 100.285 10.000 40.972 10.149 80.769 10.230 20.535 10.879 20.252 70.000 10.693 10.129 20.000 130.000 40.000 10.447 10.958 10.662 90.159 20.598 30.780 110.344 20.646 30.106 50.893 20.135 20.455 30.000 10.194 30.259 10.726 30.475 40.000 80.000 10.741 10.865 10.571 20.817 30.445 30.000 10.506 10.630 30.230 110.916 20.728 10.635 11.000 10.252 50.000 10.804 20.697 60.137 110.043 60.717 10.807 30.000 10.510 130.245 10.000 70.000 10.709 30.000 20.000 10.703 20.572 30.646 10.223 100.531 50.984 10.397 30.813 10.798 10.135 120.800 10.000 10.097 20.832 20.752 80.842 70.000 10.852 10.149 90.846 90.000 10.666 50.359 40.252 70.777 10.690 2
PonderV2 ScanNet2000.346 50.552 70.270 70.175 80.497 70.070 110.239 60.000 30.000 60.000 10.232 160.412 70.584 20.842 30.804 50.212 70.540 90.000 30.433 150.106 90.000 90.590 50.290 110.548 40.243 60.000 90.356 100.000 10.000 30.062 90.398 120.441 90.000 10.104 90.000 20.888 50.076 100.682 90.030 20.094 60.491 110.351 120.869 90.000 10.063 10.403 110.700 20.000 100.660 130.881 80.761 30.050 70.186 90.852 120.000 10.007 80.570 70.100 20.565 20.326 60.641 90.431 60.290 130.621 60.259 30.408 100.622 90.125 20.082 110.950 50.179 50.000 10.263 60.424 40.193 80.558 60.880 30.545 120.375 60.727 30.445 110.499 80.000 40.000 10.475 60.002 90.034 50.083 80.000 40.924 20.290 40.636 60.115 130.400 50.874 40.186 90.000 10.611 70.128 30.113 20.000 40.000 10.000 100.584 110.636 100.103 130.385 90.843 60.283 40.603 60.080 70.825 90.000 50.377 90.000 10.000 70.000 30.457 100.000 50.000 80.000 10.574 110.608 80.481 40.792 50.394 40.000 10.357 90.503 100.261 100.817 120.504 120.304 70.472 40.115 100.000 10.750 60.677 80.202 20.000 90.509 80.729 60.000 10.519 120.000 130.000 70.000 10.620 110.000 20.000 10.660 60.560 60.486 50.384 60.346 90.952 50.247 130.667 40.436 110.269 30.691 60.000 10.010 70.787 90.889 30.880 40.000 10.810 70.336 40.860 70.000 10.606 80.009 100.248 80.681 60.392 9
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
L3DETR-ScanNet_2000.336 70.533 100.279 50.155 90.508 50.073 100.101 160.000 30.058 50.000 10.294 130.233 130.548 40.927 10.788 100.264 20.463 100.000 30.638 110.098 120.014 70.411 120.226 120.525 90.225 80.010 70.397 50.000 10.000 30.192 50.380 130.598 50.000 10.117 50.000 20.883 60.082 70.689 40.000 60.032 160.549 60.417 40.910 50.000 10.000 20.448 80.613 90.000 100.697 70.960 20.759 40.158 20.293 30.883 60.000 10.312 30.583 30.079 40.422 100.068 160.660 70.418 70.298 110.430 110.114 100.526 40.776 30.051 30.679 20.946 60.152 70.000 10.183 80.000 140.211 70.511 90.409 150.565 110.355 70.448 80.512 40.557 30.000 40.000 10.420 80.000 110.007 160.104 60.000 40.125 160.330 30.514 140.146 110.321 120.860 80.174 100.000 10.629 50.075 130.000 130.000 40.000 10.002 90.671 80.712 70.141 60.339 110.856 40.261 110.529 90.067 90.835 50.000 50.369 110.000 10.259 20.000 30.629 50.000 50.487 10.000 10.579 100.646 40.107 160.720 100.122 60.000 10.333 130.505 90.303 90.908 30.503 130.565 20.074 80.324 10.000 10.740 70.661 100.109 130.000 90.427 120.563 160.000 10.579 110.108 70.000 70.000 10.664 50.000 20.000 10.641 70.539 100.416 60.515 20.256 100.940 120.312 50.209 160.620 30.138 110.636 100.000 10.000 120.775 120.861 50.765 120.000 10.801 90.119 110.860 70.000 10.687 20.001 130.192 130.679 80.699 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
PPT-SpUNet-F.T.0.332 110.556 50.270 60.123 130.519 40.091 60.349 30.000 30.000 60.000 10.339 80.383 90.498 100.833 40.807 40.241 40.584 80.000 30.755 60.124 70.000 90.608 30.330 70.530 80.314 20.000 90.374 70.000 10.000 30.197 40.459 60.000 100.000 10.117 50.000 20.876 70.095 20.682 90.000 60.086 70.518 70.433 20.930 40.000 10.000 20.563 30.542 130.077 70.715 40.858 100.756 50.008 150.171 110.874 70.000 10.039 60.550 100.000 70.545 40.256 80.657 80.453 40.351 90.449 100.213 60.392 110.611 100.000 70.037 140.946 60.138 130.000 10.000 120.063 100.308 20.537 70.796 40.673 40.323 100.392 100.400 130.509 70.000 40.000 10.649 10.000 110.023 110.000 110.000 40.914 60.002 150.506 150.163 100.359 80.872 50.000 110.000 10.623 60.112 60.001 120.000 40.000 10.021 80.753 50.565 150.150 40.579 40.806 90.267 80.616 40.042 130.783 120.000 50.374 100.000 10.000 70.000 30.620 70.000 50.000 80.000 10.572 120.634 50.350 90.792 50.000 90.000 10.376 80.535 60.378 60.855 60.672 30.074 120.000 110.185 90.000 10.727 110.660 110.076 160.000 90.432 110.646 100.000 10.594 80.006 120.000 70.000 10.658 60.000 20.000 10.661 40.549 90.300 130.291 80.045 130.942 110.304 70.600 80.572 60.135 120.695 50.000 10.008 90.793 80.942 20.899 20.000 10.816 60.181 70.897 20.000 10.679 40.223 70.264 40.691 50.345 12
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormer ScanNet200permissive0.326 120.539 90.265 90.131 110.499 60.110 30.522 20.000 30.000 60.000 10.318 100.427 60.455 140.743 110.765 120.175 110.842 30.000 30.828 40.204 30.033 60.429 110.335 50.601 20.312 30.000 90.357 90.000 10.000 30.047 100.423 80.000 100.000 10.105 80.000 20.873 90.079 80.670 120.000 60.117 40.471 130.432 30.829 100.000 10.000 20.584 20.417 160.089 60.684 90.837 110.705 150.021 110.178 100.892 50.000 10.028 70.505 120.000 70.457 80.200 130.662 40.412 90.244 140.496 80.000 160.451 70.626 80.000 70.102 100.943 90.138 130.000 10.000 120.149 70.291 30.534 80.722 60.632 60.331 90.253 140.453 100.487 110.000 40.000 10.479 50.000 110.022 120.000 110.000 40.900 100.128 100.684 30.164 90.413 40.854 100.000 110.000 10.512 150.074 140.003 110.000 40.000 10.000 100.469 140.613 120.132 80.529 70.871 30.227 150.582 70.026 160.787 110.000 50.339 140.000 10.000 70.000 30.626 60.000 50.029 70.000 10.587 80.612 70.411 70.724 90.000 90.000 10.407 50.552 50.513 30.849 90.655 40.408 40.000 110.296 20.000 10.686 140.645 130.145 80.022 70.414 130.633 110.000 10.637 20.224 20.000 70.000 10.650 70.000 20.000 10.622 80.535 110.343 110.483 30.230 120.943 100.289 90.618 70.596 40.140 80.679 70.000 10.022 60.783 100.620 110.906 10.000 10.806 80.137 100.865 40.000 10.378 120.000 140.168 140.680 70.227 13
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CeCo0.340 60.551 80.247 120.181 50.475 120.057 140.142 110.000 30.000 60.000 10.387 50.463 50.499 90.924 20.774 110.213 60.257 120.000 30.546 140.100 100.006 80.615 20.177 160.534 60.246 50.000 90.400 40.000 10.338 10.006 150.484 40.609 40.000 10.083 100.000 20.873 90.089 50.661 130.000 60.048 140.560 40.408 60.892 70.000 10.000 20.586 10.616 80.000 100.692 80.900 70.721 110.162 10.228 50.860 100.000 10.000 100.575 40.083 30.550 30.347 40.624 120.410 100.360 80.740 30.109 120.321 140.660 70.000 70.121 80.939 120.143 80.000 10.400 20.003 120.190 100.564 50.652 90.615 100.421 40.304 130.579 10.547 50.000 40.000 10.296 130.000 110.030 80.096 70.000 40.916 40.037 120.551 110.171 80.376 70.865 70.286 40.000 10.633 40.102 110.027 80.011 30.000 10.000 100.474 130.742 50.133 70.311 120.824 80.242 120.503 130.068 80.828 80.000 50.429 60.000 10.063 40.000 30.781 20.000 50.000 80.000 10.665 20.633 60.450 60.818 20.000 90.000 10.429 40.532 70.226 120.825 100.510 110.377 50.709 20.079 130.000 10.753 50.683 70.102 150.063 40.401 150.620 130.000 10.619 30.000 130.000 70.000 10.595 120.000 20.000 10.345 130.564 50.411 70.603 10.384 80.945 90.266 100.643 50.367 130.304 10.663 90.000 10.010 70.726 140.767 70.898 30.000 10.784 120.435 10.861 60.000 10.447 110.000 140.257 60.656 100.377 10
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
