Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail iouwallchairfloortabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OctFormer ScanNet200permissive0.326 80.539 70.265 70.131 70.806 60.670 80.943 70.535 70.662 20.705 110.423 60.407 30.505 80.003 80.765 80.582 50.686 100.227 110.680 50.943 60.601 10.854 80.892 30.335 30.417 120.357 70.724 70.453 60.632 40.596 20.432 30.783 60.512 110.021 100.244 100.637 10.000 10.787 70.873 70.743 100.000 120.000 70.534 60.110 10.499 40.289 50.626 40.620 90.168 120.204 10.849 50.679 50.117 30.633 70.684 20.650 50.552 30.684 70.312 20.000 30.175 70.429 70.865 30.413 20.837 70.000 30.145 60.626 60.451 50.487 80.513 10.000 10.529 50.613 80.000 40.033 30.000 10.000 30.828 20.871 20.622 60.587 60.411 50.137 90.645 90.343 70.000 30.000 50.000 10.022 80.000 30.026 120.829 80.000 10.022 50.089 40.842 10.253 110.318 80.296 20.178 60.291 30.224 10.584 20.200 90.132 60.000 30.128 60.227 110.000 10.230 80.047 80.149 50.331 70.412 70.618 50.164 50.102 60.522 10.000 10.655 30.378 80.469 100.000 10.000 70.000 70.105 60.000 50.000 70.483 30.000 70.000 40.028 50.000 10.000 10.906 10.000 10.339 100.000 10.000 80.457 70.000 10.612 50.000 10.000 10.408 20.000 100.900 60.000 50.000 60.000 10.029 40.000 10.074 120.455 100.479 40.427 40.079 80.140 80.496 60.414 90.022 20.000 10.471 90.000 20.000 20.000 70.722 40.000 20.000 10.000 10.138 90.000 40.000 20.000 60.000 1
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
BFANet ScanNet200permissive0.360 20.553 40.293 20.193 20.827 20.689 20.970 20.528 80.661 40.753 40.436 50.378 50.469 100.042 50.810 20.654 10.760 20.266 50.659 70.973 20.574 20.849 90.897 20.382 10.546 80.372 60.698 90.491 50.617 50.526 50.436 10.764 90.476 120.101 50.409 20.585 70.000 10.835 10.901 20.810 50.102 90.000 70.688 10.096 30.483 60.264 70.612 60.591 110.358 10.161 30.863 30.707 20.128 20.814 10.669 30.629 70.563 20.651 100.258 30.000 30.194 60.494 50.806 90.394 40.953 20.000 30.233 10.757 20.508 40.556 30.476 20.000 10.573 30.741 30.000 40.000 60.000 10.000 30.000 120.852 40.678 10.616 30.460 30.338 30.710 20.534 20.000 30.025 20.000 10.043 20.000 30.056 90.493 120.000 10.000 70.109 30.785 20.590 30.298 100.282 30.143 80.262 40.053 80.526 40.337 30.215 10.000 30.135 50.510 30.000 10.596 10.043 90.511 20.321 90.459 20.772 10.124 80.060 90.266 40.000 10.574 60.568 50.653 60.000 10.093 10.298 20.239 10.000 50.516 20.129 90.284 10.000 40.431 10.000 10.000 10.848 60.000 10.492 10.000 10.376 20.522 50.000 10.469 120.000 10.000 10.330 40.151 50.875 100.000 50.254 10.000 10.000 50.000 10.088 100.661 10.481 30.255 90.105 10.139 90.666 30.641 20.000 80.000 10.614 10.000 20.000 20.000 70.921 10.000 20.000 10.000 10.497 10.000 40.000 20.000 60.000 1
PPT-SpUNet-F.T.0.332 70.556 30.270 40.123 90.816 40.682 50.946 40.549 50.657 60.756 30.459 40.376 60.550 60.001 90.807 30.616 20.727 70.267 40.691 30.942 70.530 70.872 40.874 50.330 50.542 90.374 50.792 30.400 90.673 20.572 40.433 20.793 40.623 40.008 120.351 50.594 60.000 10.783 80.876 50.833 40.213 30.000 70.537 50.091 40.519 20.304 40.620 50.942 10.264 30.124 50.855 40.695 30.086 60.646 60.506 110.658 40.535 40.715 20.314 10.000 30.241 30.608 20.897 20.359 60.858 60.000 30.076 120.611 80.392 70.509 60.378 30.000 10.579 20.565 110.000 40.000 60.000 10.000 30.755 40.806 80.661 20.572 100.350 70.181 70.660 70.300 90.000 30.000 50.000 10.023 70.000 30.042 110.930 20.000 10.000 70.077 50.584 40.392 70.339 60.185 50.171 70.308 20.006 100.563 30.256 60.150 20.000 30.002 110.345 100.000 10.045 90.197 20.063 60.323 80.453 30.600 60.163 60.037 100.349 20.000 10.672 20.679 30.753 10.000 10.000 70.000 70.117 30.000 50.000 70.291 80.000 70.000 40.039 40.000 10.000 10.899 20.000 10.374 80.000 10.000 80.545 40.000 10.634 30.000 10.000 10.074 80.223 30.914 50.000 50.021 40.000 10.000 50.000 10.112 40.498 80.649 10.383 70.095 20.135 110.449 80.432 70.008 50.000 10.518 50.000 20.000 20.000 70.796 30.000 20.000 10.000 10.138 90.000 40.000 20.000 60.000 1
