Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail iouwallchairfloortabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
ALS-MinkowskiNetcopyleft0.414 20.610 20.322 30.271 20.852 10.710 20.973 10.572 40.719 30.795 20.477 60.506 20.601 30.000 140.804 50.646 30.804 20.344 20.777 10.984 10.671 10.879 20.936 10.342 50.632 70.449 40.817 30.475 100.723 20.798 10.376 80.832 20.693 10.031 90.564 10.510 130.000 10.893 30.905 10.672 160.314 10.000 70.718 10.153 30.542 20.397 30.726 30.752 80.252 80.226 20.916 20.800 10.047 160.807 30.769 10.709 30.630 30.769 10.217 100.000 30.285 10.598 40.846 100.535 10.956 40.000 70.137 110.784 20.464 70.463 130.230 120.000 10.598 30.662 90.000 40.087 20.000 10.135 30.900 20.780 110.703 20.741 10.571 20.149 90.697 70.646 20.000 30.076 20.000 10.025 110.000 40.106 60.981 10.000 10.043 70.113 40.888 20.248 150.404 40.252 60.314 10.220 70.245 20.466 70.366 20.159 20.000 40.149 80.690 20.000 30.531 50.253 30.285 60.460 10.440 50.813 10.230 30.283 60.159 110.000 10.728 10.666 50.958 10.000 10.021 50.252 80.118 50.000 70.445 30.223 100.285 10.194 30.390 20.000 10.475 40.842 70.000 10.455 30.000 10.250 70.458 80.000 10.865 10.000 10.000 10.635 10.359 50.972 10.087 30.447 10.000 10.000 90.000 10.129 20.532 60.446 80.503 50.071 130.135 120.699 40.717 20.097 20.000 10.665 10.000 20.000 21.000 10.752 60.000 30.000 10.000 10.142 90.200 10.259 11.000 10.000 1
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. CVPR 2025
PTv3 ScanNet2000.393 30.592 30.330 20.216 30.851 20.687 60.971 20.586 20.755 10.752 70.505 20.404 70.575 50.000 140.848 20.616 40.761 30.349 10.738 30.978 30.546 60.860 80.926 30.346 40.654 30.384 70.828 10.523 40.699 30.583 60.387 70.822 30.688 20.118 40.474 30.603 50.000 10.832 80.903 20.753 90.140 100.000 70.650 30.109 50.520 30.457 20.497 100.871 40.281 40.192 50.887 40.748 30.168 20.727 70.733 20.740 10.644 20.714 50.190 130.000 30.256 30.449 100.914 10.514 20.759 150.337 10.172 60.692 70.617 30.636 10.325 70.000 10.641 20.782 20.000 40.065 30.000 10.000 60.842 40.903 20.661 40.662 30.612 10.405 20.731 40.566 40.000 30.000 70.000 10.017 150.301 10.088 70.941 30.000 10.077 40.000 100.717 80.790 20.310 120.026 170.264 40.349 10.220 50.397 120.366 20.115 130.000 40.337 10.463 60.000 30.531 50.218 40.593 20.455 20.469 20.708 30.210 40.592 40.108 160.000 10.728 10.682 30.671 80.000 10.000 110.407 10.136 40.022 30.575 10.436 40.259 30.428 10.048 60.000 10.000 50.879 50.000 10.480 20.000 10.133 90.597 20.000 10.690 20.000 10.000 10.009 160.000 150.921 30.000 90.151 50.000 10.000 90.000 10.109 80.494 110.622 20.394 90.073 120.141 70.798 20.528 80.026 50.000 10.551 50.000 20.000 20.134 70.717 80.000 30.000 10.000 10.188 40.000 70.000 30.791 30.000 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
ODIN - Sem200permissive0.368 40.562 40.297 40.207 40.800 100.669 130.940 100.575 30.654 90.749 80.487 30.589 10.609 20.001 120.769 120.561 80.752 60.274 50.682 60.926 130.554 40.833 140.921 40.389 20.599 100.591 10.787 80.550 20.657 50.610 40.334 130.803 80.661 40.090 60.408 70.373 150.000 10.912 20.796 170.501 170.169 80.000 70.641 40.196 10.380 170.397 30.641 50.740 90.862 10.213 30.857 60.685 70.216 10.578 160.557 100.685 50.523 80.581 160.312 30.000 30.065 150.000 170.871 30.359 80.988 20.321 20.090 160.704 60.631 20.393 150.246 110.000 10.482 80.565 150.000 40.000 90.000 10.181 10.913 10.468 160.632 80.642 50.259 110.000 170.832 10.663 10.000 30.081 10.000 10.048 20.000 40.376 10.898 70.000 10.157 10.000 100.870 30.000 170.400 50.265 40.242 50.227 60.539 10.370 140.214 130.129 100.000 40.131 100.054 170.000 30.358 90.491 10.462 40.434 30.346 150.454 150.316 20.814 10.828 20.000 10.000 170.220 170.612 110.000 10.000 110.373 20.378 20.000 70.429 40.152 110.077 90.166 40.202 50.000 10.000 50.441 140.000 10.440 60.000 10.000 120.655 10.000 10.626 70.000 10.000 10.228 90.487 10.784 160.000 90.301 30.000 10.426 20.000 10.108 90.460 130.590 40.775 10.088 60.119 150.485 90.791 10.000 120.000 10.256 170.000 20.000 20.000 110.885 30.303 10.000 10.000 10.127 160.000 70.000 30.894 20.000 1
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
DITR0.449 10.629 10.392 10.289 10.851 20.727 10.969 40.600 10.741 20.805 10.519 10.480 30.636 10.014 100.867 10.680 10.849 10.318 30.753 20.982 20.508 120.871 60.934 20.482 10.596 110.551 20.804 40.508 60.729 10.718 20.417 40.886 10.664 30.000 170.500 20.698 10.000 10.913 10.901 30.766 70.113 120.000 70.617 50.168 20.650 10.477 10.826 10.962 10.348 30.300 10.947 10.776 20.160 30.889 10.651 50.720 20.700 10.728 30.317 10.000 30.238 50.664 10.869 40.514 20.998 10.313 30.138 100.815 10.828 10.622 20.421 50.000 10.823 10.817 10.000 40.000 90.000 10.157 20.866 30.991 10.805 10.660 40.571 20.043 120.709 60.642 30.000 30.000 70.000 10.028 100.018 30.134 30.967 20.000 10.150 20.130 20.949 10.855 10.580 10.262 50.314 10.230 50.222 40.498 50.367 10.153 30.869 10.334 20.397 80.000 30.904 10.486 21.000 10.423 40.484 10.632 60.716 10.733 20.862 10.000 10.433 140.710 10.851 20.000 10.034 40.315 30.385 10.000 70.001 90.268 90.066 110.000 80.278 40.000 10.978 10.839 80.000 10.448 40.000 10.579 10.403 120.000 10.647 30.000 10.000 10.411 30.315 60.904 70.420 10.392 20.000 10.091 60.000 10.128 30.564 30.591 30.568 20.079 90.139 91.000 10.714 30.178 10.000 10.606 30.000 20.000 20.148 60.983 10.000 30.000 10.000 10.374 20.000 70.000 30.662 40.000 1
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation.
CeCo0.340 70.551 90.247 130.181 60.784 130.661 140.939 130.564 60.624 130.721 120.484 50.429 50.575 50.027 80.774 110.503 140.753 50.242 130.656 110.945 90.534 70.865 70.860 110.177 170.616 80.400 50.818 20.579 10.615 110.367 140.408 60.726 150.633 50.162 10.360 90.619 30.000 10.828 90.873 90.924 20.109 130.083 30.564 60.057 150.475 120.266 110.781 20.767 70.257 70.100 110.825 110.663 100.048 150.620 130.551 120.595 130.532 70.692 80.246 60.000 30.213 60.615 20.861 70.376 70.900 80.000 70.102 150.660 80.321 150.547 50.226 130.000 10.311 130.742 50.011 30.006 80.000 10.000 60.546 150.824 80.345 140.665 20.450 60.435 10.683 80.411 80.338 10.000 70.000 10.030 90.000 40.068 90.892 80.000 10.063 50.000 100.257 130.304 130.387 60.079 140.228 60.190 110.000 140.586 10.347 40.133 70.000 40.037 130.377 100.000 30.384 80.006 160.003 130.421 50.410 100.643 50.171 90.121 90.142 120.000 10.510 110.447 110.474 140.000 10.000 110.286 50.083 110.000 70.000 100.603 10.096 70.063 50.000 110.000 10.000 50.898 30.000 10.429 70.000 10.400 20.550 40.000 10.633 60.000 10.000 10.377 50.000 150.916 40.000 90.000 110.000 10.000 90.000 10.102 120.499 90.296 140.463 60.089 50.304 10.740 30.401 160.010 70.000 10.560 40.000 20.000 20.709 20.652 100.000 30.000 10.000 10.143 80.000 70.000 30.609 50.000 1
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
OA-CNN-L_ScanNet2000.333 110.558 50.269 90.124 130.821 50.703 30.946 60.569 50.662 40.748 90.487 30.455 40.572 70.000 140.789 90.534 90.736 90.271 80.713 40.949 60.498 140.877 30.860 110.332 70.706 10.474 30.788 70.406 130.637 60.495 110.355 110.805 70.592 120.015 130.396 80.602 60.000 10.799 110.876 70.713 130.276 20.000 70.493 130.080 90.448 140.363 50.661 40.833 60.262 60.125 70.823 120.665 90.076 90.720 80.557 100.637 90.517 90.672 100.227 80.000 30.158 120.496 80.843 110.352 100.835 130.000 70.103 140.711 50.527 40.526 60.320 80.000 10.568 60.625 110.067 10.000 90.000 10.001 50.806 60.836 70.621 100.591 80.373 80.314 50.668 100.398 90.003 20.000 70.000 10.016 160.024 20.043 130.906 60.000 10.052 60.000 100.384 120.330 120.342 80.100 120.223 70.183 130.112 70.476 60.313 70.130 90.196 30.112 120.370 110.000 30.234 120.071 90.160 70.403 60.398 130.492 140.197 60.076 130.272 50.000 10.200 160.560 100.735 70.000 10.000 110.000 120.110 80.002 60.021 80.412 50.000 120.000 80.000 110.000 10.000 50.794 110.000 10.445 50.000 10.022 100.509 70.000 10.517 130.000 10.000 10.001 170.245 70.915 50.024 60.089 70.000 10.262 30.000 10.103 110.524 70.392 110.515 40.013 170.251 40.411 130.662 40.001 110.000 10.473 120.000 20.000 20.150 50.699 90.000 30.000 10.000 10.166 60.000 70.024 20.000 110.000 1
PonderV2 ScanNet2000.346 60.552 80.270 80.175 90.810 70.682 90.950 50.560 70.641 100.761 30.398 130.357 100.570 80.113 20.804 50.603 60.750 70.283 40.681 70.952 50.548 50.874 40.852 130.290 120.700 20.356 110.792 50.445 120.545 130.436 120.351 120.787 100.611 80.050 80.290 140.519 120.000 10.825 100.888 50.842 30.259 30.100 20.558 70.070 120.497 70.247 140.457 110.889 30.248 90.106 100.817 130.691 60.094 70.729 60.636 60.620 120.503 110.660 130.243 70.000 30.212 70.590 50.860 80.400 50.881 90.000 70.202 20.622 100.408 110.499 80.261 100.000 10.385 100.636 100.000 40.000 90.000 10.000 60.433 160.843 60.660 60.574 120.481 40.336 40.677 90.486 60.000 30.030 30.000 10.034 60.000 40.080 80.869 100.000 10.000 100.000 100.540 100.727 30.232 170.115 110.186 100.193 90.000 140.403 110.326 60.103 140.000 40.290 40.392 90.000 30.346 100.062 100.424 50.375 70.431 60.667 40.115 140.082 120.239 70.000 10.504 120.606 80.584 120.000 10.002 90.186 100.104 100.000 70.394 50.384 60.083 80.000 80.007 90.000 10.000 50.880 40.000 10.377 100.000 10.263 60.565 30.000 10.608 90.000 10.000 10.304 70.009 110.924 20.000 90.000 110.000 10.000 90.000 10.128 30.584 20.475 70.412 80.076 110.269 30.621 60.509 90.010 70.000 10.491 110.063 10.000 20.472 40.880 40.000 30.000 10.000 10.179 50.125 20.000 30.441 100.000 1
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