AWCS0.305 130.508 130.225 130.142 100.463 130.063 120.195 80.000 30.000 60.000 10.467 30.551 20.504 80.773 60.764 130.142 130.029 160.000 30.626 120.100 100.000 90.360 130.179 140.507 120.137 140.006 80.300 110.000 10.000 30.172 70.364 140.512 80.000 10.056 130.000 20.865 130.093 40.634 160.000 60.071 120.396 140.296 150.876 80.000 10.000 20.373 130.436 150.063 90.749 20.877 90.721 110.131 30.124 130.804 140.000 10.000 100.515 110.010 60.452 90.252 90.578 130.417 80.179 160.484 90.171 70.337 130.606 110.000 70.115 90.937 130.142 90.000 10.008 110.000 140.157 150.484 130.402 160.501 140.339 80.553 70.529 20.478 120.000 40.000 10.404 90.001 100.022 120.077 90.000 40.894 120.219 70.628 70.093 140.305 130.886 10.233 80.000 10.603 80.112 60.023 90.000 40.000 10.000 100.741 60.664 80.097 140.253 130.782 100.264 100.523 100.154 10.707 150.000 50.411 70.000 10.000 70.000 30.332 150.000 50.000 80.000 10.602 60.595 90.185 120.656 150.159 50.000 10.355 100.424 140.154 140.729 140.516 100.220 90.620 30.084 120.000 10.707 130.651 120.173 50.014 80.381 160.582 140.000 10.619 30.049 110.000 70.000 10.702 40.000 20.000 10.302 150.489 140.317 120.334 70.392 70.922 130.254 120.533 130.394 120.129 140.613 140.000 10.000 120.820 50.649 100.749 130.000 10.782 130.282 60.863 50.000 10.288 150.006 110.220 100.633 130.542 3
LGroundpermissive0.272 140.485 140.184 140.106 140.476 110.077 90.218 70.000 30.000 60.000 10.547 20.295 100.540 50.746 100.745 140.058 150.112 150.005 10.658 100.077 140.000 90.322 140.178 150.512 100.190 120.199 20.277 140.000 10.000 30.173 60.399 110.000 100.000 10.039 150.000 20.858 140.085 60.676 110.002 40.103 50.498 80.323 130.703 110.000 10.000 20.296 140.549 110.216 10.702 60.768 130.718 130.028 90.092 150.786 150.000 10.000 100.453 150.022 50.251 160.252 90.572 140.348 140.321 100.514 70.063 140.279 150.552 140.000 70.019 150.932 140.132 150.000 10.000 120.000 140.156 160.457 140.623 110.518 130.265 150.358 110.381 140.395 140.000 40.000 10.127 160.012 80.051 10.000 110.000 40.886 130.014 130.437 160.179 70.244 140.826 140.000 110.000 10.599 90.136 10.085 30.000 40.000 10.000 100.565 120.612 130.143 50.207 140.566 140.232 140.446 140.127 30.708 140.000 50.384 80.000 10.000 70.000 30.402 130.000 50.059 60.000 10.525 140.566 100.229 110.659 140.000 90.000 10.265 140.446 130.147 150.720 160.597 80.066 130.000 110.187 80.000 10.726 120.467 160.134 120.000 90.413 140.629 120.000 10.363 150.055 90.022 30.000 10.626 100.000 20.000 10.323 140.479 160.154 150.117 140.028 150.901 140.243 140.415 150.295 160.143 60.610 150.000 10.000 120.777 110.397 160.324 150.000 10.778 140.179 80.702 150.000 10.274 160.404 30.233 90.622 140.398 7
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
CSC-Pretrainpermissive0.249 160.455 160.171 150.079 160.418 150.059 130.186 90.000 30.000 60.000 10.335 90.250 120.316 150.766 70.697 160.142 130.170 130.003 20.553 130.112 80.097 10.201 160.186 130.476 140.081 150.000 90.216 160.000 10.000 30.001 160.314 160.000 100.000 10.055 140.000 20.832 160.094 30.659 140.002 40.076 80.310 160.293 160.664 130.000 10.000 20.175 160.634 60.130 20.552 160.686 160.700 160.076 60.110 140.770 160.000 10.000 100.430 160.000 70.319 140.166 140.542 160.327 150.205 150.332 130.052 150.375 120.444 160.000 70.012 160.930 160.203 30.000 10.000 120.046 110.175 130.413 150.592 130.471 150.299 140.152 160.340 150.247 160.000 40.000 10.225 140.058 30.037 30.000 110.207 20.862 150.014 130.548 120.033 150.233 150.816 150.000 110.000 10.542 140.123 50.121 10.019 20.000 10.000 100.463 150.454 160.045 160.128 160.557 150.235 130.441 150.063 100.484 160.000 50.308 160.000 10.000 70.000 30.318 160.000 50.000 80.000 10.545 130.543 110.164 130.734 80.000 90.000 10.215 160.371 150.198 130.743 130.205 150.062 140.000 110.079 130.000 10.683 150.547 150.142 90.000 90.441 100.579 150.000 10.464 140.098 80.041 10.000 10.590 130.000 20.000 10.373 120.494 130.174 140.105 150.001 160.895 150.222 150.537 120.307 150.180 50.625 130.000 10.000 120.591 160.609 130.398 140.000 10.766 160.014 160.638 160.000 10.377 130.004 120.206 120.609 160.465 5
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
Minkowski 34Dpermissive0.253 150.463 150.154 160.102 150.381 160.084 70.134 140.000 30.000 60.000 10.386 60.141 160.279 160.737 120.703 150.014 160.164 140.000 30.663 90.092 130.000 90.224 150.291 100.531 70.056 160.000 90.242 150.000 10.000 30.013 140.331 150.000 100.000 10.035 160.001 10.858 140.059 130.650 150.000 60.056 130.353 150.299 140.670 120.000 10.000 20.284 150.484 140.071 80.594 150.720 150.710 140.027 100.068 160.813 130.000 10.005 90.492 130.164 10.274 150.111 150.571 150.307 160.293 120.307 160.150 80.163 160.531 150.002 60.545 40.932 140.093 160.000 10.000 120.002 130.159 140.368 160.581 140.440 160.228 160.406 90.282 160.294 150.000 40.000 10.189 150.060 20.036 40.000 110.000 40.897 110.000 160.525 130.025 160.205 160.771 160.000 110.000 10.593 100.108 90.044 60.000 40.000 10.000 100.282 160.589 140.094 150.169 150.466 160.227 150.419 160.125 40.757 130.002 30.334 150.000 10.000 70.000 30.357 140.000 50.000 80.000 10.582 90.513 130.337 100.612 160.000 90.000 10.250 150.352 160.136 160.724 150.655 40.280 80.000 110.046 150.000 10.606 160.559 140.159 70.102 20.445 90.655 90.000 10.310 160.117 50.000 70.000 10.581 140.026 10.000 10.265 160.483 150.084 160.097 160.044 140.865 160.142 160.588 110.351 140.272 20.596 160.000 10.003 100.622 150.720 90.096 160.000 10.771 150.016 150.772 140.000 10.302 140.194 80.214 110.621 150.197 16
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg ap 25%head ap 25%common ap 25%tail ap 25%alarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TD3D Scannet200permissive0.379 20.603 20.306 20.190 20.635 20.073 20.500 10.000 10.000 10.000 10.495 30.735 20.275 51.000 10.979 20.590 20.000 40.021 20.000 30.146 30.000 20.356 20.173 50.795 10.226 20.000 10.173 20.000 10.000 20.226 20.390 20.000 20.000 10.250 10.000 10.706 20.061 30.885 10.093 20.186 20.259 40.200 10.667 10.000 20.000 10.667 20.825 10.250 40.834 41.000 10.958 10.553 10.111 30.748 10.220 20.051 20.866 20.792 10.390 50.045 50.800 20.302 50.517 10.533 30.113 20.427 10.843 20.000 20.458 10.600 10.000 10.101 20.000 10.259 10.717 20.500 20.615 20.520 20.526 20.457 10.270 40.000 10.000 10.400 20.088 20.294 20.181 20.000 11.000 10.400 10.710 50.103 30.477 50.905 20.061 20.000 10.906 20.102 20.232 10.125 20.000 20.003 20.792 31.000 10.000 20.102 30.125 40.559 50.523 30.075 20.715 10.000 20.424 50.000 10.396 20.250 10.638 10.000 10.000 20.000 10.622 50.833 20.221 10.970 10.250 20.038 10.260 20.415 10.125 21.000 11.000 10.857 20.000 20.908 10.012 10.869 30.836 10.635 10.111 10.625 11.000 10.020 20.510 10.003 30.009 21.000 10.778 10.000 10.000 10.370 30.755 10.288 20.333 30.274 21.000 10.557 10.731 20.456 20.433 30.769 50.000 10.000 20.621 41.000 10.458 40.000 10.196 20.817 10.000 10.472 10.222 30.205 50.689 20.274 3
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
Mask3D Scannet2000.445 10.653 10.392 10.254 10.648 10.097 10.125 50.000 10.000 10.000 10.657 10.971 10.451 21.000 11.000 10.640 10.500 10.045 11.000 10.241 20.409 10.363 10.440 10.686 30.300 10.000 10.201 10.000 10.009 10.290 10.556 11.000 10.000 10.063 30.000 10.830 10.573 10.844 20.333 10.204 10.058 50.158 50.552 20.056 10.000 11.000 10.725 40.750 10.927 11.000 10.888 40.042 30.120 20.615 40.226 10.250 10.890 10.792 10.677 20.510 20.818 10.699 10.512 20.167 50.125 10.315 20.943 10.309 10.017 30.200 30.000 10.188 10.000 10.183 30.815 11.000 10.827 10.741 10.442 30.414 40.600 10.000 10.000 10.458 10.049 30.321 10.381 10.000 10.908 20.400 10.841 10.260 10.710 10.966 10.265 10.000 10.924 10.152 10.025 20.500 10.027 10.028 11.000 10.556 50.016 10.080 50.500 10.694 30.608 10.084 10.604 30.194 10.538 30.000 10.500 10.000 20.354 40.000 11.000 10.000 10.761 20.930 10.053 40.890 31.000 10.008 20.262 10.358 21.000 11.000 10.792 40.966 11.000 10.765 20.004 20.930 10.780 20.330 20.027 20.625 10.974 40.050 10.412 50.021 20.000 30.000 20.778 10.000 10.000 10.493 20.746 20.454 10.335 20.396 10.930 50.551 21.000 10.552 10.606 10.853 10.000 10.004 10.806 11.000 10.727 20.000 10.042 30.745 20.000 10.399 40.391 10.630 10.721 10.619 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