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
PTv3 ScanNet2000.393 10.592 10.330 10.216 10.851 10.687 40.971 10.586 10.755 10.752 50.505 10.404 40.575 20.000 100.848 10.616 20.761 10.349 10.738 10.978 10.546 40.860 60.926 10.346 20.654 30.384 40.828 10.523 30.699 10.583 30.387 60.822 10.688 10.118 40.474 10.603 40.000 10.832 30.903 10.753 80.140 60.000 70.650 20.109 20.520 10.457 10.497 70.871 30.281 20.192 20.887 20.748 10.168 10.727 30.733 10.740 10.644 10.714 30.190 80.000 30.256 20.449 60.914 10.514 10.759 100.337 10.172 40.692 40.617 10.636 10.325 40.000 10.641 10.782 10.000 40.065 20.000 10.000 30.842 10.903 10.661 20.662 20.612 10.405 20.731 10.566 10.000 30.000 50.000 10.017 100.301 10.088 40.941 10.000 10.077 20.000 80.717 30.790 10.310 90.026 120.264 20.349 10.220 20.397 80.366 10.115 80.000 30.337 10.463 50.000 10.531 20.218 10.593 10.455 10.469 10.708 20.210 10.592 20.108 110.000 10.728 10.682 20.671 40.000 10.000 70.407 10.136 20.022 20.575 10.436 40.259 20.428 10.048 30.000 10.000 10.879 50.000 10.480 20.000 10.133 50.597 10.000 10.690 10.000 10.000 10.009 110.000 100.921 20.000 50.151 20.000 10.000 50.000 10.109 60.494 90.622 20.394 60.073 100.141 70.798 10.528 30.026 10.000 10.551 30.000 20.000 20.134 50.717 50.000 20.000 10.000 10.188 30.000 40.000 20.791 10.000 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
OA-CNN-L_ScanNet2000.333 60.558 20.269 60.124 80.821 30.703 10.946 40.569 20.662 20.748 60.487 20.455 10.572 40.000 100.789 50.534 60.736 60.271 30.713 20.949 40.498 110.877 20.860 60.332 40.706 10.474 10.788 50.406 80.637 30.495 60.355 70.805 30.592 90.015 110.396 30.602 50.000 10.799 60.876 50.713 120.276 10.000 70.493 80.080 60.448 100.363 20.661 20.833 50.262 40.125 40.823 70.665 60.076 70.720 40.557 60.637 60.517 60.672 80.227 60.000 30.158 80.496 40.843 80.352 70.835 80.000 30.103 100.711 30.527 20.526 50.320 50.000 10.568 40.625 70.067 10.000 60.000 10.001 20.806 30.836 60.621 70.591 50.373 60.314 50.668 50.398 60.003 20.000 50.000 10.016 110.024 20.043 100.906 40.000 10.052 40.000 80.384 70.330 90.342 50.100 70.223 40.183 80.112 40.476 50.313 50.130 70.196 20.112 70.370 90.000 10.234 70.071 60.160 40.403 30.398 90.492 100.197 20.076 80.272 30.000 10.200 120.560 60.735 30.000 10.000 70.000 70.110 50.002 40.021 60.412 50.000 70.000 40.000 80.000 10.000 10.794 70.000 10.445 30.000 10.022 60.509 60.000 10.517 100.000 10.000 10.001 120.245 20.915 40.024 20.089 30.000 10.262 20.000 10.103 80.524 50.392 80.515 20.013 120.251 40.411 100.662 10.001 70.000 10.473 80.000 20.000 20.150 40.699 60.000 20.000 10.000 10.166 50.000 40.024 10.000 60.000 1
L3DETR-ScanNet_2000.336 50.533 80.279 30.155 50.801 70.689 20.946 40.539 60.660 50.759 20.380 90.333 90.583 10.000 100.788 60.529 70.740 50.261 70.679 60.940 80.525 80.860 60.883 40.226 80.613 60.397 30.720 80.512 40.565 70.620 10.417 40.775 80.629 30.158 20.298 70.579 80.000 10.835 10.883 40.927 10.114 70.079 40.511 70.073 80.508 30.312 30.629 30.861 40.192 110.098 100.908 10.636 80.032 120.563 120.514 100.664 30.505 70.697 50.225 70.000 30.264 10.411 80.860 60.321 80.960 10.058 20.109 90.776 10.526 30.557 20.303 60.000 10.339 70.712 40.000 40.014 40.000 10.000 30.638 70.856 30.641 50.579 80.107 120.119 100.661 60.416 40.000 30.000 50.000 10.007 