L3DETR-ScanNet_2000.336 80.533 110.279 60.155 100.801 90.689 40.946 60.539 110.660 70.759 40.380 140.333 140.583 40.000 140.788 100.529 100.740 80.261 120.679 90.940 120.525 100.860 80.883 70.226 130.613 90.397 60.720 110.512 50.565 120.620 30.417 40.775 130.629 60.158 20.298 120.579 110.000 10.835 60.883 60.927 10.114 110.079 40.511 100.073 110.508 50.312 60.629 60.861 50.192 140.098 130.908 30.636 110.032 170.563 170.514 150.664 60.505 100.697 70.225 90.000 30.264 20.411 120.860 80.321 130.960 30.058 60.109 130.776 30.526 50.557 30.303 90.000 10.339 120.712 70.000 40.014 70.000 10.000 60.638 120.856 40.641 70.579 110.107 170.119 110.661 110.416 70.000 30.000 70.000 10.007 170.000 40.067 100.910 50.000 10.000 100.000 100.463 110.448 80.294 140.324 10.293 30.211 80.108 80.448 80.068 170.141 60.000 40.330 30.699 10.000 30.256 110.192 60.000 150.355 80.418 70.209 170.146 120.679 30.101 170.000 10.503 130.687 20.671 80.000 10.000 110.174 110.117 60.000 70.122 70.515 20.104 60.259 20.312 30.000 10.000 50.765 120.000 10.369 120.000 10.183 80.422 110.000 10.646 40.000 10.000 10.565 20.001 140.125 170.010 70.002 100.000 10.487 10.000 10.075 140.548 40.420 90.233 140.082 80.138 110.430 120.427 130.000 120.000 10.549 60.000 20.000 20.074 80.409 160.000 30.000 10.000 10.152 70.051 30.000 30.598 60.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
AWCS0.305 140.508 140.225 140.142 110.782 140.634 170.937 140.489 150.578 140.721 120.364 150.355 110.515 120.023 90.764 140.523 110.707 140.264 110.633 140.922 140.507 130.886 10.804 150.179 150.436 160.300 120.656 160.529 30.501 150.394 130.296 160.820 50.603 90.131 30.179 170.619 30.000 10.707 160.865 130.773 60.171 70.010 60.484 140.063 130.463 130.254 130.332 160.649 110.220 110.100 110.729 150.613 150.071 130.582 140.628 70.702 40.424 150.749 20.137 150.000 30.142 130.360 130.863 60.305 140.877 100.000 70.173 50.606 120.337 140.478 120.154 150.000 10.253 140.664 80.000 40.000 90.000 10.000 60.626 130.782 100.302 160.602 70.185 130.282 60.651 130.317 130.000 30.000 70.000 10.022 130.000 40.154 20.876 90.000 10.014 90.063 90.029 170.553 70.467 30.084 130.124 140.157 160.049 120.373 130.252 90.097 150.000 40.219 70.542 30.000 30.392 70.172 80.000 150.339 90.417 80.533 130.093 150.115 100.195 90.000 10.516 100.288 150.741 60.000 10.001 100.233 90.056 140.000 70.159 60.334 70.077 90.000 80.000 110.000 10.000 50.749 130.000 10.411 80.000 10.008 110.452 100.000 10.595 100.000 10.000 10.220 100.006 120.894 120.006 80.000 110.000 10.000 90.000 10.112 60.504 80.404 100.551 30.093 40.129 140.484 100.381 170.000 120.000 10.396 140.000 20.000 20.620 30.402 170.000 30.000 10.000 10.142 90.000 70.000 30.512 90.000 1
: Long-Tailed 3D Semantic Segmentation with Adaptive Weight Constraint and Sampling. ICRA 2024
OctFormer ScanNet200permissive0.326 130.539 100.265 100.131 120.806 80.670 120.943 90.535 120.662 40.705 160.423 90.407 60.505 130.003 110.765 130.582 70.686 150.227 160.680 80.943 100.601 20.854 100.892 60.335 60.417 170.357 100.724 100.453 110.632 70.596 50.432 30.783 110.512 160.021 120.244 150.637 20.000 10.787 120.873 90.743 110.000 170.000 70.534 90.110 40.499 60.289 100.626 70.620 120.168 150.204 40.849 100.679 80.117 50.633 110.684 30.650 80.552 50.684 90.312 30.000 30.175 110.429 110.865 50.413 40.837 120.000 70.145 80.626 90.451 80.487 110.513 30.000 10.529 70.613 120.000 40.033 60.000 10.000 60.828 50.871 30.622 90.587 90.411 70.137 100.645 140.343 120.000 30.000 70.000 10.022 130.000 40.026 170.829 110.000 10.022 80.089 60.842 40.253 140.318 110.296 20.178 110.291 30.224 30.584 20.200 140.132 80.000 40.128 110.227 130.000 30.230 130.047 110.149 80.331 100.412 90.618 70.164 100.102 110.522 30.000 10.655 40.378 120.469 150.000 10.000 110.000 120.105 90.000 70.000 100.483 30.000 120.000 80.028 80.000 10.000 50.906 10.000 10.339 150.000 10.000 120.457 90.000 10.612 80.000 10.000 10.408 40.000 150.900 100.000 90.000 110.000 10.029 80.000 10.074 150.455 150.479 60.427 70.079 90.140 80.496 80.414 140.022 60.000 10.471 130.000 20.000 20.000 110.722 70.000 30.000 10.000 10.138 130.000 70.000 30.000 110.000 1
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
PPT-SpUNet-F.T.0.332 120.556 60.270 70.123 140.816 60.682 90.946 60.549 100.657 80.756 50.459 70.376 90.550 110.001 120.807 40.616 40.727 120.267 90.691 50.942 110.530 90.872 50.874 80.330 80.542 140.374 80.792 50.400 140.673 40.572 70.433 20.793 90.623 70.008 160.351 100.594 80.000 10.783 130.876 70.833 40.213 60.000 70.537 80.091 70.519 40.304 80.620 80.942 20.264 50.124 80.855 70.695 50.086 80.646 100.506 160.658 70.535 60.715 40.314 20.000 30.241 40.608 30.897 20.359 80.858 110.000 70.076 170.611 110.392 120.509 70.378 60.000 10.579 40.565 150.000 40.000 90.000 10.000 60.755 70.806 90.661 40.572 130.350 90.181 70.660 120.300 140.000 30.000 70.000 10.023 120.000 40.042 140.930 40.000 10.000 100.077 70.584 90.392 100.339 90.185 100.171 120.308 20.006 130.563 30.256 80.150 40.000 40.002 160.345 120.000 30.045 140.197 50.063 110.323 110.453 40.600 80.163 110.037 150.349 40.000 10.672 30.679 40.753 50.000 10.000 110.000 120.117 60.000 70.000 100.291 80.000 120.000 80.039 70.000 10.000 50.899 20.000 10.374 110.000 10.000 120.545 50.000 10.634 50.000 10.000 10.074 130.223 80.914 60.000 90.021 90.000 10.000 90.000 10.112 60.498 100.649 10.383 100.095 20.135 120.449 110.432 120.008 90.000 10.518 70.000 20.000 20.000 110.796 50.000 30.000 10.000 10.138 130.000 70.000 30.000 110.000 1
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
BFANet ScanNet200permissive0.360 50.553 70.293 50.193 50.827 40.689 40.970 30.528 130.661 60.753 60.436 80.378 80.469 150.042 70.810 30.654 20.760 40.266 100.659 100.973 40.574 30.849 110.897 50.382 30.546 130.372 90.698 140.491 90.617 100.526 100.436 10.764 140.476 170.101 50.409 60.585 100.000 10.835 60.901 30.810 50.102 140.000 70.688 20.096 60.483 100.264 120.612 90.591 160.358 20.161 60.863 50.707 40.128 40.814 20.669 40.629 100.563 40.651 140.258 50.000 30.194 100.494 90.806 120.394 60.953 50.000 70.233 10.757 40.508 60.556 40.476 40.000 10.573 50.741 60.000 40.000 90.000 10.000 60.000 170.852 50.678 30.616 60.460 50.338 30.710 50.534 50.000 30.025 40.000 10.043 30.000 40.056 120.493 170.000 10.000 100.109 50.785 70.590 60.298 130.282 30.143 130.262 40.053 110.526 40.337 50.215 10.000 40.135 90.510 40.000 30.596 40.043 140.511 30.321 120.459 30.772 20.124 130.060 140.266 60.000 10.574 90.568 90.653 100.000 10.093 10.298 40.239 30.000 70.516 20.129 140.284 20.000 80.431 10.000 10.000 50.848 60.000 10.492 10.000 10.376 30.522 60.000 10.469 170.000 10.000 10.330 60.151 100.875 140.000 90.254 40.000 10.000 90.000 10.088 130.661 10.481 50.255 120.105 10.139 90.666 50.641 50.000 120.000 10.614 20.000 20.000 20.000 110.921 20.000 30.000 10.000 10.497 10.000 70.000 30.000 110.000 1
Weiguang Zhao, Rui Zhang, Qiufeng Wang, Guangliang Cheng, Kaizhu Huang: BFANet: Revisiting 3D Semantic Segmentation with Boundary Feature Analysis. CVPR 2025
GSTran0.334 100.533 120.250 120.179 80.799 110.684 70.940 100.554 90.633 110.741 100.405 110.337 120.560 90.060 50.794 80.517 130.732 110.274 50.647 120.948 70.459 160.849 110.864 90.306 90.648 50.282 140.717 120.496 70.624 90.533 80.363 90.821 40.573 140.009 150.411 40.593 90.000 10.841 50.873 90.704 140.242 50.000 70.495 110.041 160.487 80.304 80.439 130.613 130.133 170.055 160.853 80.634 120.075 120.791 50.601 90.574 160.483 130.669 110.217 100.000 30.198 80.518 60.782 140.345 110.914 60.273 50.193 30.598 140.440 90.499 80.570 10.000 10.381 110.775 40.000 40.063 50.000 10.000 60.712 80.752 130.507 120.512 160.158 160.036 130.773 20.361 110.000 30.000 70.000 10.032 70.000 40.032 150.651 150.000 10.000 100.000 100.831 50.595 40.273 160.229 70.200 90.191 100.000 140.425 90.233 120.125 110.000 40.279 50.213 150.003 10.608 30.044 120.138 90.321 120.408 110.593 100.198 50.205 80.139 130.000 10.614 70.609 70.838 40.000 10.014 60.260 60.080 120.010 50.000 100.136 130.136 40.047 60.000 110.000 10.787 30.797 100.000 10.354 140.000 10.372 40.357 140.000 10.507 160.000 10.000 10.121 110.423 30.903 80.028 40.089 70.000 10.252 40.000 10.072 170.465 120.340 120.189 160.020 160.011 160.320 160.606 70.060 30.000 10.496 90.000 20.000 20.070 90.618 130.000 30.000 10.000 10.139 110.047 40.000 30.558 80.000 1
IMFSegNet0.334 90.532 130.251 110.179 70.799 110.683 80.940 100.555 80.631 120.740 110.406 100.336 130.560 90.062 40.795 70.518 120.733 100.274 50.646 130.947 80.458 170.848 130.862 100.305 100.649 40.284 130.713 130.495 80.626 80.527 90.363 90.820 50.574 130.010 140.411 40.597 70.000 10.842 40.873 90.704 140.246 40.000 70.495 110.041 160.486 90.305 70.444 120.604 150.134 160.055 160.852 90.633 130.076 90.792 40.612 80.573 170.484 120.668 120.216 120.000 30.197 90.518 60.784 130.344 120.908 70.283 40.190 40.599 130.439 100.496 100.569 20.000 10.392 90.776 30.000 40.064 40.000 10.000 60.710 90.756 120.508 110.512 160.159 150.034 140.773 20.363 100.000 30.000 70.000 10.032 70.000 40.029 160.648 160.000 10.000 100.000 100.830 60.595 40.274 150.228 80.206 80.188 120.000 140.425 90.237 110.123 120.000 40.277 60.214 140.003 10.610 20.044 120.124 100.320 140.408 110.594 90.196 70.213 70.139 130.000 10.615 60.618 60.839 30.000 10.014 60.260 60.080 120.025 20.000 100.139 120.135 50.035 70.000 110.000 10.793 20.799 90.000 10.357 130.000 10.369 50.359 130.000 10.512 150.000 10.000 10.120 120.424 20.903 80.027 50.091 60.000 10.245 50.000 10.073 160.457 140.340 120.191 150.021 150.009 170.322 150.608 60.060 30.000 10.494 100.000 20.000 20.068 100.624 110.000 30.000 10.000 10.139 110.047 40.000 30.561 70.000 1