Minkowski 34D Inst.permissive0.280 40.488 40.192 50.124 40.593 40.010 40.500 10.000 10.000 10.000 10.447 40.535 40.445 31.000 10.861 40.400 30.225 20.000 30.000 30.142 40.000 20.074 40.342 30.467 50.067 30.000 10.119 50.000 10.000 20.000 40.337 50.000 20.000 10.000 40.000 10.506 50.070 20.804 40.000 30.000 40.333 30.172 30.150 50.000 20.000 10.479 50.745 30.000 50.830 51.000 10.904 30.167 20.090 40.732 20.000 30.000 30.443 40.000 30.500 30.542 10.772 50.396 40.077 50.385 40.044 40.118 50.777 40.000 20.000 40.200 30.000 10.000 30.000 10.148 40.502 40.500 20.419 40.159 50.281 40.404 50.317 30.000 10.000 10.200 30.000 40.077 30.000 30.000 10.750 30.200 30.715 40.021 40.551 20.828 50.000 30.000 10.743 40.059 50.000 30.000 30.000 20.000 30.125 50.648 30.000 20.191 20.500 10.669 40.502 40.000 50.568 40.000 20.516 40.000 10.000 30.000 20.305 50.000 10.000 20.000 10.825 10.833 20.021 50.918 20.000 30.000 30.191 40.346 40.100 40.981 31.000 10.286 40.000 20.000 50.000 30.868 40.648 50.292 30.000 30.375 31.000 10.000 30.500 20.000 40.333 10.000 20.538 50.000 10.000 10.213 50.518 40.098 40.528 10.250 30.997 30.284 50.677 30.398 30.167 40.790 40.000 10.000 20.618 50.903 50.200 50.000 10.333 10.333 40.000 10.442 30.083 40.213 40.587 40.131 5
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrain Inst.permissive0.275 50.466 50.218 40.110 50.625 30.007 50.500 10.000 10.000 10.000 10.000 50.222 50.377 41.000 10.661 50.400 30.000 40.000 30.000 30.119 50.000 20.000 50.277 40.685 40.067 30.000 10.132 30.000 10.000 20.000 40.367 40.000 20.000 10.000 40.000 10.591 30.055 40.783 50.000 30.014 30.500 20.161 40.278 30.000 20.000 10.667 20.768 20.500 20.866 21.000 10.829 50.000 40.019 50.555 50.000 30.000 30.305 50.000 30.750 10.200 40.783 40.429 30.395 30.677 20.020 50.286 30.584 50.000 20.000 40.115 50.000 10.000 30.000 10.145 50.423 50.500 20.364 50.369 40.571 10.448 30.206 50.000 10.000 10.200 30.106 10.065 50.000 30.000 10.750 30.200 30.774 20.000 50.501 30.841 40.000 30.000 10.692 50.063 40.000 30.000 30.000 20.000 30.500 40.649 20.000 20.084 40.125 40.719 10.413 50.004 40.450 50.000 20.638 10.000 10.000 30.000 20.505 30.000 10.000 20.000 10.727 30.833 20.221 20.779 50.000 30.000 30.168 50.311 50.125 20.571 40.500 50.143 50.000 20.250 40.000 30.869 20.667 40.162 50.000 30.250 41.000 10.000 30.500 20.000 40.000 30.000 20.689 40.000 10.000 10.312 40.383 50.114 30.333 30.000 40.997 30.420 30.613 40.212 50.500 20.819 20.000 10.000 20.768 21.000 10.918 10.000 10.000 40.278 50.000 10.333 50.000 50.353 20.546 50.258 4
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
LGround Inst.permissive0.314 30.529 30.225 30.155 30.578 50.010 30.500 10.000 10.000 10.000 10.515 20.556 30.696 11.000 10.927 30.400 30.083 30.000 31.000 10.252 10.000 20.167 30.350 20.731 20.067 30.000 10.123 40.000 10.000 20.036 30.372 30.000 20.000 10.250 10.000 10.569 40.031 50.810 30.000 30.000 40.630 10.183 20.278 30.000 20.000 10.582 40.589 50.500 20.863 31.000 10.940 20.000 40.144 10.716 30.000 30.000 30.484 30.000 30.500 30.400 30.798 30.500 20.278 40.750 10.093 30.166 40.783 30.000 20.200 20.400 20.000 10.000 30.000 10.219 20.539 30.500 20.578 30.413 30.181 50.457 20.375 20.000 10.000 10.050 50.000 40.077 40.000 30.000 10.500 50.000 50.743 30.250 20.488 40.846 30.000 30.000 10.800 30.069 30.000 30.000 30.000 20.000 31.000 10.607 40.000 20.200 10.500 10.694 20.528 20.063 30.659 20.000 20.594 20.000 10.000 30.000 20.571 20.000 10.000 20.000 10.716 40.647 50.221 20.857 40.000 30.000 30.217 30.346 30.071 50.530 51.000 10.429 30.000 20.286 30.000 30.826 50.706 30.208 40.000 30.250 40.744 50.000 30.500 20.042 10.000 30.000 20.746 30.000 10.000 10.517 10.625 30.085 50.333 30.000 41.000 10.378 40.533 50.376 40.042 50.814 30.000 10.000 20.765 31.000 10.600 30.000 10.000 40.667 30.000 10.472 10.333 20.337 30.605 30.305 2
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 110.812 220.854 70.770 120.856 150.555 160.943 10.660 250.735 20.979 10.606 70.492 10.792 40.934 40.841 20.819 50.716 90.947 100.906 10.822 1
DITR ScanNet0.797 20.727 760.869 10.882 10.785 60.868 70.578 50.943 10.744 10.727 30.979 10.627 20.364 90.824 10.949 20.779 140.844 10.757 10.982 10.905 20.802 3
PTv3 ScanNet0.794 30.941 30.813 210.851 100.782 70.890 20.597 10.916 50.696 100.713 50.979 10.635 10.384 30.793 30.907 100.821 50.790 350.696 140.967 40.903 30.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
PonderV20.785 40.978 10.800 300.833 280.788 40.853 200.545 200.910 80.713 30.705 60.979 10.596 90.390 20.769 150.832 450.821 50.792 340.730 20.975 20.897 60.785 7
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 20.843 190.781 80.858 130.575 80.831 370.685 160.714 40.979 10.594 100.310 290.801 20.892 190.841 20.819 50.723 60.940 150.887 80.725 28
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 230.818 160.836 250.790 30.875 40.576 70.905 90.704 70.739 10.969 120.611 30.349 120.756 250.958 10.702 500.805 180.708 100.916 380.898 50.801 4
TTT-KD0.773 70.646 960.818 160.809 400.774 100.878 30.581 30.943 10.687 140.704 70.978 60.607 60.336 180.775 110.912 80.838 40.823 30.694 150.967 40.899 40.794 6
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 70.771 110.840 340.564 120.900 110.686 150.677 140.961 180.537 350.348 130.769 150.903 120.785 120.815 80.676 260.939 160.880 130.772 11
OctFormerpermissive0.766 90.925 70.808 260.849 120.786 50.846 300.566 110.876 180.690 120.674 160.960 190.576 210.226 710.753 270.904 110.777 150.815 80.722 70.923 310.877 160.776 10
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
PPT-SpUNet-Joint0.766 90.932 50.794 360.829 300.751 260.854 180.540 240.903 100.630 380.672 170.963 160.565 250.357 100.788 50.900 140.737 300.802 190.685 200.950 80.887 80.780 8
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OccuSeg+Semantic0.764 110.758 610.796 340.839 230.746 300.907 10.562 130.850 280.680 180.672 170.978 60.610 40.335 200.777 90.819 490.847 10.830 20.691 170.972 30.885 100.727 26
CU-Hybrid Net0.764 110.924 80.819 140.840 220.757 210.853 200.580 40.848 290.709 50.643 270.958 230.587 150.295 370.753 270.884 230.758 220.815 80.725 50.927 270.867 270.743 19
O-CNNpermissive0.762 130.924 80.823 80.844 180.770 120.852 220.577 60.847 310.711 40.640 310.958 230.592 110.217 770.762 200.888 200.758 220.813 120.726 40.932 250.868 260.744 18
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 780.789 410.843 190.762 170.856 150.562 130.920 40.657 280.658 210.958 230.589 130.337 170.782 60.879 240.787 100.779 400.678 220.926 290.880 130.799 5
DTC0.757 150.843 290.820 120.847 150.791 20.862 110.511 370.870 210.707 60.652 230.954 400.604 80.279 470.760 210.942 30.734 310.766 490.701 130.884 600.874 220.736 20
OA-CNN-L_ScanNet200.756 160.783 470.826 60.858 50.776 90.837 380.548 190.896 140.649 300.675 150.962 170.586 160.335 200.771 140.802 540.770 180.787 370.691 170.936 200.880 130.761 13
PNE0.755 170.786 450.835 50.834 270.758 190.849 250.570 100.836 360.648 310.668 190.978 60.581 190.367 70.683 380.856 330.804 70.801 230.678 220.961 60.889 70.716 34