120.000 30.067 70.910 30.000 10.000 70.000 80.463 60.448 50.294 110.324 10.293 10.211 50.108 50.448 60.068 120.141 40.000 30.330 20.699 10.000 10.256 60.192 30.000 100.355 50.418 50.209 120.146 70.679 10.101 120.000 10.503 100.687 10.671 40.000 10.000 70.174 60.117 30.000 50.122 50.515 20.104 30.259 20.312 20.000 10.000 10.765 80.000 10.369 90.000 10.183 40.422 90.000 10.646 20.000 10.000 10.565 10.001 90.125 120.010 30.002 50.000 10.487 10.000 10.075 110.548 30.420 60.233 110.082 70.138 100.430 90.427 80.000 80.000 10.549 40.000 20.000 20.074 60.409 110.000 20.000 10.000 10.152 60.051 20.000 20.598 30.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
PonderV2 ScanNet2000.346 30.552 50.270 50.175 40.810 50.682 50.950 30.560 40.641 70.761 10.398 80.357 70.570 50.113 20.804 40.603 40.750 40.283 20.681 40.952 30.548 30.874 30.852 80.290 70.700 20.356 80.792 30.445 70.545 80.436 70.351 80.787 50.611 50.050 70.290 90.519 90.000 10.825 50.888 30.842 30.259 20.100 20.558 40.070 90.497 50.247 90.457 80.889 20.248 60.106 70.817 80.691 40.094 50.729 20.636 40.620 90.503 80.660 90.243 50.000 30.212 50.590 30.860 60.400 30.881 40.000 30.202 20.622 70.408 60.499 70.261 70.000 10.385 60.636 60.000 40.000 60.000 10.000 30.433 110.843 50.660 40.574 90.481 20.336 40.677 40.486 30.000 30.030 10.000 10.034 50.000 30.080 50.869 70.000 10.000 70.000 80.540 50.727 20.232 120.115 60.186 50.193 60.000 110.403 70.326 40.103 90.000 30.290 30.392 70.000 10.346 50.062 70.424 30.375 40.431 40.667 30.115 90.082 70.239 50.000 10.504 90.606 40.584 70.000 10.002 50.186 50.104 70.000 50.394 30.384 60.083 50.000 40.007 60.000 10.000 10.880 40.000 10.377 70.000 10.263 30.565 20.000 10.608 60.000 10.000 10.304 50.009 60.924 10.000 50.000 60.000 10.000 50.000 10.128 20.584 20.475 50.412 50.076 90.269 30.621 40.509 40.010 30.000 10.491 70.063 10.000 20.472 30.880 20.000 20.000 10.000 10.179 40.125 10.000 20.441 50.000 1
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
CeCo0.340 40.551 60.247 80.181 30.784 80.661 90.939 80.564 30.624 80.721 70.484 30.429 20.575 20.027 60.774 70.503 90.753 30.242 80.656 80.945 50.534 50.865 50.860 60.177 120.616 50.400 20.818 20.579 10.615 60.367 90.408 50.726 100.633 20.162 10.360 40.619 20.000 10.828 40.873 70.924 20.109 80.083 30.564 30.057 120.475 80.266 60.781 10.767 60.257 50.100 80.825 60.663 70.048 110.620 90.551 70.595 100.532 50.692 60.246 40.000 30.213 40.615 10.861 50.376 50.900 30.000 30.102 110.660 50.321 100.547 40.226 80.000 10.311 80.742 20.011 30.006 50.000 10.000 30.546 100.824 70.345 90.665 10.450 40.435 10.683 30.411 50.338 10.000 50.000 10.030 60.000 30.068 60.892 50.000 10.063 30.000 80.257 80.304 100.387 30.079 90.228 30.190 70.000 110.586 10.347 20.133 50.000 30.037 80.377 80.000 10.384 40.006 110.003 80.421 20.410 80.643 40.171 40.121 40.142 90.000 10.510 80.447 70.474 90.000 10.000 70.286 30.083 80.000 50.000 70.603 10.096 40.063 30.000 80.000 10.000 10.898 30.000 10.429 40.000 10.400 10.550 30.000 10.633 40.000 10.000 10.377 30.000 100.916 30.000 50.000 60.000 10.000 50.000 10.102 90.499 70.296 90.463 30.089 50.304 10.740 20.401 110.010 30.000 10.560 20.000 20.000 20.709 10.652 70.000 20.000 10.000 10.143 70.000 40.000 20.609 20.000 1
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