CSC-Pretrainpermissive0.249 170.455 170.171 160.079 170.766 170.659 150.930 170.494 140.542 170.700 170.314 170.215 170.430 170.121 10.697 170.441 160.683 160.235 140.609 170.895 160.476 150.816 160.770 170.186 140.634 60.216 170.734 90.340 160.471 160.307 160.293 170.591 170.542 150.076 70.205 160.464 140.000 10.484 170.832 160.766 70.052 160.000 70.413 160.059 140.418 150.222 160.318 170.609 140.206 130.112 90.743 140.625 140.076 90.579 150.548 130.590 140.371 160.552 170.081 160.003 20.142 130.201 160.638 170.233 160.686 170.000 70.142 90.444 170.375 130.247 170.198 140.000 10.128 170.454 170.019 20.097 10.000 10.000 60.553 140.557 150.373 130.545 140.164 140.014 160.547 160.174 150.000 30.002 50.000 10.037 40.000 40.063 110.664 140.000 10.000 100.130 20.170 140.152 160.335 100.079 140.110 150.175 140.098 90.175 170.166 150.045 170.207 20.014 140.465 50.000 30.001 170.001 170.046 120.299 150.327 160.537 120.033 160.012 170.186 100.000 10.205 150.377 130.463 160.000 10.058 30.000 120.055 150.041 10.000 100.105 160.000 120.000 80.000 110.000 10.000 50.398 150.000 10.308 170.000 10.000 120.319 150.000 10.543 120.000 10.000 10.062 150.004 130.862 150.000 90.000 110.000 10.000 90.000 10.123 50.316 160.225 150.250 130.094 30.180 50.332 140.441 110.000 120.000 10.310 160.000 20.000 20.000 110.592 140.000 30.000 10.000 10.203 30.000 70.000 30.000 110.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
LGroundpermissive0.272 150.485 150.184 150.106 150.778 150.676 110.932 150.479 170.572 150.718 140.399 120.265 150.453 160.085 30.745 150.446 150.726 130.232 150.622 150.901 150.512 110.826 150.786 160.178 160.549 120.277 150.659 150.381 150.518 140.295 170.323 140.777 120.599 100.028 100.321 110.363 160.000 10.708 150.858 140.746 100.063 150.022 50.457 150.077 100.476 110.243 150.402 140.397 170.233 100.077 150.720 170.610 160.103 60.629 120.437 170.626 110.446 140.702 60.190 130.005 10.058 160.322 140.702 160.244 150.768 140.000 70.134 120.552 150.279 160.395 140.147 160.000 10.207 150.612 130.000 40.000 90.000 10.000 60.658 110.566 140.323 150.525 150.229 120.179 80.467 170.154 160.000 30.002 50.000 10.051 10.000 40.127 40.703 120.000 10.000 100.216 10.112 160.358 110.547 20.187 90.092 160.156 170.055 100.296 150.252 90.143 50.000 40.014 140.398 70.000 30.028 160.173 70.000 150.265 160.348 140.415 160.179 80.019 160.218 80.000 10.597 80.274 160.565 130.000 10.012 80.000 120.039 160.022 30.000 100.117 150.000 120.000 80.000 110.000 10.000 50.324 160.000 10.384 90.000 10.000 120.251 170.000 10.566 110.000 10.000 10.066 140.404 40.886 130.199 20.000 110.000 10.059 70.000 10.136 10.540 50.127 170.295 110.085 70.143 60.514 70.413 150.000 120.000 10.498 80.000 20.000 20.000 110.623 120.000 30.000 10.000 10.132 150.000 70.000 30.000 110.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
Minkowski 34Dpermissive0.253 160.463 160.154 170.102 160.771 160.650 160.932 150.483 160.571 160.710 150.331 160.250 160.492 140.044 60.703 160.419 170.606 170.227 160.621 160.865 170.531 80.771 170.813 140.291 110.484 150.242 160.612 170.282 170.440 170.351 150.299 150.622 160.593 110.027 110.293 130.310 170.000 10.757 140.858 140.737 120.150 90.164 10.368 170.084 80.381 160.142 170.357 150.720 100.214 120.092 140.724 160.596 170.056 140.655 90.525 140.581 150.352 170.594 150.056 170.000 30.014 170.224 150.772 150.205 170.720 160.000 70.159 70.531 160.163 170.294 160.136 170.000 10.169 160.589 140.000 40.000 90.000 10.002 40.663 100.466 170.265 170.582 100.337 100.016 150.559 150.084 170.000 30.000 70.000 10.036 50.000 40.125 50.670 130.000 10.102 30.071 80.164 150.406 90.386 70.046 160.068 170.159 150.117 60.284 160.111 160.094 160.000 40.000 170.197 160.000 30.044 150.013 150.002 140.228 170.307 170.588 110.025 170.545 50.134 150.000 10.655 40.302 140.282 170.000 10.060 20.000 120.035 170.000 70.000 100.097 170.000 120.000 80.005 100.000 10.000 50.096 170.000 10.334 160.000 10.000 120.274 160.000 10.513 140.000 10.000 10.280 80.194 90.897 110.000 90.000 110.000 10.000 90.000 10.108 90.279 170.189 160.141 170.059 140.272 20.307 170.445 100.003 100.000 10.353 150.000 20.026 10.000 110.581 150.001 20.000 10.000 10.093 170.002 60.000 30.000 110.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavgchairtabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D Scannet2000.388 10.542 10.357 20.237 20.808 20.676 20.741 20.832 40.496 20.151 40.628 20.021 20.955 10.578 10.753 10.612 10.591 10.822 60.609 40.926 10.614 30.291 10.725 40.163 20.890 20.380 60.615 10.517 20.130 40.806 10.857 20.024 30.511 20.412 60.226 10.597 30.756 11.000 10.111 20.792 10.736 20.091 20.610 10.527 30.323 51.000 10.504 20.063 31.000 10.853 20.010 20.974 30.839 20.667 20.301 20.883 10.266 20.039 10.640 10.311 20.739 20.463 11.000 10.000 20.287 20.715 20.313 30.600 11.000 10.027 10.076 50.502 60.500 10.409 10.000 10.194 20.125 30.500 10.491 20.748 10.050 50.042 20.776 30.352 20.008 10.000 20.033 10.254 10.000 10.005 30.552 20.008 20.020 20.750 10.500 20.409 20.065 30.511 10.107 20.178 30.000 21.000 10.400 10.016 20.000 10.400 10.571 10.000 10.060 30.044 30.000 20.514 10.278 21.000 10.258 20.017 40.125 60.000 10.792 30.399 31.000 10.000 10.013 20.265 20.018 30.000 21.000 10.335 10.381 10.500 10.250 10.004 20.000 10.727 10.000 10.497 10.000 10.188 10.677 30.000 10.708 20.000 10.000 10.945 10.391 10.123 50.000 10.028 20.000 11.000 10.000 10.099 10.451 10.400 20.668 10.573 10.606 10.077 60.003 50.004 10.000 10.042 40.000 10.000 11.000 11.000 10.000 20.042 10.000 20.200 20.302 10.000 21.000 10.000 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
ODIN - Ins200permissive0.381 20.507 20.375 10.237 10.653 60.614 30.780 10.744 60.566 10.328 10.446 30.003 30.853 20.496 20.582 30.448 60.434 30.938 50.682 20.782 30.494 50.274 20.723 50.269 10.694 60.393 50.511 20.695 10.227 10.550 50.795 30.039 20.602 10.638 10.000 30.734 10.585 30.667 40.163 10.500 30.769 10.108 10.484 40.569 10.688 11.000 10.665 10.093 21.000 10.863 10.049 10.667 50.887 10.778 10.422 10.786 50.550 10.000 30.542 30.028 50.667 30.428 21.000 10.125 10.208 50.530 40.406 20.337 20.000 50.000 20.585 10.742 20.500 10.000 20.000 10.472 11.000 10.417 40.563 10.631 30.275 10.000 30.800 10.841 10.000 20.083 10.000 30.174 30.000 10.055 20.667 10.000 30.000 30.250 31.000 10.286 30.058 40.391 30.209 10.313 10.167 10.278 60.200 30.083 10.000 10.200 30.264 20.000 10.250 20.714 10.500 10.196 20.333 10.500 40.750 10.668 10.500 10.000 10.500 40.333 41.000 10.000 10.000 30.438 10.500 10.000 21.000 10.333 20.226 20.250 30.250 10.000 30.000 10.668 20.000 10.174 50.000 10.000 30.750 10.000 10.667 30.000 10.000 10.638 30.333 20.579 20.000 10.333 10.000 11.000 10.000 10.063 30.385 20.600 10.647 20.066 30.264 40.469 30.246 20.000 20.000 10.264 10.000 10.000 10.000 21.000 10.125 10.000 20.000 20.200 20.000 20.000 21.000 10.000 1
TD3D Scannet200permissive0.320 30.501 30.264 30.164 30.841 10.679 10.716 30.879 20.280 40.192 20.634 10.231 10.733 40.459 30.565 40.498 50.560 21.000 10.686 10.890 20.708 10.123 50.820 10.152 30.967 10.456 10.458 30.387 30.194 20.435 60.906 10.077 10.396 30.509 20.217 20.715 20.619 21.000 10.099 30.792 10.513 30.062 30.506 30.549 20.605 21.000 10.123 50.106 11.000 10.744 50.000 31.000 10.504 60.525 30.185 30.790 40.101 30.008 20.587 20.356 10.817 10.083 61.000 10.000 20.621 10.842 10.415 10.268 50.083 40.000 20.098 40.881 10.125 30.000 20.000 10.000 30.000 40.125 50.332 40.448 60.202 30.196 10.798 20.264 30.000 20.000 20.017 20.233 20.000 10.063 10.333 30.038 10.111 10.250 30.000 30.516 10.208 10.470 20.094 40.218 20.000 20.667 20.033 60.000 30.000 10.400 10.156 30.000 10.267 10.226 20.000 20.104 30.159 30.299 60.095 40.458 20.500 10.000 11.000 10.472 10.792 40.000 10.022 10.061 30.250 20.008 10.250 30.333 20.143 30.396 20.049 30.012 10.000 10.283 50.000 10.241 40.000 10.101 20.331 50.000 10.629 40.000 10.000 10.857 20.222 40.677 10.000 10.003 30.000 10.000 30.000 10.076 20.252 40.400 20.431 30.061 40.328 30.331 50.500 10.000 20.000 10.167 20.000 10.000 10.000 20.500 30.000 20.000 21.000 10.542 10.000 20.063 10.000 30.000 1
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
LGround Inst.permissive0.246 40.413 40.170 40.130 40.754 30.541 40.682 50.903 10.264 50.164 30.234 40.000 40.681 50.452 40.464 60.541 40.399 41.000 10.637 30.772 40.588 40.190 30.589 60.081 40.857 30.426 30.373 40.318 40.135 30.690 20.653 50.000 40.159 50.500 30.000 30.581 40.387 51.000 10.046 40.000 40.402 40.003 60.455 60.196 50.571 31.000 10.270 40.003 60.530 60.748 40.000 30.744 40.575 40.511 40.112 40.815 20.067 40.000 30.400 40.167 30.667 30.241 31.000 10.000 20.208 40.660 30.125 50.317 30.000 50.000 20.100 30.561 50.000 40.000 20.000 10.000 31.000 10.500 10.344 30.568 50.167 40.000 30.706 40.068 40.000 20.000 20.000 30.063 40.000 10.000 40.056 50.000 30.000 30.500 20.000 30.143 60.017 50.125 40.097 30.164 40.000 20.582 40.400 10.000 30.000 10.000 50.083 50.000 10.000 40.000 40.000 20.025 40.156 40.533 30.250 30.200 30.500 10.000 11.000 10.333 41.000 10.000 10.000 30.000 40.000 40.000 20.000 40.333 20.000 40.000 40.000 40.000 30.000 10.400 40.000 10.364 20.000 10.000 30.500 40.000 10.511 50.000 10.000 10.286 40.333 20.000 60.000 10.000 40.000 10.000 30.000 10.034 40.111 60.000 40.333 50.031 60.000 50.750 10.125 30.000 20.000 10.151 30.000 10.000 10.000 20.500 30.000 20.000 20.000 20.000 60.000 20.000 20.000 30.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.