P. Hermosilla: Point Neighborhood Embeddings.
LSK3DNetpermissive0.755 170.899 160.823 80.843 190.764 160.838 370.584 20.845 320.717 20.638 330.956 300.580 200.229 700.640 470.900 140.750 250.813 120.729 30.920 350.872 240.757 14
Tuo Feng, Wenguan Wang, Fan Ma, Yi Yang: LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels. CVPR 2024
ConDaFormer0.755 170.927 60.822 100.836 250.801 10.849 250.516 340.864 250.651 290.680 130.958 230.584 180.282 440.759 230.855 350.728 330.802 190.678 220.880 650.873 230.756 16
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
PointTransformerV20.752 200.742 680.809 250.872 20.758 190.860 120.552 170.891 160.610 450.687 80.960 190.559 290.304 320.766 180.926 60.767 190.797 270.644 370.942 130.876 190.722 30
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
DMF-Net0.752 200.906 140.793 380.802 460.689 440.825 510.556 150.867 220.681 170.602 490.960 190.555 310.365 80.779 80.859 300.747 260.795 310.717 80.917 370.856 350.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
BPNetcopyleft0.749 220.909 120.818 160.811 380.752 240.839 360.485 520.842 330.673 200.644 260.957 280.528 410.305 310.773 120.859 300.788 90.818 70.693 160.916 380.856 350.723 29
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
PointConvFormer0.749 220.793 430.790 390.807 420.750 280.856 150.524 300.881 170.588 570.642 300.977 100.591 120.274 500.781 70.929 50.804 70.796 280.642 380.947 100.885 100.715 35
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
MSP0.748 240.623 990.804 280.859 40.745 310.824 530.501 410.912 70.690 120.685 100.956 300.567 240.320 260.768 170.918 70.720 380.802 190.676 260.921 330.881 120.779 9
StratifiedFormerpermissive0.747 250.901 150.803 290.845 170.757 210.846 300.512 360.825 400.696 100.645 250.956 300.576 210.262 610.744 330.861 290.742 280.770 470.705 110.899 500.860 320.734 21
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
VMNetpermissive0.746 260.870 210.838 30.858 50.729 360.850 240.501 410.874 190.587 580.658 210.956 300.564 260.299 340.765 190.900 140.716 410.812 140.631 430.939 160.858 330.709 36
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
Virtual MVFusion0.746 260.771 550.819 140.848 140.702 420.865 100.397 890.899 120.699 80.664 200.948 610.588 140.330 220.746 320.851 390.764 200.796 280.704 120.935 210.866 280.728 24
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
DiffSeg3D20.745 280.725 780.814 200.837 240.751 260.831 450.514 350.896 140.674 190.684 110.960 190.564 260.303 330.773 120.820 480.713 440.798 260.690 190.923 310.875 200.757 14
Retro-FPN0.744 290.842 300.800 300.767 600.740 320.836 400.541 220.914 60.672 210.626 370.958 230.552 320.272 520.777 90.886 220.696 510.801 230.674 290.941 140.858 330.717 32
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 300.620 1000.799 330.849 120.730 350.822 550.493 490.897 130.664 220.681 120.955 340.562 280.378 40.760 210.903 120.738 290.801 230.673 300.907 420.877 160.745 17
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
SAT0.742 310.860 240.765 550.819 330.769 140.848 270.533 260.829 380.663 230.631 360.955 340.586 160.274 500.753 270.896 170.729 320.760 550.666 320.921 330.855 370.733 22
LRPNet0.742 310.816 380.806 270.807 420.752 240.828 490.575 80.839 350.699 80.637 340.954 400.520 440.320 260.755 260.834 430.760 210.772 440.676 260.915 400.862 300.717 32
LargeKernel3D0.739 330.909 120.820 120.806 440.740 320.852 220.545 200.826 390.594 560.643 270.955 340.541 340.263 600.723 360.858 320.775 170.767 480.678 220.933 230.848 420.694 41
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
RPN0.736 340.776 510.790 390.851 100.754 230.854 180.491 510.866 230.596 550.686 90.955 340.536 360.342 150.624 540.869 260.787 100.802 190.628 440.927 270.875 200.704 38
MinkowskiNetpermissive0.736 340.859 250.818 160.832 290.709 400.840 340.521 320.853 270.660 250.643 270.951 510.544 330.286 420.731 340.893 180.675 590.772 440.683 210.874 710.852 400.727 26
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
IPCA0.731 360.890 170.837 40.864 30.726 370.873 50.530 290.824 410.489 910.647 240.978 60.609 50.336 180.624 540.733 630.758 220.776 420.570 690.949 90.877 160.728 24
online3d0.727 370.715 830.777 480.854 70.748 290.858 130.497 460.872 200.572 640.639 320.957 280.523 420.297 360.750 300.803 530.744 270.810 150.587 650.938 180.871 250.719 31
SparseConvNet0.725 380.647 950.821 110.846 160.721 380.869 60.533 260.754 620.603 510.614 410.955 340.572 230.325 240.710 370.870 250.724 360.823 30.628 440.934 220.865 290.683 44
PointTransformer++0.725 380.727 760.811 240.819 330.765 150.841 330.502 400.814 460.621 410.623 390.955 340.556 300.284 430.620 560.866 270.781 130.757 590.648 350.932 250.862 300.709 36
MatchingNet0.724 400.812 400.812 220.810 390.735 340.834 420.495 480.860 260.572 640.602 490.954 400.512 460.280 460.757 240.845 410.725 350.780 390.606 540.937 190.851 410.700 40
INS-Conv-semantic0.717 410.751 640.759 580.812 370.704 410.868 70.537 250.842 330.609 470.608 450.953 440.534 380.293 380.616 570.864 280.719 400.793 320.640 390.933 230.845 460.663 49
PointMetaBase0.714 420.835 310.785 430.821 310.684 460.846 300.531 280.865 240.614 420.596 530.953 440.500 490.246 660.674 390.888 200.692 520.764 510.624 460.849 860.844 470.675 46
contrastBoundarypermissive0.705 430.769 580.775 490.809 400.687 450.820 580.439 770.812 470.661 240.591 550.945 690.515 450.171 960.633 510.856 330.720 380.796 280.668 310.889 570.847 430.689 42
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 440.774 530.800 300.793 510.760 180.847 290.471 560.802 500.463 980.634 350.968 140.491 520.271 540.726 350.910 90.706 460.815 80.551 810.878 660.833 480.570 81
RFCR0.702 450.889 180.745 680.813 360.672 490.818 620.493 490.815 450.623 390.610 430.947 630.470 610.249 650.594 610.848 400.705 470.779 400.646 360.892 550.823 540.611 64
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 460.825 350.796 340.723 670.716 390.832 440.433 790.816 430.634 360.609 440.969 120.418 870.344 140.559 730.833 440.715 420.808 170.560 750.902 470.847 430.680 45
JSENetpermissive0.699 470.881 200.762 560.821 310.667 500.800 750.522 310.792 530.613 430.607 460.935 890.492 510.205 830.576 660.853 370.691 530.758 570.652 340.872 740.828 510.649 53
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 480.743 670.794 360.655 900.684 460.822 550.497 460.719 720.622 400.617 400.977 100.447 740.339 160.750 300.664 800.703 490.790 350.596 580.946 120.855 370.647 54
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 490.732 720.772 500.786 520.677 480.866 90.517 330.848 290.509 840.626 370.952 490.536 360.225 730.545 790.704 700.689 560.810 150.564 740.903 460.854 390.729 23
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 500.884 190.754 620.795 490.647 570.818 620.422 810.802 500.612 440.604 470.945 690.462 640.189 910.563 720.853 370.726 340.765 500.632 420.904 440.821 570.606 68
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 510.704 850.741 720.754 640.656 520.829 470.501 410.741 670.609 470.548 620.950 550.522 430.371 50.633 510.756 580.715 420.771 460.623 470.861 820.814 600.658 50
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 520.866 220.748 650.819 330.645 590.794 780.450 670.802 500.587 580.604 470.945 690.464 630.201 860.554 750.840 420.723 370.732 700.602 560.907 420.822 560.603 71
VACNN++0.684 530.728 750.757 610.776 570.690 430.804 730.464 610.816 430.577 630.587 560.945 690.508 480.276 490.671 400.710 680.663 640.750 630.589 630.881 630.832 500.653 52
KP-FCNN0.684 530.847 280.758 600.784 540.647 570.814 650.473 550.772 560.605 490.594 540.935 890.450 720.181 940.587 620.805 520.690 540.785 380.614 500.882 620.819 580.632 60
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
DGNet0.684 530.712 840.784 440.782 560.658 510.835 410.499 450.823 420.641 330.597 520.950 550.487 540.281 450.575 670.619 840.647 720.764 510.620 490.871 770.846 450.688 43
PointContrast_LA_SEM0.683 560.757 620.784 440.786 520.639 610.824 530.408 840.775 550.604 500.541 640.934 930.532 390.269 560.552 760.777 560.645 750.793 320.640 390.913 410.824 530.671 47
Superpoint Network0.683 560.851 270.728 760.800 480.653 540.806 710.468 580.804 480.572 640.602 490.946 660.453 710.239 690.519 840.822 460.689 560.762 540.595 600.895 530.827 520.630 61