CSC-Pretrainpermissive0.249 120.455 120.171 110.079 120.766 120.659 100.930 120.494 90.542 120.700 120.314 120.215 120.430 120.121 10.697 120.441 110.683 110.235 90.609 120.895 110.476 120.816 110.770 120.186 90.634 40.216 120.734 60.340 110.471 110.307 110.293 120.591 120.542 100.076 60.205 110.464 100.000 10.484 120.832 120.766 70.052 110.000 70.413 110.059 110.418 110.222 110.318 120.609 100.206 100.112 60.743 90.625 90.076 70.579 110.548 80.590 110.371 110.552 120.081 110.003 20.142 90.201 120.638 120.233 110.686 120.000 30.142 70.444 120.375 80.247 120.198 90.000 10.128 120.454 120.019 20.097 10.000 10.000 30.553 90.557 110.373 80.545 110.164 110.014 120.547 110.174 100.000 30.002 30.000 10.037 30.000 30.063 80.664 110.000 10.000 70.130 20.170 90.152 120.335 70.079 90.110 100.175 90.098 60.175 120.166 100.045 120.207 10.014 90.465 40.000 10.001 120.001 120.046 70.299 100.327 110.537 80.033 110.012 120.186 80.000 10.205 110.377 90.463 110.000 10.058 30.000 70.055 100.041 10.000 70.105 110.000 70.000 40.000 80.000 10.000 10.398 100.000 10.308 120.000 10.000 80.319 100.000 10.543 90.000 10.000 10.062 100.004 80.862 110.000 50.000 60.000 10.000 50.000 10.123 30.316 110.225 100.250 100.094 30.180 50.332 110.441 60.000 80.000 10.310 120.000 20.000 20.000 70.592 90.000 20.000 10.000 10.203 20.000 40.000 20.000 60.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
AWCS0.305 90.508 90.225 90.142 60.782 90.634 120.937 90.489 100.578 90.721 70.364 100.355 80.515 70.023 70.764 90.523 80.707 90.264 60.633 90.922 90.507 100.886 10.804 100.179 100.436 110.300 90.656 110.529 20.501 100.394 80.296 110.820 20.603 60.131 30.179 120.619 20.000 10.707 110.865 90.773 60.171 40.010 60.484 90.063 100.463 90.254 80.332 110.649 80.220 80.100 80.729 100.613 100.071 90.582 100.628 50.702 20.424 100.749 10.137 100.000 30.142 90.360 90.863 40.305 90.877 50.000 30.173 30.606 90.337 90.478 90.154 100.000 10.253 90.664 50.000 40.000 60.000 10.000 30.626 80.782 90.302 110.602 40.185 100.282 60.651 80.317 80.000 30.000 50.000 10.022 80.000 30.154 10.876 60.000 10.014 60.063 70.029 120.553 40.467 20.084 80.124 90.157 110.049 90.373 90.252 70.097 100.000 30.219 40.542 20.000 10.392 30.172 50.000 100.339 60.417 60.533 90.093 100.115 50.195 70.000 10.516 70.288 110.741 20.000 10.001 60.233 40.056 90.000 50.159 40.334 70.077 60.000 40.000 80.000 10.000 10.749 90.000 10.411 50.000 10.008 70.452 80.000 10.595 70.000 10.000 10.220 70.006 70.894 80.006 40.000 60.000 10.000 50.000 10.112 40.504 60.404 70.551 10.093 40.129 120.484 70.381 120.000 80.000 10.396 100.000 20.000 20.620 20.402 120.000 20.000 10.000 10.142 80.000 40.000 20.512 40.000 1
LGroundpermissive0.272 100.485 100.184 100.106 100.778 100.676 70.932 100.479 120.572 100.718 90.399 70.265 100.453 110.085 30.745 100.446 100.726 80.232 100.622 100.901 100.512 90.826 100.786 110.178 110.549 70.277 100.659 100.381 100.518 90.295 120.323 90.777 70.599 70.028 80.321 60.363 110.000 10.708 100.858 100.746 90.063 100.022 50.457 100.077 70.476 70.243 100.402 90.397 120.233 70.077 120.720 120.610 110.103 40.629 80.437 120.626 80.446 90.702 40.190 80.005 10.058 110.322 100.702 110.244 100.768 90.000 30.134 80.552 100.279 110.395 100.147 110.000 10.207 100.612 90.000 40.000 60.000 10.000 30.658 60.566 100.323 100.525 120.229 90.179 80.467 120.154 110.000 30.002 30.000 10.051 10.000 30.127 20.703 90.000 10.000 70.216 10.112 110.358 80.547 10.187 40.092 110.156 120.055 70.296 100.252 70.143 30.000 30.014 90.398 60.000 10.028 110.173 40.000 100.265 110.348 100.415 110.179 30.019 110.218 60.000 10.597 50.274 120.565 80.000 10.012 40.000 70.039 110.022 20.000 70.117 100.000 70.000 40.000 80.000 10.000 10.324 110.000 10.384 60.000 10.000 80.251 120.000 10.566 80.000 10.000 10.066 90.404 10.886 90.199 10.000 60.000 10.059 30.000 10.136 10.540 40.127 120.295 80.085 60.143 60.514 50.413 100.000 80.000 10.498 60.000 20.000 20.000 70.623 80.000 20.000 10.000 10.132 110.000 40.000 20.000 60.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