Minkowski 34D Inst.permissive0.203 60.369 50.134 60.078 60.706 40.382 50.693 40.845 30.221 60.150 50.158 50.000 40.746 30.369 50.545 50.595 20.387 50.997 30.413 60.720 60.636 20.165 40.732 30.070 50.851 40.402 40.251 50.313 50.123 50.583 40.696 40.000 40.051 60.500 30.000 30.500 50.372 60.667 40.009 50.000 40.307 60.003 50.479 50.107 60.226 60.903 50.109 60.031 40.981 40.726 60.000 30.522 60.669 30.282 60.052 60.778 60.000 50.000 30.400 40.074 40.333 50.218 51.000 10.000 20.250 30.406 60.118 60.317 30.100 30.000 20.191 20.596 30.000 40.000 20.000 10.000 30.000 40.500 10.178 60.701 20.000 60.000 30.522 60.018 60.000 20.000 20.000 30.060 50.000 10.000 40.033 60.000 30.000 30.000 50.000 30.281 40.100 20.000 60.090 50.133 50.000 20.422 50.050 50.000 30.000 10.200 30.000 60.000 10.000 40.000 40.000 20.000 50.123 50.677 20.021 50.000 50.500 10.000 10.500 40.442 20.125 60.000 10.000 30.000 40.000 40.000 20.000 40.056 50.000 40.000 40.000 40.000 30.000 10.200 60.000 10.143 60.000 10.000 30.250 60.000 10.511 50.000 10.000 10.286 40.083 50.396 30.000 10.000 40.000 10.000 30.000 10.025 50.300 30.000 40.371 40.070 20.000 50.385 40.000 60.000 20.000 10.000 60.000 10.000 10.000 20.500 30.000 20.000 20.000 20.200 20.000 20.000 20.000 30.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrain Inst.permissive0.209 50.361 60.157 50.085 50.700 50.248 60.634 60.776 50.322 30.135 60.103 60.000 40.524 60.364 60.618 20.592 30.381 60.997 30.589 50.747 50.340 60.109 60.768 20.059 60.702 50.448 20.188 60.149 60.091 60.636 30.573 60.000 40.246 40.500 30.000 30.450 60.405 40.667 40.006 60.000 40.356 50.007 40.506 20.420 40.340 40.667 60.294 30.004 50.571 50.748 30.000 31.000 10.573 50.502 50.094 50.807 30.000 50.000 30.400 40.000 60.278 60.228 41.000 10.000 20.115 60.432 50.198 40.050 60.125 20.000 20.000 60.573 40.000 40.000 20.000 10.000 30.000 40.125 50.312 50.610 40.221 20.000 30.667 50.050 50.000 20.000 20.000 30.032 60.000 10.000 40.083 40.000 30.000 30.000 50.000 30.220 50.000 60.125 40.000 60.111 60.000 20.667 20.200 30.000 30.000 10.000 50.110 40.000 10.000 40.000 40.000 20.000 50.053 60.500 40.000 60.000 50.500 10.000 10.500 40.333 40.500 50.000 10.000 30.000 40.000 40.000 20.000 40.000 60.000 40.000 40.000 40.000 30.000 10.600 30.000 10.364 20.000 10.000 30.750 10.000 10.833 10.000 10.000 10.143 60.000 60.396 30.000 10.000 40.000 10.000 30.000 10.021 60.221 50.000 40.093 60.055 50.451 20.677 20.125 30.000 20.000 10.028 50.000 10.000 10.000 20.500 30.000 20.000 20.000 20.050 50.000 20.000 20.000 30.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 110.812 220.854 80.770 120.856 150.555 170.943 10.660 260.735 20.979 10.606 70.492 10.792 40.934 40.841 20.819 60.716 90.947 100.906 10.822 1
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. CVPR 2025
DITR ScanNet0.797 20.727 760.869 10.882 10.785 60.868 70.578 50.943 10.744 10.727 30.979 10.627 20.364 90.824 10.949 20.779 150.844 10.757 10.982 10.905 20.802 3
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation.
PTv3 ScanNet0.794 30.941 30.813 210.851 110.782 70.890 20.597 10.916 60.696 110.713 50.979 10.635 10.384 30.793 30.907 100.821 50.790 360.696 140.967 40.903 30.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
PonderV20.785 40.978 10.800 300.833 290.788 40.853 200.545 210.910 90.713 30.705 60.979 10.596 90.390 20.769 150.832 450.821 50.792 350.730 20.975 20.897 60.785 7
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 20.843 200.781 80.858 130.575 80.831 390.685 170.714 40.979 10.594 100.310 300.801 20.892 190.841 20.819 60.723 60.940 150.887 80.725 28
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 230.818 160.836 260.790 30.875 40.576 70.905 100.704 70.739 10.969 120.611 30.349 120.756 250.958 10.702 510.805 190.708 100.916 390.898 50.801 4
TTT-KD0.773 70.646 970.818 160.809 410.774 100.878 30.581 30.943 10.687 150.704 70.978 60.607 60.336 190.775 110.912 80.838 40.823 40.694 150.967 40.899 40.794 6
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 80.771 110.840 350.564 130.900 120.686 160.677 140.961 180.537 360.348 130.769 150.903 120.785 130.815 90.676 260.939 160.880 130.772 11
PPT-SpUNet-Joint0.766 90.932 50.794 360.829 310.751 260.854 180.540 250.903 110.630 390.672 170.963 160.565 260.357 100.788 50.900 140.737 310.802 200.685 200.950 80.887 80.780 8
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormerpermissive0.766 90.925 70.808 260.849 130.786 50.846 300.566 120.876 190.690 130.674 160.960 190.576 220.226 730.753 270.904 110.777 160.815 90.722 70.923 310.877 160.776 10
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CU-Hybrid Net0.764 110.924 80.819 140.840 230.757 210.853 200.580 40.848 310.709 50.643 270.958 230.587 160.295 380.753 270.884 230.758 230.815 90.725 50.927 270.867 270.743 19
OccuSeg+Semantic0.764 110.758 610.796 340.839 240.746 300.907 10.562 140.850 300.680 190.672 170.978 60.610 40.335 210.777 90.819 490.847 10.830 30.691 170.972 30.885 100.727 26
O-CNNpermissive0.762 130.924 80.823 80.844 190.770 120.852 220.577 60.847 330.711 40.640 310.958 230.592 110.217 790.762 200.888 200.758 230.813 130.726 40.932 250.868 260.744 18
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 780.789 410.843 200.762 170.856 150.562 140.920 40.657 290.658 210.958 230.589 140.337 180.782 60.879 240.787 110.779 410.678 220.926 290.880 130.799 5
DTC0.757 150.843 290.820 120.847 160.791 20.862 110.511 380.870 220.707 60.652 230.954 400.604 80.279 490.760 210.942 30.734 320.766 500.701 130.884 610.874 220.736 20
OA-CNN-L_ScanNet200.756 160.783 470.826 60.858 60.776 90.837 390.548 200.896 150.649 310.675 150.962 170.586 170.335 210.771 140.802 540.770 190.787 380.691 170.936 200.880 130.761 13
ConDaFormer0.755 170.927 60.822 100.836 260.801 10.849 250.516 350.864 270.651 300.680 130.958 230.584 190.282 460.759 230.855 350.728 340.802 200.678 220.880 660.873 230.756 16
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
LSK3DNetpermissive0.755 170.899 160.823 80.843 200.764 160.838 380.584 20.845 340.717 20.638 330.956 300.580 210.229 720.640 490.900 140.750 260.813 130.729 30.920 350.872 240.757 14
Tuo Feng, Wenguan Wang, Fan Ma, Yi Yang: LSK3DNet: Towards Effective and Efficient 3D Perception with Large Sparse Kernels. CVPR 2024
PNE0.755 170.786 450.835 50.834 280.758 190.849 250.570 100.836 380.648 320.668 190.978 60.581 200.367 70.683 400.856 330.804 80.801 240.678 220.961 60.889 70.716 35