VI-PointConv0.676 580.770 570.754 620.783 550.621 650.814 650.552 170.758 600.571 670.557 600.954 400.529 400.268 580.530 820.682 740.675 590.719 730.603 550.888 580.833 480.665 48
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 590.789 440.748 650.763 620.635 630.814 650.407 860.747 640.581 620.573 570.950 550.484 550.271 540.607 580.754 590.649 690.774 430.596 580.883 610.823 540.606 68
SALANet0.670 600.816 380.770 530.768 590.652 550.807 700.451 640.747 640.659 270.545 630.924 990.473 600.149 1060.571 690.811 510.635 790.746 640.623 470.892 550.794 730.570 81
O3DSeg0.668 610.822 360.771 520.496 1100.651 560.833 430.541 220.761 590.555 730.611 420.966 150.489 530.370 60.388 1030.580 870.776 160.751 610.570 690.956 70.817 590.646 55
PointConvpermissive0.666 620.781 480.759 580.699 750.644 600.822 550.475 540.779 540.564 700.504 810.953 440.428 810.203 850.586 640.754 590.661 650.753 600.588 640.902 470.813 620.642 56
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 620.703 860.781 460.751 660.655 530.830 460.471 560.769 570.474 940.537 660.951 510.475 590.279 470.635 490.698 730.675 590.751 610.553 800.816 930.806 640.703 39
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 640.746 650.708 790.722 680.638 620.820 580.451 640.566 1000.599 530.541 640.950 550.510 470.313 280.648 450.819 490.616 840.682 880.590 620.869 780.810 630.656 51
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
DCM-Net0.658 650.778 490.702 820.806 440.619 660.813 680.468 580.693 800.494 870.524 720.941 810.449 730.298 350.510 860.821 470.675 590.727 720.568 720.826 910.803 660.637 58
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 660.698 880.743 700.650 910.564 830.820 580.505 390.758 600.631 370.479 850.945 690.480 570.226 710.572 680.774 570.690 540.735 680.614 500.853 850.776 880.597 74
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 670.752 630.734 740.664 880.583 780.815 640.399 880.754 620.639 340.535 680.942 790.470 610.309 300.665 410.539 900.650 680.708 780.635 410.857 840.793 750.642 56
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 680.778 490.731 750.699 750.577 790.829 470.446 690.736 680.477 930.523 740.945 690.454 680.269 560.484 930.749 620.618 820.738 660.599 570.827 900.792 780.621 63
MVPNetpermissive0.641 690.831 320.715 770.671 850.590 740.781 840.394 900.679 820.642 320.553 610.937 860.462 640.256 620.649 440.406 1030.626 800.691 850.666 320.877 670.792 780.608 67
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointConv-SFPN0.641 690.776 510.703 810.721 690.557 860.826 500.451 640.672 850.563 710.483 840.943 780.425 840.162 1010.644 460.726 640.659 660.709 770.572 680.875 690.786 830.559 87
PointMRNet0.640 710.717 820.701 830.692 780.576 800.801 740.467 600.716 730.563 710.459 910.953 440.429 800.169 980.581 650.854 360.605 850.710 750.550 820.894 540.793 750.575 79
FPConvpermissive0.639 720.785 460.760 570.713 730.603 690.798 760.392 920.534 1050.603 510.524 720.948 610.457 660.250 640.538 800.723 660.598 890.696 830.614 500.872 740.799 680.567 84
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 730.797 420.769 540.641 960.590 740.820 580.461 620.537 1040.637 350.536 670.947 630.388 940.206 820.656 420.668 780.647 720.732 700.585 660.868 790.793 750.473 107
PointSPNet0.637 740.734 710.692 900.714 720.576 800.797 770.446 690.743 660.598 540.437 960.942 790.403 900.150 1050.626 530.800 550.649 690.697 820.557 780.846 870.777 870.563 85
SConv0.636 750.830 330.697 860.752 650.572 820.780 860.445 710.716 730.529 770.530 690.951 510.446 750.170 970.507 880.666 790.636 780.682 880.541 880.886 590.799 680.594 75
Supervoxel-CNN0.635 760.656 930.711 780.719 700.613 670.757 950.444 740.765 580.534 760.566 580.928 970.478 580.272 520.636 480.531 920.664 630.645 980.508 960.864 810.792 780.611 64
joint point-basedpermissive0.634 770.614 1010.778 470.667 870.633 640.825 510.420 820.804 480.467 960.561 590.951 510.494 500.291 390.566 700.458 980.579 950.764 510.559 770.838 880.814 600.598 73
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 780.731 730.688 930.675 820.591 730.784 830.444 740.565 1010.610 450.492 820.949 590.456 670.254 630.587 620.706 690.599 880.665 940.612 530.868 790.791 810.579 78
PointNet2-SFPN0.631 790.771 550.692 900.672 830.524 920.837 380.440 760.706 780.538 750.446 930.944 750.421 860.219 760.552 760.751 610.591 910.737 670.543 870.901 490.768 900.557 88
3DSM_DMMF0.631 790.626 980.745 680.801 470.607 680.751 960.506 380.729 710.565 690.491 830.866 1130.434 760.197 890.595 600.630 830.709 450.705 800.560 750.875 690.740 980.491 102
APCF-Net0.631 790.742 680.687 950.672 830.557 860.792 810.408 840.665 870.545 740.508 780.952 490.428 810.186 920.634 500.702 710.620 810.706 790.555 790.873 720.798 700.581 77
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
FusionAwareConv0.630 820.604 1030.741 720.766 610.590 740.747 970.501 410.734 690.503 860.527 700.919 1030.454 680.323 250.550 780.420 1020.678 580.688 860.544 850.896 520.795 720.627 62
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 830.800 410.625 1050.719 700.545 890.806 710.445 710.597 950.448 1010.519 760.938 850.481 560.328 230.489 920.499 970.657 670.759 560.592 610.881 630.797 710.634 59
SegGroup_sempermissive0.627 840.818 370.747 670.701 740.602 700.764 920.385 960.629 920.490 890.508 780.931 960.409 890.201 860.564 710.725 650.618 820.692 840.539 890.873 720.794 730.548 91
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 850.830 330.694 880.757 630.563 840.772 900.448 680.647 900.520 800.509 770.949 590.431 790.191 900.496 900.614 850.647 720.672 920.535 920.876 680.783 840.571 80
Weakly-Openseg v30.625 850.924 80.787 420.620 980.555 880.811 690.393 910.666 860.382 1090.520 750.953 440.250 1130.208 800.604 590.670 760.644 760.742 650.538 900.919 360.803 660.513 99
dtc_net0.625 850.703 860.751 640.794 500.535 900.848 270.480 530.676 840.528 780.469 880.944 750.454 680.004 1180.464 950.636 820.704 480.758 570.548 840.924 300.787 820.492 101
HPEIN0.618 880.729 740.668 960.647 930.597 720.766 910.414 830.680 810.520 800.525 710.946 660.432 770.215 780.493 910.599 860.638 770.617 1030.570 690.897 510.806 640.605 70
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 890.858 260.772 500.489 1110.532 910.792 810.404 870.643 910.570 680.507 800.935 890.414 880.046 1150.510 860.702 710.602 870.705 800.549 830.859 830.773 890.534 94
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 900.760 600.667 970.649 920.521 930.793 790.457 630.648 890.528 780.434 980.947 630.401 910.153 1040.454 960.721 670.648 710.717 740.536 910.904 440.765 910.485 103
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 910.634 970.743 700.697 770.601 710.781 840.437 780.585 980.493 880.446 930.933 940.394 920.011 1170.654 430.661 810.603 860.733 690.526 930.832 890.761 930.480 104
LAP-D0.594 920.720 800.692 900.637 970.456 1020.773 890.391 940.730 700.587 580.445 950.940 830.381 950.288 400.434 990.453 1000.591 910.649 960.581 670.777 970.749 970.610 66
DPC0.592 930.720 800.700 840.602 1020.480 980.762 940.380 970.713 760.585 610.437 960.940 830.369 970.288 400.434 990.509 960.590 930.639 1010.567 730.772 980.755 950.592 76
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 940.766 590.659 1000.683 800.470 1010.740 990.387 950.620 940.490 890.476 860.922 1010.355 1000.245 670.511 850.511 950.571 960.643 990.493 1000.872 740.762 920.600 72
ROSMRF0.580 950.772 540.707 800.681 810.563 840.764 920.362 990.515 1060.465 970.465 900.936 880.427 830.207 810.438 970.577 880.536 990.675 910.486 1010.723 1040.779 850.524 96
SD-DETR0.576 960.746 650.609 1090.445 1150.517 940.643 1100.366 980.714 750.456 990.468 890.870 1120.432 770.264 590.558 740.674 750.586 940.688 860.482 1020.739 1020.733 1000.537 93
SQN_0.1%0.569 970.676 900.696 870.657 890.497 950.779 870.424 800.548 1020.515 820.376 1030.902 1100.422 850.357 100.379 1040.456 990.596 900.659 950.544 850.685 1070.665 1110.556 89
TextureNetpermissive0.566 980.672 920.664 980.671 850.494 960.719 1000.445 710.678 830.411 1070.396 1010.935 890.356 990.225 730.412 1010.535 910.565 970.636 1020.464 1040.794 960.680 1080.568 83
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 990.648 940.700 840.770 580.586 770.687 1040.333 1030.650 880.514 830.475 870.906 1070.359 980.223 750.340 1060.442 1010.422 1100.668 930.501 970.708 1050.779 850.534 94