Minkowski 34Dpermissive0.253 110.463 110.154 120.102 110.771 110.650 110.932 100.483 110.571 110.710 100.331 110.250 110.492 90.044 40.703 110.419 120.606 120.227 110.621 110.865 120.531 60.771 120.813 90.291 60.484 100.242 110.612 120.282 120.440 120.351 100.299 100.622 110.593 80.027 90.293 80.310 120.000 10.757 90.858 100.737 110.150 50.164 10.368 120.084 50.381 120.142 120.357 100.720 70.214 90.092 110.724 110.596 120.056 100.655 50.525 90.581 120.352 120.594 110.056 120.000 30.014 120.224 110.772 100.205 120.720 110.000 30.159 50.531 110.163 120.294 110.136 120.000 10.169 110.589 100.000 40.000 60.000 10.002 10.663 50.466 120.265 120.582 70.337 80.016 110.559 100.084 120.000 30.000 50.000 10.036 40.000 30.125 30.670 100.000 10.102 10.071 60.164 100.406 60.386 40.046 110.068 120.159 100.117 30.284 110.111 110.094 110.000 30.000 120.197 120.000 10.044 100.013 100.002 90.228 120.307 120.588 70.025 120.545 30.134 100.000 10.655 30.302 100.282 120.000 10.060 20.000 70.035 120.000 50.000 70.097 120.000 70.000 40.005 70.000 10.000 10.096 120.000 10.334 110.000 10.000 80.274 110.000 10.513 110.000 10.000 10.280 60.194 40.897 70.000 50.000 60.000 10.000 50.000 10.108 70.279 120.189 110.141 120.059 110.272 20.307 120.445 50.003 60.000 10.353 110.000 20.026 10.000 70.581 100.001 10.000 10.000 10.093 120.002 30.000 20.000 60.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg ap 25%head ap 25%common ap 25%tail ap 25%chairtabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D Scannet2000.445 10.653 10.392 10.254 10.844 20.746 20.818 10.888 40.556 10.262 10.890 10.025 21.000 10.608 10.930 10.694 30.721 10.930 50.686 30.966 10.615 40.440 10.725 40.201 10.890 30.414 40.827 10.552 10.158 50.806 10.924 10.042 30.512 20.412 50.226 10.604 30.830 11.000 10.125 10.792 10.815 10.097 10.648 10.551 20.354 41.000 10.630 10.241 21.000 10.853 10.204 10.974 40.841 10.778 10.358 20.927 10.300 10.045 10.640 10.363 10.745 20.710 11.000 10.000 10.330 20.943 10.315 20.600 11.000 10.027 10.080 50.556 50.500 10.409 10.000 10.194 11.000 10.500 10.493 20.761 20.053 40.042 30.780 20.454 10.009 10.333 10.050 10.321 10.000 10.084 10.552 20.008 20.027 20.750 10.500 10.442 30.657 10.765 20.120 20.183 30.021 21.000 10.510 20.016 10.000 10.400 10.619 10.000 10.396 10.290 10.000 10.741 10.699 11.000 10.260 10.017 30.125 50.000 10.792 40.399 41.000 10.000 10.049 30.265 10.063 30.000 31.000 10.335 20.381 10.500 10.250 10.004 20.000 10.727 20.000 10.538 30.000 10.188 10.677 20.000 10.930 10.000 10.000 10.966 10.391 10.908 20.000 10.028 10.000 11.000 10.000 10.152 10.451 20.458 10.971 10.573 10.606 10.167 50.625 10.004 10.000 10.058 50.000 10.000 11.000 11.000 10.000 10.056 10.000 20.200 30.309 10.000 21.000 10.000 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
TD3D Scannet200permissive0.379 20.603 20.306 20.190 20.885 10.755 10.800 20.958 10.390 20.260 20.866 20.232 10.979 20.523 30.869 30.559 50.689 21.000 10.795 10.905 20.748 10.173 50.825 10.173 20.970 10.457 10.615 20.456 20.200 10.621 40.906 20.553 10.517 10.510 10.220 20.715 10.706 21.000 10.113 20.792 10.717 20.073 20.635 20.557 10.638 11.000 10.205 50.146 31.000 10.769 50.186 21.000 10.710 50.778 10.415 10.834 40.226 20.021 20.590 20.356 20.817 10.477 51.000 10.000 10.635 10.843 20.427 10.270 40.125 20.000 20.102 31.000 10.125 20.000 20.000 10.000 20.000 30.125 40.370 30.622 50.221 10.196 20.836 10.288 20.000 20.093 20.020 20.294 20.000 10.075 20.667 10.038 10.111 10.250 40.000 40.526 20.495 30.908 10.111 30.259 10.003 30.667 20.045 50.000 20.000 10.400 10.274 30.000 10.274 20.226 20.000 10.520 20.302 50.731 20.103 30.458 10.500 10.000 11.000 10.472 10.792 30.000 10.088 20.061 20.250 10.009 20.250 20.333 30.181 20.396 20.051 20.012 10.000 10.458 40.000 10.424 50.000 10.101 20.390 50.000 10.833 20.000 10.000 10.857 20.222 31.000 10.000 10.003 20.000 10.000 20.000 10.102 20.275 50.400 20.735 20.061 30.433 30.533 30.625 10.000 20.000 10.259 40.000 10.000 10.000 20.500 20.000 10.000 21.000 10.600 10.000 20.250 10.000 20.000 1