P. Hermosilla: Point Neighborhood Embeddings.
PointTransformerV20.752 200.742 680.809 250.872 20.758 190.860 120.552 180.891 170.610 460.687 80.960 190.559 300.304 330.766 180.926 60.767 200.797 280.644 380.942 130.876 190.722 31
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
DMF-Net0.752 200.906 140.793 380.802 470.689 460.825 520.556 160.867 230.681 180.602 500.960 190.555 320.365 80.779 80.859 300.747 270.795 320.717 80.917 380.856 350.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PointConvFormer0.749 220.793 430.790 390.807 430.750 280.856 150.524 310.881 180.588 580.642 300.977 100.591 120.274 520.781 70.929 50.804 80.796 290.642 390.947 100.885 100.715 36
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
BPNetcopyleft0.749 220.909 120.818 160.811 390.752 240.839 370.485 530.842 350.673 210.644 260.957 280.528 420.305 320.773 120.859 300.788 100.818 80.693 160.916 390.856 350.723 30
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MSP0.748 240.623 1000.804 280.859 50.745 310.824 540.501 420.912 80.690 130.685 100.956 300.567 250.320 270.768 170.918 70.720 390.802 200.676 260.921 330.881 120.779 9
StratifiedFormerpermissive0.747 250.901 150.803 290.845 180.757 210.846 300.512 370.825 420.696 110.645 250.956 300.576 220.262 630.744 330.861 290.742 290.770 480.705 110.899 510.860 320.734 21
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
Virtual MVFusion0.746 260.771 550.819 140.848 150.702 430.865 100.397 910.899 130.699 90.664 200.948 620.588 150.330 230.746 320.851 390.764 210.796 290.704 120.935 210.866 280.728 24
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
VMNetpermissive0.746 260.870 210.838 30.858 60.729 360.850 240.501 420.874 200.587 590.658 210.956 300.564 270.299 350.765 190.900 140.716 420.812 150.631 440.939 160.858 330.709 37
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
DiffSeg3D20.745 280.725 780.814 200.837 250.751 260.831 460.514 360.896 150.674 200.684 110.960 190.564 270.303 340.773 120.820 480.713 450.798 270.690 190.923 310.875 200.757 14
ODINpermissive0.744 290.658 930.752 640.870 30.714 400.843 330.569 110.919 50.703 80.622 400.949 590.591 120.343 150.736 340.784 560.816 70.838 20.672 310.918 370.854 390.725 28
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
Retro-FPN0.744 290.842 300.800 300.767 610.740 320.836 410.541 230.914 70.672 220.626 370.958 230.552 330.272 540.777 90.886 220.696 520.801 240.674 290.941 140.858 330.717 33
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 310.620 1010.799 330.849 130.730 350.822 560.493 500.897 140.664 230.681 120.955 340.562 290.378 40.760 210.903 120.738 300.801 240.673 300.907 430.877 160.745 17
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
SAT0.742 320.860 240.765 550.819 340.769 140.848 270.533 270.829 400.663 240.631 360.955 340.586 170.274 520.753 270.896 170.729 330.760 560.666 330.921 330.855 370.733 22
LRPNet0.742 320.816 380.806 270.807 430.752 240.828 500.575 80.839 370.699 90.637 340.954 400.520 460.320 270.755 260.834 430.760 220.772 450.676 260.915 410.862 300.717 33
LargeKernel3D0.739 340.909 120.820 120.806 450.740 320.852 220.545 210.826 410.594 570.643 270.955 340.541 350.263 620.723 380.858 320.775 180.767 490.678 220.933 230.848 430.694 42
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
RPN0.736 350.776 510.790 390.851 110.754 230.854 180.491 520.866 250.596 560.686 90.955 340.536 370.342 160.624 560.869 260.787 110.802 200.628 450.927 270.875 200.704 39
MinkowskiNetpermissive0.736 350.859 250.818 160.832 300.709 410.840 350.521 330.853 290.660 260.643 270.951 510.544 340.286 440.731 360.893 180.675 610.772 450.683 210.874 730.852 410.727 26
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
IPCA0.731 370.890 170.837 40.864 40.726 370.873 50.530 300.824 430.489 930.647 240.978 60.609 50.336 190.624 560.733 640.758 230.776 430.570 710.949 90.877 160.728 24
online3d0.727 380.715 830.777 480.854 80.748 290.858 130.497 470.872 210.572 660.639 320.957 280.523 430.297 370.750 300.803 530.744 280.810 160.587 670.938 180.871 250.719 32
PointTransformer++0.725 390.727 760.811 240.819 340.765 150.841 340.502 410.814 480.621 420.623 390.955 340.556 310.284 450.620 580.866 270.781 140.757 600.648 360.932 250.862 300.709 37
SparseConvNet0.725 390.647 960.821 110.846 170.721 380.869 60.533 270.754 640.603 520.614 420.955 340.572 240.325 250.710 390.870 250.724 370.823 40.628 450.934 220.865 290.683 45
MatchingNet0.724 410.812 400.812 220.810 400.735 340.834 430.495 490.860 280.572 660.602 500.954 400.512 480.280 480.757 240.845 410.725 360.780 400.606 550.937 190.851 420.700 41
INS-Conv-semantic0.717 420.751 640.759 580.812 380.704 420.868 70.537 260.842 350.609 480.608 460.953 440.534 390.293 390.616 590.864 280.719 410.793 330.640 400.933 230.845 470.663 51
PointMetaBase0.714 430.835 310.785 430.821 320.684 480.846 300.531 290.865 260.614 430.596 540.953 440.500 510.246 680.674 410.888 200.692 530.764 520.624 470.849 880.844 480.675 47
contrastBoundarypermissive0.705 440.769 580.775 490.809 410.687 470.820 590.439 790.812 490.661 250.591 560.945 700.515 470.171 980.633 530.856 330.720 390.796 290.668 320.889 580.847 440.689 43
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 450.774 530.800 300.793 520.760 180.847 290.471 570.802 520.463 1000.634 350.968 140.491 540.271 560.726 370.910 90.706 470.815 90.551 830.878 670.833 490.570 83
RFCR0.702 460.889 180.745 700.813 370.672 510.818 630.493 500.815 470.623 400.610 440.947 640.470 630.249 670.594 630.848 400.705 480.779 410.646 370.892 560.823 550.611 66
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 470.825 350.796 340.723 680.716 390.832 450.433 810.816 450.634 370.609 450.969 120.418 890.344 140.559 750.833 440.715 430.808 180.560 770.902 480.847 440.680 46
JSENetpermissive0.699 480.881 200.762 560.821 320.667 520.800 760.522 320.792 550.613 440.607 470.935 900.492 530.205 850.576 680.853 370.691 550.758 580.652 350.872 760.828 520.649 55
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 490.743 670.794 360.655 910.684 480.822 560.497 470.719 740.622 410.617 410.977 100.447 760.339 170.750 300.664 810.703 500.790 360.596 600.946 120.855 370.647 56
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 500.732 720.772 500.786 530.677 500.866 90.517 340.848 310.509 860.626 370.952 490.536 370.225 750.545 810.704 710.689 580.810 160.564 760.903 470.854 390.729 23
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 510.884 190.754 620.795 500.647 590.818 630.422 830.802 520.612 450.604 480.945 700.462 660.189 930.563 740.853 370.726 350.765 510.632 430.904 450.821 580.606 70
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 520.704 850.741 740.754 650.656 540.829 480.501 420.741 690.609 480.548 640.950 550.522 450.371 50.633 530.756 590.715 430.771 470.623 480.861 840.814 610.658 52
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 530.866 220.748 670.819 340.645 610.794 790.450 690.802 520.587 590.604 480.945 700.464 650.201 880.554 770.840 420.723 380.732 710.602 580.907 430.822 570.603 73
VACNN++0.684 540.728 750.757 610.776 580.690 440.804 740.464 620.816 450.577 650.587 570.945 700.508 500.276 510.671 420.710 690.663 660.750 640.589 650.881 640.832 510.653 54
KP-FCNN0.684 540.847 280.758 600.784 550.647 590.814 660.473 560.772 580.605 500.594 550.935 900.450 740.181 960.587 640.805 520.690 560.785 390.614 510.882 630.819 590.632 62
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
DGNet0.684 540.712 840.784 440.782 570.658 530.835 420.499 460.823 440.641 340.597 530.950 550.487 560.281 470.575 690.619 850.647 740.764 520.620 500.871 790.846 460.688 44
PointContrast_LA_SEM0.683 570.757 620.784 440.786 530.639 630.824 540.408 860.775 570.604 510.541 660.934 940.532 400.269 580.552 780.777 570.645 770.793 330.640 400.913 420.824 540.671 48
Superpoint Network0.683 570.851 270.728 780.800 490.653 560.806 720.468 590.804 500.572 660.602 500.946 670.453 730.239 710.519 860.822 460.689 580.762 550.595 620.895 540.827 530.630 63
VI-PointConv0.676 590.770 570.754 620.783 560.621 670.814 660.552 180.758 620.571 690.557 620.954 400.529 410.268 600.530 840.682 750.675 610.719 740.603 570.888 590.833 490.665 50
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 600.789 440.748 670.763 630.635 650.814 660.407 880.747 660.581 630.573 590.950 550.484 570.271 560.607 600.754 600.649 710.774 440.596 600.883 620.823 550.606 70
SALANet0.670 610.816 380.770 530.768 600.652 570.807 710.451 660.747 660.659 280.545 650.924 1000.473 620.149 1080.571 710.811 510.635 810.746 650.623 480.892 560.794 750.570 83
O3DSeg0.668 620.822 360.771 520.496 1120.651 580.833 440.541 230.761 610.555 750.611 430.966 150.489 550.370 60.388 1050.580 880.776 170.751 620.570 710.956 70.817 600.646 57
PointConvpermissive0.666 630.781 480.759 580.699 760.644 620.822 560.475 550.779 560.564 720.504 830.953 440.428 830.203 870.586 660.754 600.661 670.753 610.588 660.902 480.813 630.642 58
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 630.703 860.781 460.751 670.655 550.830 470.471 570.769 590.474 960.537 680.951 510.475 610.279 490.635 510.698 740.675 610.751 620.553 820.816 950.806 650.703 40
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 650.746 650.708 810.722 690.638 640.820 590.451 660.566 1020.599 540.541 660.950 550.510 490.313 290.648 470.819 490.616 860.682 890.590 640.869 800.810 640.656 53
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
MVF-GNN0.658 660.558 1080.751 650.655 910.690 440.722 1010.453 650.867 230.579 640.576 580.893 1120.523 430.293 390.733 350.571 900.692 530.659 960.606 550.875 700.804 670.668 49
DCM-Net0.658 660.778 490.702 840.806 450.619 680.813 690.468 590.693 820.494 890.524 740.941 820.449 750.298 360.510 880.821 470.675 610.727 730.568 740.826 930.803 680.637 60
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 680.698 880.743 720.650 930.564 850.820 590.505 400.758 620.631 380.479 870.945 700.480 590.226 730.572 700.774 580.690 560.735 690.614 510.853 870.776 900.597 76
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 690.752 630.734 760.664 890.583 800.815 650.399 900.754 640.639 350.535 700.942 800.470 630.309 310.665 430.539 920.650 700.708 790.635 420.857 860.793 770.642 58
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 700.778 490.731 770.699 760.577 810.829 480.446 710.736 700.477 950.523 760.945 700.454 700.269 580.484 950.749 630.618 840.738 670.599 590.827 920.792 800.621 65
PointConv-SFPN0.641 710.776 510.703 830.721 700.557 880.826 510.451 660.672 870.563 730.483 860.943 790.425 860.162 1030.644 480.726 650.659 680.709 780.572 700.875 700.786 850.559 89