Pointnet++ & Featurepermissive0.557 1000.735 700.661 990.686 790.491 970.744 980.392 920.539 1030.451 1000.375 1040.946 660.376 960.205 830.403 1020.356 1060.553 980.643 990.497 980.824 920.756 940.515 97
GMLPs0.538 1010.495 1110.693 890.647 930.471 1000.793 790.300 1060.477 1070.505 850.358 1050.903 1090.327 1030.081 1120.472 940.529 930.448 1080.710 750.509 940.746 1000.737 990.554 90
PanopticFusion-label0.529 1020.491 1120.688 930.604 1010.386 1070.632 1110.225 1170.705 790.434 1040.293 1110.815 1150.348 1010.241 680.499 890.669 770.507 1010.649 960.442 1100.796 950.602 1150.561 86
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1030.676 900.591 1120.609 990.442 1030.774 880.335 1020.597 950.422 1060.357 1060.932 950.341 1020.094 1110.298 1080.528 940.473 1060.676 900.495 990.602 1130.721 1030.349 115
Online SegFusion0.515 1040.607 1020.644 1030.579 1040.434 1040.630 1120.353 1000.628 930.440 1020.410 990.762 1180.307 1050.167 990.520 830.403 1040.516 1000.565 1060.447 1080.678 1080.701 1050.514 98
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1050.558 1070.608 1100.424 1170.478 990.690 1030.246 1130.586 970.468 950.450 920.911 1050.394 920.160 1020.438 970.212 1130.432 1090.541 1110.475 1030.742 1010.727 1010.477 105
PCNN0.498 1060.559 1060.644 1030.560 1060.420 1060.711 1020.229 1150.414 1080.436 1030.352 1070.941 810.324 1040.155 1030.238 1130.387 1050.493 1020.529 1120.509 940.813 940.751 960.504 100
3DMV0.484 1070.484 1130.538 1150.643 950.424 1050.606 1150.310 1040.574 990.433 1050.378 1020.796 1160.301 1060.214 790.537 810.208 1140.472 1070.507 1150.413 1130.693 1060.602 1150.539 92
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1080.577 1050.611 1080.356 1190.321 1150.715 1010.299 1080.376 1120.328 1150.319 1090.944 750.285 1080.164 1000.216 1160.229 1110.484 1040.545 1100.456 1060.755 990.709 1040.475 106
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1090.679 890.604 1110.578 1050.380 1080.682 1050.291 1090.106 1190.483 920.258 1170.920 1020.258 1120.025 1160.231 1150.325 1070.480 1050.560 1080.463 1050.725 1030.666 1100.231 119
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1100.474 1140.623 1060.463 1130.366 1100.651 1080.310 1040.389 1110.349 1130.330 1080.937 860.271 1100.126 1080.285 1090.224 1120.350 1150.577 1050.445 1090.625 1110.723 1020.394 111
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1110.548 1080.548 1140.597 1030.363 1110.628 1130.300 1060.292 1140.374 1100.307 1100.881 1110.268 1110.186 920.238 1130.204 1150.407 1110.506 1160.449 1070.667 1090.620 1140.462 109
SurfaceConvPF0.442 1110.505 1100.622 1070.380 1180.342 1130.654 1070.227 1160.397 1100.367 1110.276 1130.924 990.240 1140.198 880.359 1050.262 1090.366 1120.581 1040.435 1110.640 1100.668 1090.398 110
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1130.437 1160.646 1020.474 1120.369 1090.645 1090.353 1000.258 1160.282 1180.279 1120.918 1040.298 1070.147 1070.283 1100.294 1080.487 1030.562 1070.427 1120.619 1120.633 1130.352 114
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1140.525 1090.647 1010.522 1070.324 1140.488 1190.077 1200.712 770.353 1120.401 1000.636 1200.281 1090.176 950.340 1060.565 890.175 1190.551 1090.398 1140.370 1200.602 1150.361 113
SPLAT Netcopyleft0.393 1150.472 1150.511 1160.606 1000.311 1160.656 1060.245 1140.405 1090.328 1150.197 1180.927 980.227 1160.000 1200.001 1210.249 1100.271 1180.510 1130.383 1160.593 1140.699 1060.267 117
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1160.297 1180.491 1170.432 1160.358 1120.612 1140.274 1110.116 1180.411 1070.265 1140.904 1080.229 1150.079 1130.250 1110.185 1160.320 1160.510 1130.385 1150.548 1150.597 1180.394 111
PointNet++permissive0.339 1170.584 1040.478 1180.458 1140.256 1180.360 1200.250 1120.247 1170.278 1190.261 1160.677 1190.183 1170.117 1090.212 1170.145 1180.364 1130.346 1200.232 1200.548 1150.523 1190.252 118
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
GrowSP++0.323 1180.114 1200.589 1130.499 1090.147 1200.555 1160.290 1100.336 1130.290 1170.262 1150.865 1140.102 1200.000 1200.037 1190.000 1210.000 1210.462 1170.381 1170.389 1190.664 1120.473 107
SSC-UNetpermissive0.308 1190.353 1170.290 1200.278 1200.166 1190.553 1170.169 1190.286 1150.147 1200.148 1200.908 1060.182 1180.064 1140.023 1200.018 1200.354 1140.363 1180.345 1180.546 1170.685 1070.278 116
ScanNetpermissive0.306 1200.203 1190.366 1190.501 1080.311 1160.524 1180.211 1180.002 1210.342 1140.189 1190.786 1170.145 1190.102 1100.245 1120.152 1170.318 1170.348 1190.300 1190.460 1180.437 1200.182 120
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1210.000 1210.041 1210.172 1210.030 1210.062 1220.001 1210.035 1200.004 1210.051 1210.143 1210.019 1210.003 1190.041 1180.050 1190.003 1200.054 1210.018 1210.005 1220.264 1210.082 121
MVF-GNN0.014 1220.000 1210.000 1220.000 1220.007 1220.086 1210.000 1220.000 1220.001 1220.000 1220.029 1220.001 1220.000 1200.000 1220.000 1210.000 1210.000 1220.018 1210.015 1210.115 1220.000 122


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PointRel0.901 11.000 10.978 230.928 30.879 10.962 50.882 40.749 360.947 30.912 20.802 30.753 170.820 21.000 10.984 40.919 50.894 31.000 10.815 14
: Relation3D (PointRel): Enhancing Relation Modeling for Point Cloud Instance Segmentation.
OneFormer3Dcopyleft0.896 21.000 11.000 10.913 60.858 60.951 90.786 140.837 180.916 120.908 40.778 80.803 60.750 141.000 10.976 60.926 40.882 70.995 470.849 1
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
Competitor-MAFT0.896 21.000 11.000 10.872 160.847 110.967 30.955 10.778 320.901 150.919 10.784 50.812 10.770 121.000 10.949 80.865 330.868 171.000 10.840 4
MG-Former0.887 41.000 10.991 140.837 250.801 230.935 180.887 30.857 100.946 40.891 100.748 170.805 50.739 161.000 10.993 20.809 570.876 141.000 10.842 3
UniPerception0.884 51.000 10.979 200.872 160.869 30.892 270.806 110.890 60.835 290.892 90.755 130.811 20.779 100.955 470.951 70.876 220.914 10.997 390.840 5
KmaxOneFormerNetpermissive0.883 61.000 11.000 10.798 390.848 100.971 10.853 50.903 30.827 320.910 30.748 160.809 40.724 181.000 10.980 50.855 390.844 231.000 10.832 6
InsSSM0.883 61.000 10.996 60.800 380.865 40.960 60.808 100.852 150.940 60.899 80.785 40.810 30.700 211.000 10.912 190.851 420.895 20.997 390.827 8
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
Competitor-SPFormer0.881 81.000 11.000 10.845 230.854 70.962 40.714 210.857 110.904 140.902 60.782 70.789 110.662 271.000 10.988 30.874 250.886 60.997 390.847 2
TST3D0.879 91.000 10.994 90.921 50.807 220.939 150.771 150.887 70.923 100.862 170.722 220.768 140.756 131.000 10.910 290.904 70.836 260.999 380.824 10
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
SIM3D0.878 101.000 10.972 250.863 190.817 200.952 80.821 80.783 290.890 180.902 70.735 200.797 70.799 91.000 10.931 160.893 130.853 211.000 10.792 17
EV3D0.877 111.000 10.996 80.873 140.854 80.950 100.691 250.783 300.926 70.889 130.754 140.794 100.820 21.000 10.912 190.900 90.860 191.000 10.779 20
Spherical Mask(CtoF)0.875 121.000 10.991 150.873 140.850 90.946 120.691 250.752 350.926 70.889 120.759 110.794 90.820 21.000 10.912 190.900 90.878 111.000 10.769 22
TD3Dpermissive0.875 121.000 10.976 240.877 120.783 290.970 20.889 20.828 190.945 50.803 220.713 240.720 240.709 191.000 10.936 140.934 30.873 151.000 10.791 18
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
SoftGroup++0.874 141.000 10.972 260.947 10.839 140.898 260.556 400.913 20.881 210.756 240.828 20.748 190.821 11.000 10.937 130.937 10.887 51.000 10.821 11
Queryformer0.874 141.000 10.978 220.809 360.876 20.936 170.702 220.716 410.920 110.875 160.766 90.772 130.818 61.000 10.995 10.916 60.892 41.000 10.767 23
Mask3D0.870 161.000 10.985 170.782 460.818 190.938 160.760 160.749 360.923 90.877 150.760 100.785 120.820 21.000 10.912 190.864 350.878 110.983 530.825 9
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
ExtMask3D0.867 171.000 11.000 10.756 530.816 210.940 140.795 120.760 340.862 230.888 140.739 180.763 150.774 111.000 10.929 170.878 210.879 91.000 10.819 13
SoftGrouppermissive0.865 181.000 10.969 270.860 200.860 50.913 220.558 370.899 40.911 130.760 230.828 10.736 210.802 80.981 440.919 180.875 230.877 131.000 10.820 12
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
MAFT0.860 191.000 10.990 160.810 350.829 150.949 110.809 90.688 470.836 280.904 50.751 150.796 80.741 151.000 10.864 390.848 440.837 241.000 10.828 7