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
CSC-Pretrain Inst.permissive0.275 50.466 50.218 40.110 50.783 50.383 50.783 40.829 50.367 40.168 50.305 50.000 30.661 50.413 50.869 20.719 10.546 50.997 30.685 40.841 40.555 50.277 40.768 20.132 30.779 50.448 30.364 50.212 50.161 40.768 20.692 50.000 40.395 30.500 20.000 30.450 50.591 31.000 10.020 50.000 30.423 50.007 50.625 30.420 30.505 31.000 10.353 20.119 50.571 40.819 20.014 31.000 10.774 20.689 40.311 50.866 20.067 30.000 30.400 30.000 50.278 50.501 31.000 10.000 10.162 50.584 50.286 30.206 50.125 20.000 20.084 40.649 20.000 30.000 20.000 10.000 20.000 30.125 40.312 40.727 30.221 20.000 40.667 40.114 30.000 20.000 30.000 30.065 50.000 10.004 40.278 30.000 30.000 30.500 20.000 40.571 10.000 50.250 40.019 50.145 50.000 40.667 20.200 40.000 20.000 10.200 30.258 40.000 10.000 40.000 40.000 10.369 40.429 30.613 40.000 50.000 40.500 10.000 10.500 50.333 50.500 40.000 10.106 10.000 30.000 40.000 30.000 30.333 30.000 30.000 30.000 30.000 30.000 10.918 10.000 10.638 10.000 10.000 30.750 10.000 10.833 20.000 10.000 10.143 50.000 50.750 30.000 10.000 30.000 10.000 20.000 10.063 40.377 40.200 30.222 50.055 40.500 20.677 20.250 40.000 20.000 10.500 20.000 10.000 10.000 20.500 20.000 10.000 20.000 20.115 50.000 20.000 20.000 20.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
Minkowski 34D Inst.permissive0.280 40.488 40.192 50.124 40.804 40.518 40.772 50.904 30.337 50.191 40.443 40.000 30.861 40.502 40.868 40.669 40.587 40.997 30.467 50.828 50.732 20.342 30.745 30.119 50.918 20.404 50.419 40.398 30.172 30.618 50.743 40.167 20.077 50.500 20.000 30.568 40.506 51.000 10.044 40.000 30.502 40.010 40.593 40.284 50.305 50.903 50.213 40.142 40.981 30.790 40.000 41.000 10.715 40.538 50.346 40.830 50.067 30.000 30.400 30.074 40.333 40.551 21.000 10.000 10.292 30.777 40.118 50.317 30.100 40.000 20.191 20.648 30.000 30.000 20.000 10.000 20.000 30.500 10.213 50.825 10.021 50.333 10.648 50.098 40.000 20.000 30.000 30.077 30.000 10.000 50.150 50.000 30.000 30.000 50.225 20.281 40.447 40.000 50.090 40.148 40.000 40.479 50.542 10.000 20.000 10.200 30.131 50.000 10.250 30.000 40.000 10.159 50.396 40.677 30.021 40.000 40.500 10.000 11.000 10.442 30.125 50.000 10.000 40.000 30.000 40.333 10.000 30.528 10.000 30.000 30.000 30.000 30.000 10.200 50.000 10.516 40.000 10.000 30.500 30.000 10.833 20.000 10.000 10.286 40.083 40.750 30.000 10.000 30.000 10.000 20.000 10.059 50.445 30.200 30.535 40.070 20.167 40.385 40.375 30.000 20.000 10.333 30.000 10.000 10.000 20.500 20.000 10.000 20.000 20.200 30.000 20.000 20.000 20.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
LGround Inst.permissive0.314 30.529 30.225 30.155 30.810 30.625 30.798 30.940 20.372 30.217 30.484 30.000 30.927 30.528 20.826 50.694 20.605 31.000 10.731 20.846 30.716 30.350 20.589 50.123 40.857 40.457 20.578 30.376 40.183 20.765 30.800 30.000 40.278 40.500 20.000 30.659 20.569 41.000 10.093 30.000 30.539 30.010 30.578 50.378 40.571 21.000 10.337 30.252 10.530 50.814 30.000 40.744 50.743 30.746 30.346 30.863 30.067 30.000 30.400 30.167 30.667 30.488 41.000 10.000 10.208 40.783 30.166 40.375 20.071 50.000 20.200 10.607 40.000 30.000 20.000 10.000 21.000 10.500 10.517 10.716 40.221 20.000 