MVPNetpermissive0.641 710.831 320.715 790.671 860.590 760.781 850.394 920.679 840.642 330.553 630.937 870.462 660.256 640.649 460.406 1050.626 820.691 860.666 330.877 680.792 800.608 69
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 730.717 820.701 850.692 790.576 820.801 750.467 610.716 750.563 730.459 930.953 440.429 820.169 1000.581 670.854 360.605 870.710 760.550 840.894 550.793 770.575 81
FPConvpermissive0.639 740.785 460.760 570.713 740.603 710.798 770.392 940.534 1070.603 520.524 740.948 620.457 680.250 660.538 820.723 670.598 910.696 840.614 510.872 760.799 700.567 86
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 750.797 420.769 540.641 980.590 760.820 590.461 630.537 1060.637 360.536 690.947 640.388 960.206 840.656 440.668 790.647 740.732 710.585 680.868 810.793 770.473 109
PointSPNet0.637 760.734 710.692 920.714 730.576 820.797 780.446 710.743 680.598 550.437 980.942 800.403 920.150 1070.626 550.800 550.649 710.697 830.557 800.846 890.777 890.563 87
SConv0.636 770.830 330.697 880.752 660.572 840.780 870.445 730.716 750.529 790.530 710.951 510.446 770.170 990.507 900.666 800.636 800.682 890.541 900.886 600.799 700.594 77
Supervoxel-CNN0.635 780.656 940.711 800.719 710.613 690.757 960.444 760.765 600.534 780.566 600.928 980.478 600.272 540.636 500.531 940.664 650.645 1000.508 980.864 830.792 800.611 66
joint point-basedpermissive0.634 790.614 1020.778 470.667 880.633 660.825 520.420 840.804 500.467 980.561 610.951 510.494 520.291 410.566 720.458 1000.579 970.764 520.559 790.838 900.814 610.598 75
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 800.731 730.688 950.675 830.591 750.784 840.444 760.565 1030.610 460.492 840.949 590.456 690.254 650.587 640.706 700.599 900.665 950.612 540.868 810.791 830.579 80
PointNet2-SFPN0.631 810.771 550.692 920.672 840.524 940.837 390.440 780.706 800.538 770.446 950.944 760.421 880.219 780.552 780.751 620.591 930.737 680.543 890.901 500.768 920.557 90
APCF-Net0.631 810.742 680.687 970.672 840.557 880.792 820.408 860.665 890.545 760.508 800.952 490.428 830.186 940.634 520.702 720.620 830.706 800.555 810.873 740.798 720.581 79
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
3DSM_DMMF0.631 810.626 990.745 700.801 480.607 700.751 970.506 390.729 730.565 710.491 850.866 1150.434 780.197 910.595 620.630 840.709 460.705 810.560 770.875 700.740 1000.491 104
FusionAwareConv0.630 840.604 1040.741 740.766 620.590 760.747 980.501 420.734 710.503 880.527 720.919 1040.454 700.323 260.550 800.420 1040.678 600.688 870.544 870.896 530.795 740.627 64
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 850.800 410.625 1070.719 710.545 910.806 720.445 730.597 970.448 1030.519 780.938 860.481 580.328 240.489 940.499 990.657 690.759 570.592 630.881 640.797 730.634 61
SegGroup_sempermissive0.627 860.818 370.747 690.701 750.602 720.764 930.385 980.629 940.490 910.508 800.931 970.409 910.201 880.564 730.725 660.618 840.692 850.539 910.873 740.794 750.548 93
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 870.830 330.694 900.757 640.563 860.772 910.448 700.647 920.520 820.509 790.949 590.431 810.191 920.496 920.614 860.647 740.672 930.535 940.876 690.783 860.571 82
dtc_net0.625 870.703 860.751 650.794 510.535 920.848 270.480 540.676 860.528 800.469 900.944 760.454 700.004 1200.464 970.636 830.704 490.758 580.548 860.924 300.787 840.492 103
Weakly-Openseg v30.625 870.924 80.787 420.620 1000.555 900.811 700.393 930.666 880.382 1110.520 770.953 440.250 1150.208 820.604 610.670 770.644 780.742 660.538 920.919 360.803 680.513 101
HPEIN0.618 900.729 740.668 980.647 950.597 740.766 920.414 850.680 830.520 820.525 730.946 670.432 790.215 800.493 930.599 870.638 790.617 1050.570 710.897 520.806 650.605 72
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 910.858 260.772 500.489 1130.532 930.792 820.404 890.643 930.570 700.507 820.935 900.414 900.046 1170.510 880.702 720.602 890.705 810.549 850.859 850.773 910.534 96
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 920.760 600.667 990.649 940.521 950.793 800.457 640.648 910.528 800.434 1000.947 640.401 930.153 1060.454 980.721 680.648 730.717 750.536 930.904 450.765 930.485 105
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 930.634 980.743 720.697 780.601 730.781 850.437 800.585 1000.493 900.446 950.933 950.394 940.011 1190.654 450.661 820.603 880.733 700.526 950.832 910.761 950.480 106
LAP-D0.594 940.720 800.692 920.637 990.456 1040.773 900.391 960.730 720.587 590.445 970.940 840.381 970.288 420.434 1010.453 1020.591 930.649 980.581 690.777 990.749 990.610 68
DPC0.592 950.720 800.700 860.602 1040.480 1000.762 950.380 990.713 780.585 620.437 980.940 840.369 990.288 420.434 1010.509 980.590 950.639 1030.567 750.772 1000.755 970.592 78
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 960.766 590.659 1020.683 810.470 1030.740 1000.387 970.620 960.490 910.476 880.922 1020.355 1020.245 690.511 870.511 970.571 980.643 1010.493 1020.872 760.762 940.600 74
ROSMRF0.580 970.772 540.707 820.681 820.563 860.764 930.362 1010.515 1080.465 990.465 920.936 890.427 850.207 830.438 990.577 890.536 1010.675 920.486 1030.723 1060.779 870.524 98
SD-DETR0.576 980.746 650.609 1110.445 1170.517 960.643 1120.366 1000.714 770.456 1010.468 910.870 1140.432 790.264 610.558 760.674 760.586 960.688 870.482 1040.739 1040.733 1020.537 95
SQN_0.1%0.569 990.676 900.696 890.657 900.497 970.779 880.424 820.548 1040.515 840.376 1050.902 1110.422 870.357 100.379 1060.456 1010.596 920.659 960.544 870.685 1090.665 1130.556 91
TextureNetpermissive0.566 1000.672 920.664 1000.671 860.494 980.719 1020.445 730.678 850.411 1090.396 1030.935 900.356 1010.225 750.412 1030.535 930.565 990.636 1040.464 1060.794 980.680 1100.568 85
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 1010.648 950.700 860.770 590.586 790.687 1060.333 1050.650 900.514 850.475 890.906 1080.359 1000.223 770.340 1080.442 1030.422 1120.668 940.501 990.708 1070.779 870.534 96
Pointnet++ & Featurepermissive0.557 1020.735 700.661 1010.686 800.491 990.744 990.392 940.539 1050.451 1020.375 1060.946 670.376 980.205 850.403 1040.356 1080.553 1000.643 1010.497 1000.824 940.756 960.515 99
GMLPs0.538 1030.495 1130.693 910.647 950.471 1020.793 800.300 1080.477 1090.505 870.358 1070.903 1100.327 1050.081 1140.472 960.529 950.448 1100.710 760.509 960.746 1020.737 1010.554 92
PanopticFusion-label0.529 1040.491 1140.688 950.604 1030.386 1090.632 1130.225 1190.705 810.434 1060.293 1130.815 1170.348 1030.241 700.499 910.669 780.507 1030.649 980.442 1120.796 970.602 1170.561 88
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1050.676 900.591 1140.609 1010.442 1050.774 890.335 1040.597 970.422 1080.357 1080.932 960.341 1040.094 1130.298 1100.528 960.473 1080.676 910.495 1010.602 1150.721 1050.349 117
Online SegFusion0.515 1060.607 1030.644 1050.579 1060.434 1060.630 1140.353 1020.628 950.440 1040.410 1010.762 1200.307 1070.167 1010.520 850.403 1060.516 1020.565 1080.447 1100.678 1100.701 1070.514 100
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1070.558 1080.608 1120.424 1190.478 1010.690 1050.246 1150.586 990.468 970.450 940.911 1060.394 940.160 1040.438 990.212 1150.432 1110.541 1130.475 1050.742 1030.727 1030.477 107
PCNN0.498 1080.559 1070.644 1050.560 1080.420 1080.711 1040.229 1170.414 1100.436 1050.352 1090.941 820.324 1060.155 1050.238 1150.387 1070.493 1040.529 1140.509 960.813 960.751 980.504 102
3DMV0.484 1090.484 1150.538 1170.643 970.424 1070.606 1170.310 1060.574 1010.433 1070.378 1040.796 1180.301 1080.214 810.537 830.208 1160.472 1090.507 1170.413 1150.693 1080.602 1170.539 94
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1100.577 1060.611 1100.356 1210.321 1170.715 1030.299 1100.376 1140.328 1170.319 1110.944 760.285 1100.164 1020.216 1180.229 1130.484 1060.545 1120.456 1080.755 1010.709 1060.475 108
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1110.679 890.604 1130.578 1070.380 1100.682 1070.291 1110.106 1210.483 940.258 1190.920 1030.258 1140.025 1180.231 1170.325 1090.480 1070.560 1100.463 1070.725 1050.666 1120.231 121
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1120.474 1160.623 1080.463 1150.366 1120.651 1100.310 1060.389 1130.349 1150.330 1100.937 870.271 1120.126 1100.285 1110.224 1140.350 1170.577 1070.445 1110.625 1130.723 1040.394 113
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1130.548 1100.548 1160.597 1050.363 1130.628 1150.300 1080.292 1160.374 1120.307 1120.881 1130.268 1130.186 940.238 1150.204 1170.407 1130.506 1180.449 1090.667 1110.620 1160.462 111
SurfaceConvPF0.442 1130.505 1120.622 1090.380 1200.342 1150.654 1090.227 1180.397 1120.367 1130.276 1150.924 1000.240 1160.198 900.359 1070.262 1110.366 1140.581 1060.435 1130.640 1120.668 1110.398 112
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1150.437 1180.646 1040.474 1140.369 1110.645 1110.353 1020.258 1180.282 1200.279 1140.918 1050.298 1090.147 1090.283 1120.294 1100.487 1050.562 1090.427 1140.619 1140.633 1150.352 116
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1160.525 1110.647 1030.522 1090.324 1160.488 1210.077 1220.712 790.353 1140.401 1020.636 1220.281 1110.176 970.340 1080.565 910.175 1210.551 1110.398 1160.370 1220.602 1170.361 115
SPLAT Netcopyleft0.393 1170.472 1170.511 1180.606 1020.311 1180.656 1080.245 1160.405 1110.328 1170.197 1200.927 990.227 1180.000 1220.001 1230.249 1120.271 1200.510 1150.383 1180.593 1160.699 1080.267 119
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1180.297 1200.491 1190.432 1180.358 1140.612 1160.274 1130.116 1200.411 1090.265 1160.904 1090.229 1170.079 1150.250 1130.185 1180.320 1180.510 1150.385 1170.548 1170.597 1200.394 113
PointNet++permissive0.339 1190.584 1050.478 1200.458 1160.256 1200.360 1220.250 1140.247 1190.278 1210.261 1180.677 1210.183 1190.117 1110.212 1190.145 1200.364 1150.346 1220.232 1220.548 1170.523 1210.252 120
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
GrowSP++0.323 1200.114 1220.589 1150.499 1110.147 1220.555 1180.290 1120.336 1150.290 1190.262 1170.865 1160.102 1220.000 1220.037 1210.000 1230.000 1230.462 1190.381 1190.389 1210.664 1140.473 109
SSC-UNetpermissive0.308 1210.353 1190.290 1220.278 1220.166 1210.553 1190.169 1210.286 1170.147 1220.148 1220.908 1070.182 1200.064 1160.023 1220.018 1220.354 1160.363 1200.345 1200.546 1190.685 1090.278 118
ScanNetpermissive0.306 1220.203 1210.366 1210.501 1100.311 1180.524 1200.211 1200.002 1230.342 1160.189 1210.786 1190.145 1210.102 1120.245 1140.152 1190.318 1190.348 1210.300 1210.460 1200.437 1220.182 122