IPCA-Inst0.851 201.000 10.968 280.884 110.842 130.862 390.693 240.812 240.888 200.677 360.783 60.698 250.807 71.000 10.911 260.865 340.865 181.000 10.757 26
SPFormerpermissive0.851 201.000 10.994 100.806 370.774 310.942 130.637 290.849 160.859 250.889 110.720 230.730 220.665 261.000 10.911 260.868 320.873 161.000 10.796 16
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
Mask3D_evaluation0.843 221.000 10.955 330.847 220.795 250.932 190.750 180.780 310.891 170.818 190.737 190.633 340.703 201.000 10.902 310.870 280.820 270.941 610.805 15
SphereSeg0.835 231.000 10.963 310.891 90.794 260.954 70.822 70.710 420.961 20.721 280.693 300.530 470.653 291.000 10.867 380.857 380.859 200.991 500.771 21
ISBNetpermissive0.835 231.000 10.950 340.731 550.819 170.918 200.790 130.740 380.851 270.831 180.661 320.742 200.650 301.000 10.937 120.814 560.836 251.000 10.765 24
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
GraphCut0.832 251.000 10.922 480.724 570.798 240.902 250.701 230.856 130.859 240.715 290.706 250.748 180.640 411.000 10.934 150.862 360.880 81.000 10.729 29
TopoSeg0.832 251.000 10.981 190.933 20.819 180.826 480.524 460.841 170.811 340.681 350.759 120.687 260.727 170.981 440.911 260.883 170.853 221.000 10.756 27
PBNetpermissive0.825 271.000 10.963 300.837 270.843 120.865 340.822 60.647 500.878 220.733 260.639 390.683 270.650 301.000 10.853 400.870 290.820 281.000 10.744 28
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
SSEC0.820 281.000 10.983 180.924 40.826 160.817 510.415 550.899 50.793 380.673 370.731 210.636 320.653 281.000 10.939 110.804 590.878 101.000 10.780 19
DKNet0.815 291.000 10.930 400.844 240.765 350.915 210.534 440.805 260.805 360.807 210.654 330.763 160.650 301.000 10.794 520.881 180.766 321.000 10.758 25
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
RPGN0.806 301.000 10.992 120.789 410.723 480.891 280.650 280.810 250.832 300.665 390.699 280.658 280.700 211.000 10.881 330.832 480.774 300.997 390.613 49
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
HAISpermissive0.803 311.000 10.994 100.820 310.759 360.855 400.554 410.882 80.827 330.615 450.676 310.638 310.646 391.000 10.912 190.797 620.767 310.994 480.726 30
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
Box2Mask0.803 311.000 10.962 320.874 130.707 520.887 310.686 270.598 550.961 10.715 300.694 290.469 520.700 211.000 10.912 190.902 80.753 370.997 390.637 43
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
Mask-Group0.792 331.000 10.968 290.812 320.766 340.864 350.460 490.815 230.888 190.598 490.651 360.639 300.600 470.918 500.941 90.896 120.721 441.000 10.723 31
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
CSC-Pretrained0.791 341.000 10.996 60.829 300.767 330.889 300.600 320.819 220.770 430.594 500.620 430.541 440.700 211.000 10.941 90.889 150.763 331.000 10.526 59
SSTNetpermissive0.789 351.000 10.840 620.888 100.717 490.835 440.717 200.684 480.627 580.724 270.652 350.727 230.600 471.000 10.912 190.822 510.757 361.000 10.691 37
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
GICN0.788 361.000 10.978 210.867 180.781 300.833 450.527 450.824 200.806 350.549 580.596 460.551 400.700 211.000 10.853 400.935 20.733 411.000 10.651 40
DENet0.786 371.000 10.929 410.736 540.750 420.720 640.755 170.934 10.794 370.590 510.561 520.537 450.650 301.000 10.882 320.804 600.789 291.000 10.719 32
DANCENET0.786 371.000 10.936 370.783 440.737 450.852 420.742 190.647 500.765 450.811 200.624 420.579 370.632 441.000 10.909 300.898 110.696 490.944 570.601 52
DualGroup0.782 391.000 10.927 420.811 330.772 320.853 410.631 310.805 260.773 400.613 460.611 440.610 350.650 300.835 610.881 330.879 200.750 391.000 10.675 38
PointGroup0.778 401.000 10.900 520.798 400.715 500.863 360.493 470.706 430.895 160.569 560.701 260.576 380.639 421.000 10.880 350.851 410.719 450.997 390.709 34
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
PE0.776 411.000 10.900 530.860 200.728 470.869 320.400 560.857 120.774 390.568 570.701 270.602 360.646 390.933 490.843 430.890 140.691 530.997 390.709 33
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
AOIA0.767 421.000 10.937 360.810 340.740 440.906 230.550 420.800 280.706 500.577 550.624 410.544 430.596 520.857 530.879 370.880 190.750 380.992 490.658 39
DD-UNet+Group0.764 431.000 10.897 550.837 260.753 390.830 470.459 510.824 200.699 520.629 430.653 340.438 550.650 301.000 10.880 350.858 370.690 541.000 10.650 41
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
INS-Conv-instance0.762 441.000 10.923 450.765 490.785 280.905 240.600 320.655 490.646 570.683 340.647 370.530 460.650 301.000 10.824 450.830 490.693 520.944 570.644 42
Dyco3Dcopyleft0.761 451.000 10.935 380.893 80.752 410.863 370.600 320.588 560.742 470.641 410.633 400.546 420.550 540.857 530.789 540.853 400.762 340.987 510.699 35
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
OccuSeg+instance0.742 461.000 10.923 450.785 420.745 430.867 330.557 380.578 590.729 480.670 380.644 380.488 500.577 531.000 10.794 520.830 490.620 621.000 10.550 55
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
RWSeg0.739 471.000 10.899 540.759 510.753 400.823 490.282 610.691 460.658 550.582 540.594 470.547 410.628 451.000 10.795 510.868 310.728 431.000 10.692 36
3D-MPA0.737 481.000 10.933 390.785 420.794 270.831 460.279 630.588 560.695 530.616 440.559 530.556 390.650 301.000 10.809 490.875 240.696 501.000 10.608 51
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
MTML0.731 491.000 10.992 120.779 480.609 610.746 590.308 600.867 90.601 610.607 470.539 560.519 480.550 541.000 10.824 450.869 300.729 421.000 10.616 47
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
OSIS0.725 501.000 10.885 580.653 630.657 580.801 520.576 360.695 450.828 310.698 320.534 570.457 540.500 610.857 530.831 440.841 460.627 601.000 10.619 46
SSEN0.724 511.000 10.926 430.781 470.661 560.845 430.596 350.529 620.764 460.653 400.489 630.461 530.500 610.859 520.765 550.872 270.761 351.000 10.577 53
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
NeuralBF0.718 521.000 10.945 350.901 70.754 380.817 500.460 490.700 440.772 410.688 330.568 510.000 740.500 610.981 440.606 650.872 260.740 401.000 10.614 48
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
Sparse R-CNN0.714 531.000 10.926 440.694 580.699 540.890 290.636 300.516 630.693 540.743 250.588 480.369 590.601 460.594 670.800 500.886 160.676 550.986 520.546 56
SALoss-ResNet0.695 541.000 10.855 600.579 680.589 630.735 620.484 480.588 560.856 260.634 420.571 500.298 600.500 611.000 10.824 450.818 520.702 480.935 640.545 57
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
PanopticFusion-inst0.693 551.000 10.852 610.655 620.616 600.788 540.334 580.763 330.771 420.457 680.555 540.652 290.518 580.857 530.765 550.732 680.631 580.944 570.577 54
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
Occipital-SCS0.688 561.000 10.913 490.730 560.737 460.743 610.442 520.855 140.655 560.546 590.546 550.263 620.508 600.889 510.568 660.771 650.705 470.889 670.625 45
3D-BoNet0.687 571.000 10.887 570.836 280.587 640.643 710.550 420.620 520.724 490.522 630.501 610.243 630.512 591.000 10.751 570.807 580.661 570.909 660.612 50
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
ClickSeg_Instance0.685 581.000 10.818 640.600 660.715 510.795 530.557 380.533 610.591 630.601 480.519 590.429 570.638 430.938 480.706 600.817 540.624 610.944 570.502 61
PCJC0.684 591.000 10.895 560.757 520.659 570.862 380.189 700.739 390.606 600.712 310.581 490.515 490.650 300.857 530.357 710.785 630.631 590.889 670.635 44
SPG_WSIS0.678 601.000 10.880 590.836 280.701 530.727 630.273 650.607 540.706 510.541 610.515 600.174 660.600 470.857 530.716 590.846 450.711 461.000 10.506 60
One_Thing_One_Clickpermissive0.675 611.000 10.823 630.782 450.621 590.766 560.211 670.736 400.560 650.586 520.522 580.636 330.453 650.641 650.853 400.850 430.694 510.997 390.411 66
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
SegGroup_inspermissive0.637 621.000 10.923 470.593 670.561 650.746 600.143 720.504 640.766 440.485 660.442 640.372 580.530 570.714 620.815 480.775 640.673 561.000 10.431 65
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
MASCpermissive0.615 630.711 700.802 650.540 690.757 370.777 550.029 730.577 600.588 640.521 640.600 450.436 560.534 560.697 630.616 640.838 470.526 640.980 540.534 58
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