40.706 30.085 50.000 20.000 30.000 30.077 40.000 10.063 30.278 30.000 30.000 30.500 20.083 30.181 50.515 20.286 30.144 10.219 20.042 10.582 40.400 30.000 20.000 10.000 50.305 20.000 10.000 40.036 30.000 10.413 30.500 20.533 50.250 20.200 20.500 10.000 11.000 10.472 11.000 10.000 10.000 40.000 30.250 10.000 30.000 30.333 30.000 30.000 30.000 30.000 30.000 10.600 30.000 10.594 20.000 10.000 30.500 30.000 10.647 50.000 10.000 10.429 30.333 20.500 50.000 10.000 30.000 10.000 20.000 10.069 30.696 10.050 50.556 30.031 50.042 50.750 10.250 40.000 20.000 10.630 10.000 10.000 10.000 20.500 20.000 10.000 20.000 20.400 20.000 20.000 20.000 20.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3 ScanNet0.794 10.941 30.813 180.851 70.782 60.890 20.597 10.916 20.696 80.713 30.979 10.635 10.384 20.793 20.907 80.821 40.790 300.696 110.967 30.903 10.805 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
PonderV20.785 20.978 10.800 260.833 220.788 40.853 160.545 160.910 50.713 10.705 40.979 10.596 70.390 10.769 110.832 410.821 40.792 290.730 10.975 10.897 40.785 4
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 30.964 20.855 10.843 160.781 70.858 120.575 60.831 320.685 140.714 20.979 10.594 80.310 260.801 10.892 160.841 20.819 40.723 40.940 130.887 60.725 23
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 40.861 200.818 140.836 190.790 30.875 40.576 50.905 60.704 50.739 10.969 100.611 20.349 100.756 210.958 10.702 440.805 140.708 70.916 310.898 30.801 2
TTT-KD0.773 50.646 900.818 140.809 340.774 90.878 30.581 20.943 10.687 120.704 50.978 40.607 50.336 150.775 80.912 60.838 30.823 20.694 120.967 30.899 20.794 3
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 60.939 40.824 60.854 60.771 100.840 300.564 100.900 80.686 130.677 110.961 160.537 300.348 110.769 110.903 100.785 100.815 60.676 210.939 140.880 110.772 8
PPT-SpUNet-Joint0.766 70.932 50.794 320.829 240.751 220.854 140.540 200.903 70.630 330.672 140.963 140.565 210.357 80.788 30.900 120.737 250.802 150.685 160.950 70.887 60.780 5
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormerpermissive0.766 70.925 70.808 220.849 90.786 50.846 260.566 90.876 140.690 100.674 130.960 170.576 170.226 660.753 230.904 90.777 120.815 60.722 50.923 270.877 130.776 7
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CU-Hybrid Net0.764 90.924 80.819 120.840 170.757 170.853 160.580 30.848 250.709 30.643 230.958 200.587 120.295 320.753 230.884 200.758 190.815 60.725 30.927 240.867 210.743 14
OccuSeg+Semantic0.764 90.758 580.796 300.839 180.746 240.907 10.562 110.850 240.680 160.672 140.978 40.610 30.335 170.777 60.819 440.847 10.830 10.691 140.972 20.885 80.727 21
O-CNNpermissive0.762 110.924 80.823 70.844 150.770 110.852 180.577 40.847 270.711 20.640 270.958 200.592 90.217 720.762 160.888 170.758 190.813 100.726 20.932 220.868 200.744 13
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DTC0.757 120.843 260.820 100.847 120.791 20.862 100.511 320.870 160.707 40.652 190.954 340.604 60.279 430.760 170.942 20.734 260.766 430.701 100.884 530.874 180.736 15
OA-CNN-L_ScanNet200.756 130.783 440.826 50.858 40.776 80.837 330.548 150.896 110.649 250.675 120.962 150.586 130.335 170.771 100.802 480.770 150.787 320.691 140.936 170.880 110.761 10
ConDaFormer0.755 140.927 60.822 80.836 190.801 10.849 210.516 300.864 210.651 240.680 100.958 200.584 150.282 400.759 190.855 310.728 280.802 150.678 180.880 580.873 190.756 11
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
PNE0.755 140.786 420.835 40.834 210.758 150.849 210.570 80.836 310.648 260.668 160.978 40.581 160.367 60.683 340.856 290.804 60.801 190.678 180.961 50.889 50.716 28