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1230.000 1230.041 1230.172 1230.030 1230.062 1230.001 1230.035 1220.004 1230.051 1230.143 1230.019 1230.003 1210.041 1200.050 1210.003 1220.054 1230.018 1230.005 1230.264 1230.082 123


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Competitor-MAFT0.816 11.000 10.983 40.872 110.718 50.941 10.588 50.652 400.819 20.776 30.720 50.780 50.769 121.000 10.797 110.813 300.798 81.000 10.659 4
PointRel0.816 11.000 10.971 90.908 60.743 20.923 80.573 90.714 220.695 190.734 110.747 20.725 120.809 11.000 10.814 90.899 40.820 41.000 10.610 18
: Relation3D: Enhancing Relation Modeling for Point Cloud Instance Segmentation. CVPR 2025
Spherical Mask(CtoF)0.812 31.000 10.973 80.852 150.718 60.917 100.574 70.677 310.748 120.729 150.715 80.795 20.809 11.000 10.831 40.854 100.787 121.000 10.638 7
EV3D0.811 41.000 10.968 100.852 150.717 70.921 90.574 80.677 310.748 120.730 140.703 140.795 20.809 11.000 10.831 40.854 100.778 161.000 10.638 8
VDG-Uni3DSeg0.804 51.000 10.990 10.886 90.688 200.912 120.602 20.703 260.786 70.771 40.708 110.700 170.669 260.981 400.789 170.903 10.772 191.000 10.609 19
SIM3D0.803 61.000 10.967 110.863 140.692 190.924 70.552 130.732 210.667 240.732 130.662 180.796 10.789 91.000 10.803 100.864 70.766 221.000 10.643 6
OneFormer3Dcopyleft0.801 71.000 10.973 70.909 50.698 150.928 50.582 60.668 360.685 200.780 20.687 160.698 210.702 151.000 10.794 130.900 30.784 140.986 540.635 9
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
Competitor-SPFormer0.800 81.000 10.986 30.845 170.705 130.915 110.532 150.733 200.757 110.733 120.708 100.698 200.648 380.981 400.890 10.830 200.796 90.997 410.644 5
UniPerception0.800 81.000 10.930 130.872 110.727 40.862 260.454 210.764 130.820 10.746 80.706 120.750 70.772 100.926 480.764 200.818 280.826 20.997 410.660 3
InsSSM0.799 101.000 10.915 150.710 430.729 30.925 60.664 10.670 340.770 80.766 50.739 30.737 80.700 161.000 10.792 140.829 220.815 50.997 410.625 11
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
DCD0.798 111.000 10.878 220.792 290.693 180.936 20.596 30.685 300.663 260.736 90.717 60.788 40.693 211.000 10.825 70.840 160.837 11.000 10.689 1
TST3D0.795 121.000 10.929 140.918 40.709 100.884 210.596 40.704 250.769 90.734 100.644 230.699 190.751 131.000 10.794 120.876 60.757 250.997 410.550 35
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
MG-Former0.791 131.000 10.980 60.837 200.626 280.897 140.543 140.759 150.800 60.766 60.659 190.769 60.697 191.000 10.791 150.707 510.791 111.000 10.610 17
ExtMask3D0.789 141.000 10.988 20.756 360.706 120.912 130.429 220.647 420.806 50.755 70.673 170.689 220.772 111.000 10.789 160.852 120.811 61.000 10.617 14
Queryformer0.787 151.000 10.933 120.601 530.754 10.886 190.558 120.661 380.767 100.665 210.716 70.639 280.808 51.000 10.844 30.897 50.804 71.000 10.624 12
MAFT0.786 161.000 10.894 200.807 240.694 170.893 170.486 170.674 330.740 140.786 10.704 130.727 110.739 141.000 10.707 270.849 140.756 261.000 10.685 2
KmaxOneFormerNetpermissive0.783 170.903 580.981 50.794 280.706 110.931 40.561 110.701 270.706 170.727 160.697 150.731 100.689 231.000 10.856 20.750 420.761 241.000 10.599 23
Mask3D0.780 181.000 10.786 460.716 410.696 160.885 200.500 160.714 220.810 40.672 200.715 80.679 230.809 11.000 10.831 40.833 190.787 121.000 10.602 21
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
SPFormerpermissive0.770 190.903 580.903 170.806 250.609 350.886 180.568 100.815 60.705 180.711 170.655 200.652 270.685 241.000 10.789 180.809 310.776 181.000 10.583 27
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
SoftGroup++0.769 201.000 10.803 390.937 10.684 210.865 230.213 380.870 20.664 250.571 280.758 10.702 160.807 61.000 10.653 340.902 20.792 101.000 10.626 10
SoftGrouppermissive0.761 211.000 10.808 350.845 170.716 80.862 250.243 350.824 40.655 280.620 220.734 40.699 180.791 80.981 400.716 240.844 150.769 201.000 10.594 25
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
ISBNetpermissive0.757 221.000 10.904 160.731 390.678 220.895 150.458 190.644 440.670 230.710 180.620 280.732 90.650 281.000 10.756 210.778 340.779 151.000 10.614 15
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
TD3Dpermissive0.751 231.000 10.774 470.867 130.621 300.934 30.404 230.706 240.812 30.605 250.633 260.626 290.690 221.000 10.640 360.820 250.777 171.000 10.612 16
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
PBNetpermissive0.747 241.000 10.818 310.837 210.713 90.844 280.457 200.647 420.711 160.614 230.617 300.657 260.650 281.000 10.692 280.822 240.765 231.000 10.595 24
Weiguang Zhao, Yuyao Yan, Chaolong Yang, Jianan Ye, Xi Yang, Kaizhu Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
GraphCut0.732 251.000 10.788 440.724 400.642 270.859 270.248 340.787 110.618 310.596 260.653 220.722 140.583 501.000 10.766 190.861 80.825 31.000 10.504 41
IPCA-Inst0.731 261.000 10.788 450.884 100.698 140.788 440.252 330.760 140.646 290.511 360.637 250.665 250.804 71.000 10.644 350.778 350.747 281.000 10.561 31
TopoSeg0.725 271.000 10.806 380.933 20.668 240.758 490.272 320.734 190.630 300.549 320.654 210.606 300.697 200.966 450.612 400.839 170.754 271.000 10.573 28
DKNet0.718 281.000 10.814 320.782 300.619 320.872 220.224 360.751 170.569 350.677 190.585 350.724 130.633 400.981 400.515 500.819 260.736 291.000 10.617 13
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
SSEC0.707 291.000 10.850 240.924 30.648 250.747 520.162 400.862 30.572 340.520 340.624 270.549 330.649 371.000 10.560 450.706 520.768 211.000 10.591 26
HAISpermissive0.699 301.000 10.849 250.820 220.675 230.808 380.279 300.757 160.465 410.517 350.596 320.559 320.600 441.000 10.654 330.767 370.676 330.994 500.560 32
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
SSTNetpermissive0.698 311.000 10.697 630.888 80.556 420.803 390.387 240.626 460.417 460.556 310.585 360.702 150.600 441.000 10.824 80.720 500.692 311.000 10.509 40
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
DualGroup0.694 321.000 10.799 410.811 230.622 290.817 330.376 250.805 90.590 330.487 400.568 390.525 370.650 280.835 580.600 410.829 210.655 361.000 10.526 37
ODIN - Inspermissive0.693 331.000 10.880 210.647 480.620 310.779 460.336 270.501 610.681 210.577 270.595 330.679 240.683 251.000 10.709 260.816 290.637 400.770 700.557 33
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024
DANCENET0.680 341.000 10.807 360.733 380.600 360.768 480.375 260.543 540.538 360.610 240.599 310.498 380.632 420.981 400.739 230.856 90.633 430.882 650.454 50
SphereSeg0.680 341.000 10.856 230.744 370.618 330.893 160.151 410.651 410.713 150.537 330.579 380.430 470.651 271.000 10.389 610.744 450.697 300.991 520.601 22
Box2Mask0.677 361.000 10.847 260.771 320.509 510.816 340.277 310.558 530.482 380.562 300.640 240.448 430.700 161.000 10.666 290.852 130.578 500.997 410.488 45
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
OccuSeg+instance0.672 371.000 10.758 550.682 450.576 400.842 290.477 180.504 600.524 370.567 290.585 370.451 420.557 521.000 10.751 220.797 320.563 531.000 10.467 49
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
Mask-Group0.664 381.000 10.822 300.764 350.616 340.815 350.139 450.694 290.597 320.459 440.566 400.599 310.600 440.516 680.715 250.819 270.635 411.000 10.603 20
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
INS-Conv-instance0.657 391.000 10.760 530.667 470.581 380.863 240.323 280.655 390.477 390.473 420.549 420.432 460.650 281.000 10.655 320.738 460.585 490.944 570.472 48
CSC-Pretrained0.648 401.000 10.810 330.768 330.523 490.813 360.143 440.819 50.389 490.422 530.511 460.443 440.650 281.000 10.624 380.732 470.634 421.000 10.375 57
PE0.645 411.000 10.773 490.798 270.538 440.786 450.088 530.799 100.350 530.435 510.547 430.545 340.646 390.933 470.562 440.761 400.556 580.997 410.501 43
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
RPGN0.643 421.000 10.758 540.582 590.539 430.826 320.046 580.765 120.372 510.436 500.588 340.539 360.650 281.000 10.577 420.750 430.653 380.997 410.495 44
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
Dyco3Dcopyleft0.641 431.000 10.841 270.893 70.531 460.802 400.115 500.588 510.448 430.438 480.537 450.430 480.550 530.857 500.534 480.764 390.657 350.987 530.568 29
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
GICN0.638 441.000 10.895 190.800 260.480 550.676 570.144 430.737 180.354 520.447 450.400 590.365 540.700 161.000 10.569 430.836 180.599 451.000 10.473 47
PointGroup0.636 451.000 10.765 500.624 500.505 530.797 410.116 490.696 280.384 500.441 460.559 410.476 400.596 471.000 10.666 290.756 410.556 570.997 410.513 39
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
DD-UNet+Group0.635 460.667 610.797 430.714 420.562 410.774 470.146 420.810 80.429 450.476 410.546 440.399 500.633 401.000 10.632 370.722 490.609 441.000 10.514 38
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
Mask3D_evaluation0.631 471.000 10.829 290.606 520.646 260.836 300.068 540.511 580.462 420.507 370.619 290.389 520.610 431.000 10.432 560.828 230.673 340.788 690.552 34
DENet0.629 481.000 10.797 420.608 510.589 370.627 610.219 370.882 10.310 550.402 580.383 610.396 510.650 281.000 10.663 310.543 690.691 321.000 10.568 30
3D-MPA0.611 491.000 10.833 280.765 340.526 480.756 500.136 470.588 510.470 400.438 490.432 550.358 560.650 280.857 500.429 570.765 380.557 561.000 10.430 52
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
OSIS0.605 501.000 10.801 400.599 540.535 450.728 540.286 290.436 650.679 220.491 380.433 530.256 580.404 650.857 500.620 390.724 480.510 631.000 10.539 36
AOIA0.601 511.000 10.761 520.687 440.485 540.828 310.008 650.663 370.405 480.405 570.425 560.490 390.596 470.714 610.553 470.779 330.597 460.992 510.424 54
PCJC0.578 521.000 10.810 340.583 580.449 580.813 370.042 590.603 490.341 540.490 390.465 500.410 490.650 280.835 580.264 670.694 560.561 540.889 620.504 42
SSEN0.575 531.000 10.761 510.473 610.477 560.795 420.066 550.529 560.658 270.460 430.461 510.380 530.331 670.859 490.401 600.692 580.653 371.000 10.348 59
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
RWSeg0.567 540.528 710.708 620.626 490.580 390.745 530.063 560.627 450.240 590.400 590.497 470.464 410.515 541.000 10.475 520.745 440.571 511.000 10.429 53
NeuralBF0.555 550.667 610.896 180.843 190.517 500.751 510.029 600.519 570.414 470.439 470.465 490.000 770.484 560.857 500.287 650.693 570.651 391.000 10.485 46
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
MTML0.549 561.000 10.807 370.588 570.327 630.647 590.004 670.815 70.180 620.418 540.364 630.182 610.445 591.000 10.442 550.688 590.571 521.000 10.396 55