UNet-backbone0.605 641.000 10.909 500.764 500.603 620.704 650.415 540.301 690.548 660.461 670.394 650.267 610.386 670.857 530.649 630.817 530.504 660.959 550.356 69
3D-SISpermissive0.558 651.000 10.773 660.614 650.503 680.691 670.200 680.412 650.498 690.546 600.311 700.103 700.600 470.857 530.382 680.799 610.445 720.938 630.371 67
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
R-PointNet0.544 660.500 730.655 720.661 610.663 550.765 570.432 530.214 720.612 590.584 530.499 620.204 650.286 710.429 700.655 620.650 730.539 630.950 560.499 62
Hier3Dcopyleft0.540 671.000 10.727 670.626 640.467 710.693 660.200 680.412 650.480 700.528 620.318 690.077 730.600 470.688 640.382 680.768 660.472 680.941 610.350 70
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
Region-18class0.497 680.250 750.902 510.689 590.540 660.747 580.276 640.610 530.268 740.489 650.348 660.000 740.243 740.220 730.663 610.814 550.459 700.928 650.496 63
Sem_Recon_ins0.484 690.764 690.608 740.470 710.521 670.637 720.311 590.218 710.348 730.365 720.223 710.222 640.258 720.629 660.734 580.596 740.509 650.858 700.444 64
tmp0.474 701.000 10.727 670.433 730.481 700.673 690.022 750.380 670.517 680.436 700.338 680.128 680.343 690.429 700.291 730.728 690.473 670.833 710.300 72
SemRegionNet-20cls0.470 711.000 10.727 670.447 720.481 690.678 680.024 740.380 670.518 670.440 690.339 670.128 680.350 680.429 700.212 740.711 700.465 690.833 710.290 73
ASIS0.422 720.333 740.707 700.676 600.401 720.650 700.350 570.177 730.594 620.376 710.202 720.077 720.404 660.571 680.197 750.674 720.447 710.500 740.260 74
3D-BEVIS0.401 730.667 710.687 710.419 740.137 750.587 730.188 710.235 700.359 720.211 740.093 750.080 710.311 700.571 680.382 680.754 670.300 740.874 690.357 68
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Sgpn_scannet0.390 740.556 720.636 730.493 700.353 730.539 740.271 660.160 740.450 710.359 730.178 730.146 670.250 730.143 740.347 720.698 710.436 730.667 730.331 71
MaskRCNN 2d->3d Proj0.261 750.903 680.081 750.008 750.233 740.175 750.280 620.106 750.150 750.203 750.175 740.480 510.218 750.143 740.542 670.404 750.153 750.393 750.049 75


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 20.512 10.422 170.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 30.481 20.451 130.769 40.656 30.567 40.931 30.395 60.390 50.700 40.534 40.689 100.770 20.574 30.865 90.831 30.675 5
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MVF-GNN(2D)0.636 30.606 140.794 40.434 160.688 10.337 80.464 120.798 30.632 50.589 30.908 80.420 20.329 120.743 20.594 20.738 20.676 50.527 40.906 20.818 60.715 3
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 230.648 40.463 30.549 20.742 70.676 20.628 20.961 10.420 20.379 60.684 80.381 180.732 30.723 30.599 20.827 160.851 20.634 7
CMX0.613 50.681 80.725 120.502 120.634 60.297 180.478 100.830 20.651 40.537 70.924 40.375 70.315 140.686 70.451 140.714 50.543 210.504 60.894 70.823 50.688 4
DMMF_3d0.605 60.651 90.744 100.782 30.637 50.387 40.536 30.732 80.590 70.540 60.856 210.359 110.306 150.596 140.539 30.627 200.706 40.497 80.785 210.757 190.476 22
EMSANet0.600 70.716 40.746 90.395 180.614 90.382 50.523 40.713 110.571 110.503 100.922 60.404 50.397 40.655 90.400 160.626 210.663 60.469 130.900 40.827 40.577 14
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
MCA-Net0.595 80.533 200.756 80.746 40.590 100.334 100.506 70.670 150.587 80.500 120.905 100.366 100.352 90.601 130.506 80.669 160.648 90.501 70.839 150.769 150.516 21
RFBNet0.592 90.616 110.758 70.659 50.581 110.330 110.469 110.655 180.543 140.524 80.924 40.355 130.336 110.572 170.479 100.671 140.648 90.480 100.814 190.814 70.614 10
FAN_NV_RVC0.586 100.510 210.764 60.079 260.620 80.330 110.494 80.753 50.573 90.556 50.884 160.405 40.303 160.718 30.452 130.672 130.658 70.509 50.898 50.813 80.727 2
DCRedNet0.583 110.682 70.723 130.542 110.510 200.310 150.451 130.668 160.549 130.520 90.920 70.375 70.446 20.528 200.417 150.670 150.577 180.478 110.862 100.806 90.628 9
MIX6D_RVC0.582 120.695 50.687 170.225 210.632 70.328 130.550 10.748 60.623 60.494 150.890 140.350 150.254 230.688 60.454 120.716 40.597 170.489 90.881 80.768 160.575 15
SSMAcopyleft0.577 130.695 50.716 150.439 140.563 140.314 140.444 150.719 90.551 120.503 100.887 150.346 160.348 100.603 120.353 200.709 60.600 150.457 140.901 30.786 110.599 13
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
DMMF0.567 140.623 100.767 50.238 200.571 130.347 60.413 190.719 90.472 200.418 220.895 130.357 120.260 220.696 50.523 70.666 170.642 110.437 180.895 60.793 100.603 12
UNIV_CNP_RVC_UE0.566 150.569 190.686 190.435 150.524 170.294 190.421 180.712 120.543 140.463 170.872 170.320 170.363 80.611 110.477 110.686 110.627 120.443 170.862 100.775 140.639 6
EMSAFormer0.564 160.581 160.736 110.564 100.546 160.219 230.517 50.675 140.486 190.427 210.904 110.352 140.320 130.589 150.528 50.708 70.464 240.413 220.847 140.786 110.611 11
SN_RN152pyrx8_RVCcopyleft0.546 170.572 170.663 210.638 70.518 180.298 170.366 240.633 210.510 170.446 190.864 190.296 200.267 190.542 190.346 210.704 80.575 190.431 190.853 130.766 170.630 8
UDSSEG_RVC0.545 180.610 130.661 220.588 80.556 150.268 210.482 90.642 200.572 100.475 160.836 230.312 180.367 70.630 100.189 230.639 190.495 230.452 150.826 170.756 200.541 17
segfomer with 6d0.542 190.594 150.687 170.146 240.579 120.308 160.515 60.703 130.472 200.498 130.868 180.369 90.282 170.589 150.390 170.701 90.556 200.416 210.860 120.759 180.539 19
FuseNetpermissive0.535 200.570 180.681 200.182 220.512 190.290 200.431 160.659 170.504 180.495 140.903 120.308 190.428 30.523 210.365 190.676 120.621 140.470 120.762 220.779 130.541 17
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 210.613 120.722 140.418 170.358 260.337 80.370 230.479 240.443 220.368 240.907 90.207 230.213 250.464 240.525 60.618 220.657 80.450 160.788 200.721 230.408 25
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 220.481 240.612 230.579 90.456 220.343 70.384 210.623 220.525 160.381 230.845 220.254 220.264 210.557 180.182 240.581 240.598 160.429 200.760 230.661 250.446 24
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 230.505 220.709 160.092 250.427 230.241 220.411 200.654 190.385 260.457 180.861 200.053 260.279 180.503 220.481 90.645 180.626 130.365 240.748 240.725 220.529 20
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 240.490 230.581 240.289 190.507 210.067 260.379 220.610 230.417 240.435 200.822 250.278 210.267 190.503 220.228 220.616 230.533 220.375 230.820 180.729 210.560 16
Enet (reimpl)0.376 250.264 260.452 260.452 130.365 240.181 240.143 260.456 250.409 250.346 250.769 260.164 240.218 240.359 250.123 260.403 260.381 260.313 260.571 250.685 240.472 23
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 260.293 250.521 250.657 60.361 250.161 250.250 250.004 260.440 230.183 260.836 230.125 250.060 260.319 260.132 250.417 250.412 250.344 250.541 260.427 260.109 26
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EMSANet (Instance)0.241 10.401 10.439 10.085 10.242 10.220 10.081 10.289 20.117 20.121 10.182 10.126 10.346 10.181 20.181 20.358 10.156 10.675 20.131 1
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
UniDet_RVC0.205 20.381 20.323 30.037 30.226 30.177 30.063 20.277 30.120 10.067 30.131 30.074 30.317 20.080 30.235 10.289 30.141 30.678 10.080 3
FKNet0.204 30.334 30.358 20.038 20.234 20.184 20.025 30.318 10.042 40.088 20.141 20.053 40.300 30.207 10.171 30.292 20.149 20.636 30.109 2
MaskRCNN_ScanNetpermissive0.119 40.129 40.212 40.002 40.112 40.148 40.014 40.205 40.044 30.066 40.078 40.095 20.142 40.030 40.128 40.139 40.080 40.459 40.057 4
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LAST-PCL-type0.780 10.250 31.000 11.000 11.000 11.000 11.000 10.500 21.000 10.500 20.889 10.000 21.000 11.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12
multi-taskpermissive0.700 20.500 11.000 10.882 30.500 31.000 11.000 10.500 21.000 11.000 10.778 20.000 20.938 20.000 3
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.691 30.500 10.938 30.824 41.000 11.000 10.500 31.000 10.857 30.500 20.556 40.000 20.812 30.500 2
SE-ResNeXt-SSMA0.498 40.000 50.812 40.941 20.500 30.500 40.500 30.500 20.429 50.500 20.667 30.500 10.625 40.000 3
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.353 50.250 30.812 40.529 50.500 30.500 40.000 50.500 20.571 40.000 50.556 40.000 20.375 50.000 3