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
ClickSeg_Instance0.539 571.000 10.621 660.300 640.530 470.698 550.127 480.533 550.222 600.430 520.400 580.365 540.574 510.938 460.472 530.659 610.543 590.944 570.347 60
One_Thing_One_Clickpermissive0.529 580.667 610.718 580.777 310.399 590.683 560.000 700.669 350.138 650.391 600.374 620.539 350.360 660.641 650.556 460.774 360.593 470.997 410.251 65
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Sparse R-CNN0.515 591.000 10.538 710.282 650.468 570.790 430.173 390.345 670.429 440.413 560.484 480.176 620.595 490.591 660.522 490.668 600.476 640.986 550.327 61
Occipital-SCS0.512 601.000 10.716 590.509 600.506 520.611 620.092 520.602 500.177 630.346 630.383 600.165 630.442 600.850 570.386 620.618 650.543 600.889 620.389 56
3D-BoNet0.488 611.000 10.672 650.590 560.301 650.484 720.098 510.620 470.306 560.341 640.259 670.125 650.434 620.796 600.402 590.499 710.513 620.909 610.439 51
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
PanopticFusion-inst0.478 620.667 610.712 610.595 550.259 680.550 680.000 700.613 480.175 640.250 690.434 520.437 450.411 640.857 500.485 510.591 680.267 740.944 570.359 58
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
SPG_WSIS0.470 630.667 610.685 640.677 460.372 610.562 660.000 700.482 620.244 580.316 660.298 640.052 720.442 610.857 500.267 660.702 530.559 551.000 10.287 63
SALoss-ResNet0.459 641.000 10.737 570.159 750.259 670.587 640.138 460.475 630.217 610.416 550.408 570.128 640.315 680.714 610.411 580.536 700.590 480.873 660.304 62
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MASCpermissive0.447 650.528 710.555 690.381 620.382 600.633 600.002 680.509 590.260 570.361 620.432 540.327 570.451 580.571 670.367 630.639 630.386 650.980 560.276 64
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
SegGroup_inspermissive0.445 660.667 610.773 480.185 720.317 640.656 580.000 700.407 660.134 660.381 610.267 660.217 600.476 570.714 610.452 540.629 640.514 611.000 10.222 68
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
3D-SISpermissive0.382 671.000 10.432 740.245 670.190 690.577 650.013 640.263 690.033 720.320 650.240 680.075 680.422 630.857 500.117 720.699 540.271 730.883 640.235 67
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
Hier3Dcopyleft0.323 680.667 610.542 700.264 660.157 720.550 670.000 700.205 720.009 740.270 680.218 690.075 680.500 550.688 640.007 780.698 550.301 700.459 750.200 69
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
UNet-backbone0.319 690.667 610.715 600.233 680.189 700.479 730.008 650.218 700.067 710.201 710.173 700.107 660.123 730.438 690.150 690.615 660.355 660.916 600.093 77
R-PointNet0.306 700.500 730.405 750.311 630.348 620.589 630.054 570.068 750.126 670.283 670.290 650.028 730.219 710.214 720.331 640.396 750.275 710.821 680.245 66
Region-18class0.284 710.250 770.751 560.228 700.270 660.521 690.000 700.468 640.008 760.205 700.127 710.000 770.068 750.070 760.262 680.652 620.323 680.740 710.173 70
SemRegionNet-20cls0.250 720.333 740.613 670.229 690.163 710.493 700.000 700.304 680.107 680.147 740.100 730.052 710.231 690.119 740.039 740.445 730.325 670.654 720.141 73
tmp0.248 730.667 610.437 730.188 710.153 730.491 710.000 700.208 710.094 700.153 730.099 740.057 700.217 720.119 740.039 740.466 720.302 690.640 730.140 74
3D-BEVIS0.248 730.667 610.566 680.076 760.035 780.394 760.027 620.035 770.098 690.099 760.030 770.025 740.098 740.375 710.126 710.604 670.181 760.854 670.171 71
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Sem_Recon_ins0.227 750.764 600.486 720.069 770.098 750.426 750.017 630.067 760.015 730.172 720.100 720.096 670.054 770.183 730.135 700.366 760.260 750.614 740.168 72
ASIS0.199 760.333 740.253 770.167 740.140 740.438 740.000 700.177 730.008 750.121 750.069 750.004 760.231 700.429 700.036 760.445 740.273 720.333 770.119 76
Sgpn_scannet0.143 770.208 780.390 760.169 730.065 760.275 770.029 610.069 740.000 770.087 770.043 760.014 750.027 780.000 770.112 730.351 770.168 770.438 760.138 75
MaskRCNN 2d->3d Proj0.058 780.333 740.002 780.000 780.053 770.002 780.002 690.021 780.000 770.045 780.024 780.238 590.065 760.000 770.014 770.107 780.020 780.110 780.006 78


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 20.512 10.422 180.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 30.481 20.451 140.769 40.656 30.567 40.931 30.395 60.390 50.700 40.534 40.689 110.770 20.574 30.865 100.831 30.675 5
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 240.648 40.463 30.549 20.742 80.676 20.628 20.961 10.420 20.379 60.684 80.381 190.732 30.723 30.599 20.827 170.851 20.634 8
MVF-GNN(2D)0.636 30.606 150.794 40.434 160.688 10.337 80.464 130.798 30.632 50.589 30.908 90.420 20.329 130.743 20.594 20.738 20.676 50.527 40.906 20.818 60.715 3
CMX0.613 50.681 90.725 120.502 120.634 60.297 180.478 110.830 20.651 40.537 70.924 40.375 70.315 150.686 70.451 140.714 50.543 220.504 60.894 70.823 50.688 4
DMMF_3d0.605 60.651 100.744 100.782 30.637 50.387 40.536 40.732 90.590 70.540 60.856 220.359 110.306 160.596 150.539 30.627 210.706 40.497 80.785 220.757 200.476 23
EMSANet0.600 70.716 40.746 90.395 190.614 90.382 50.523 50.713 120.571 110.503 100.922 70.404 50.397 40.655 90.400 160.626 220.663 60.469 130.900 40.827 40.577 15
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
MCA-Net0.595 80.533 210.756 80.746 40.590 100.334 100.506 80.670 160.587 80.500 120.905 110.366 100.352 90.601 140.506 80.669 170.648 90.501 70.839 160.769 160.516 22
RFBNet0.592 90.616 120.758 70.659 50.581 110.330 110.469 120.655 190.543 140.524 80.924 40.355 130.336 110.572 180.479 100.671 150.648 90.480 100.814 200.814 70.614 11
FAN_NV_RVC0.586 100.510 220.764 60.079 270.620 80.330 110.494 90.753 60.573 90.556 50.884 170.405 40.303 170.718 30.452 130.672 140.658 70.509 50.898 50.813 80.727 2
WSGFormer0.585 110.706 50.708 170.434 160.574 130.283 210.538 30.759 50.542 160.482 160.924 40.351 150.333 120.614 110.393 170.692 100.551 210.461 140.874 90.809 90.673 6
DCRedNet0.583 120.682 80.723 130.542 110.510 210.310 150.451 140.668 170.549 130.520 90.920 80.375 70.446 20.528 210.417 150.670 160.577 180.478 110.862 110.806 100.628 10
MIX6D_RVC0.582 130.695 60.687 180.225 220.632 70.328 130.550 10.748 70.623 60.494 150.890 150.350 160.254 240.688 60.454 120.716 40.597 170.489 90.881 80.768 170.575 16
SSMAcopyleft0.577 140.695 60.716 150.439 140.563 150.314 140.444 160.719 100.551 120.503 100.887 160.346 170.348 100.603 130.353 210.709 60.600 150.457 150.901 30.786 120.599 14
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
DMMF0.567 150.623 110.767 50.238 210.571 140.347 60.413 200.719 100.472 210.418 230.895 140.357 120.260 230.696 50.523 70.666 180.642 110.437 190.895 60.793 110.603 13
UNIV_CNP_RVC_UE0.566 160.569 200.686 200.435 150.524 180.294 190.421 190.712 130.543 140.463 180.872 180.320 180.363 80.611 120.477 110.686 120.627 120.443 180.862 110.775 150.639 7
EMSAFormer0.564 170.581 170.736 110.564 100.546 170.219 240.517 60.675 150.486 200.427 220.904 120.352 140.320 140.589 160.528 50.708 70.464 250.413 230.847 150.786 120.611 12
SN_RN152pyrx8_RVCcopyleft0.546 180.572 180.663 220.638 70.518 190.298 170.366 250.633 220.510 180.446 200.864 200.296 210.267 200.542 200.346 220.704 80.575 190.431 200.853 140.766 180.630 9
UDSSEG_RVC0.545 190.610 140.661 230.588 80.556 160.268 220.482 100.642 210.572 100.475 170.836 240.312 190.367 70.630 100.189 240.639 200.495 240.452 160.826 180.756 210.541 18
segfomer with 6d0.542 200.594 160.687 180.146 250.579 120.308 160.515 70.703 140.472 210.498 130.868 190.369 90.282 180.589 160.390 180.701 90.556 200.416 220.860 130.759 190.539 20
FuseNetpermissive0.535 210.570 190.681 210.182 230.512 200.290 200.431 170.659 180.504 190.495 140.903 130.308 200.428 30.523 220.365 200.676 130.621 140.470 120.762 230.779 140.541 18
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 220.613 130.722 140.418 180.358 270.337 80.370 240.479 250.443 230.368 250.907 100.207 240.213 260.464 250.525 60.618 230.657 80.450 170.788 210.721 240.408 26
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 230.481 250.612 240.579 90.456 230.343 70.384 220.623 230.525 170.381 240.845 230.254 230.264 220.557 190.182 250.581 250.598 160.429 210.760 240.661 260.446 25
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 240.505 230.709 160.092 260.427 240.241 230.411 210.654 200.385 270.457 190.861 210.053 270.279 190.503 230.481 90.645 190.626 130.365 250.748 250.725 230.529 21
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 250.490 240.581 250.289 200.507 220.067 270.379 230.610 240.417 250.435 210.822 260.278 220.267 200.503 230.228 230.616 240.533 230.375 240.820 190.729 220.560 17
Enet (reimpl)0.376 260.264 270.452 270.452 130.365 250.181 250.143 270.456 260.409 260.346 260.769 270.164 250.218 250.359 260.123 270.403 270.381 270.313 270.571 260.685 250.472 24
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 270.293 260.521 260.657 60.361 260.161 260.250 260.004 270.440 240.183 270.836 240.125 260.060 270.319 270.132 260.417 260.412 260.344 260.541 270.427 270.109 27
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EMSANet (Instance)0.241 10.401 10.439 10.085 10.242 10.220 10.081 10.289 20.117 20.121 10.182 10.126 10.346 10.181 20.181 20.358 10.156 10.675 20.131 1
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
UniDet_RVC0.205 20.381 20.323 30.037 30.226 30.177 30.063 20.277 30.120 10.067 30.131 30.074 30.317 20.080 30.235 10.289 30.141 30.678 10.080 3
FKNet0.204 30.334 30.358 20.038 20.234 20.184 20.025 30.318 10.042 40.088 20.141 20.053 40.300 30.207 10.171 30.292 20.149 20.636 30.109 2
MaskRCNN_ScanNetpermissive0.119 40.129 40.212 40.002 40.112 40.148 40.014 40.205 40.044 30.066 40.078 40.095 20.142 40.030 40.128 40.139 40.080 40.459 40.057 4
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg iouapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LAST-PCL-type0.738 10.250 31.000 10.895 11.000 11.000 11.000 10.500 11.000 10.500 20.842 10.000 20.941 10.667 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12
multi-taskpermissive0.646 20.500 11.000 10.789 20.333 30.667 31.000 10.500 11.000 11.000 10.778 20.000 20.833 20.000 3
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.556 30.500 10.938 30.778 30.667 21.000 10.250 30.500 10.750 30.333 30.500 40.000 20.812 30.200 2
SE-ResNeXt-SSMA0.355 40.000 50.684 40.696 40.200 50.500 40.200 40.500 10.429 40.200 40.545 30.111 10.556 40.000 3
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.231 50.200 40.481 50.346 50.250 40.250 50.000 50.500 10.333 50.000 50.357 50.000 20.286 50.000 3