P. Hermosilla: Point Neighborhood Embeddings.
DMF-Net0.752 160.906 120.793 340.802 400.689 390.825 450.556 120.867 170.681 150.602 430.960 170.555 260.365 70.779 50.859 260.747 220.795 260.717 60.917 300.856 290.764 9
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PointTransformerV20.752 160.742 660.809 210.872 10.758 150.860 110.552 130.891 120.610 400.687 60.960 170.559 240.304 290.766 140.926 40.767 160.797 220.644 320.942 110.876 160.722 25
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
PointConvFormer0.749 180.793 400.790 350.807 360.750 230.856 130.524 260.881 130.588 520.642 260.977 80.591 100.274 460.781 40.929 30.804 60.796 230.642 330.947 90.885 80.715 29
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
BPNetcopyleft0.749 180.909 100.818 140.811 320.752 200.839 320.485 460.842 280.673 170.644 220.957 240.528 360.305 280.773 90.859 260.788 80.818 50.693 130.916 310.856 290.723 24
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MSP0.748 200.623 930.804 240.859 30.745 250.824 470.501 360.912 40.690 100.685 80.956 250.567 200.320 230.768 130.918 50.720 330.802 150.676 210.921 280.881 100.779 6
StratifiedFormerpermissive0.747 210.901 130.803 250.845 140.757 170.846 260.512 310.825 350.696 80.645 210.956 250.576 170.262 570.744 280.861 250.742 230.770 410.705 80.899 430.860 260.734 16
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
VMNetpermissive0.746 220.870 180.838 20.858 40.729 300.850 200.501 360.874 150.587 530.658 180.956 250.564 220.299 300.765 150.900 120.716 360.812 110.631 380.939 140.858 270.709 30
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
Virtual MVFusion0.746 220.771 520.819 120.848 110.702 360.865 90.397 840.899 90.699 60.664 170.948 540.588 110.330 190.746 270.851 350.764 170.796 230.704 90.935 180.866 220.728 19
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
Retro-FPN0.744 240.842 270.800 260.767 540.740 260.836 350.541 180.914 30.672 180.626 310.958 200.552 270.272 480.777 60.886 190.696 450.801 190.674 240.941 120.858 270.717 26
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 250.620 940.799 290.849 90.730 290.822 490.493 430.897 100.664 190.681 90.955 280.562 230.378 30.760 170.903 100.738 240.801 190.673 250.907 350.877 130.745 12
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
SAT0.742 260.860 210.765 480.819 270.769 120.848 230.533 220.829 330.663 200.631 300.955 280.586 130.274 460.753 230.896 140.729 270.760 490.666 270.921 280.855 310.733 17
LRPNet0.742 260.816 350.806 230.807 360.752 200.828 430.575 60.839 300.699 60.637 280.954 340.520 390.320 230.755 220.834 390.760 180.772 380.676 210.915 330.862 240.717 26
LargeKernel3D0.739 280.909 100.820 100.806 380.740 260.852 180.545 160.826 340.594 510.643 230.955 280.541 290.263 560.723 320.858 280.775 140.767 420.678 180.933 200.848 360.694 35
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
MinkowskiNetpermissive0.736 290.859 220.818 140.832 230.709 340.840 300.521 280.853 230.660 220.643 230.951 440.544 280.286 380.731 300.893 150.675 540.772 380.683 170.874 650.852 340.727 21
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
RPN0.736 290.776 480.790 350.851 70.754 190.854 140.491 450.866 190.596 500.686 70.955 280.536 310.342 130.624 490.869 220.787 90.802 150.628 390.927 240.875 170.704 32
IPCA0.731 310.890 140.837 30.864 20.726 310.873 50.530 250.824 360.489 860.647 200.978 40.609 40.336 150.624 490.733 570.758 190.776 360.570 640.949 80.877 130.728 19
SparseConvNet0.725 320.647 890.821 90.846 130.721 320.869 60.533 220.754 570.603 460.614 350.955 280.572 190.325 210.710 330.870 210.724 310.823 20.628 390.934 190.865 230.683 38
PointTransformer++0.725 320.727 740.811 200.819 270.765 130.841 290.502 350.814 410.621 360.623 330.955 280.556 250.284 390.620 510.866 230.781 110.757 530.648 300.932 220.862 240.709 30
MatchingNet0.724 340.812 370.812 190.810 330.735 280.834 370.495 420.860 220.572 600.602 430.954 340.512 410.280 420.757 200.845 370.725 300.780 340.606 490.937 160.851 350.700 34
INS-Conv-semantic0.717 350.751 610.759 510.812 310.704 350.868 70.537 210.842 280.609 420.608 390.953 380.534 330.293 330.616 520.864 240.719 350.793 270.640 340.933 200.845 400.663 44
PointMetaBase0.714 360.835 280.785 370.821 250.684 410.846 260.531 240.865 200.614 370.596 470.953 380.500 440.246 620.674 350.888 170.692 460.764 450.624 410.849 800.844 410.675 40
contrastBoundarypermissive0.705 370.769 550.775 420.809 340.687 400.820 520.439 720.812 420.661 210.591 490.945 620.515 400.171 900.633 460.856 290.720 330.796 230.668 260.889 500.847 370.689 36
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 380.774 500.800 260.793 450.760 140.847 250.471 500.802 450.463 930.634 290.968 120.491 470.271 500.726 310.910 70.706 400.815 60.551 760.878 590.833 420.570 76
RFCR0.702 390.889 150.745 620.813 300.672 440.818 560.493 430.815 400.623 340.610 370.947 560.470 560.249 610.594 550.848 360.705 410.779 350.646 310.892 480.823 480.611 59
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 400.825 320.796 300.723 610.716 330.832 390.433 740.816 380.634 310.609 380.969 100.418 820.344 120.559 670.833 400.715 370.808 130.560 700.902 400.847 370.680 39
JSENetpermissive0.699 410.881 170.762 490.821 250.667 450.800 680.522 270.792 480.613 380.607 400.935 820.492 460.205 770.576 600.853 330.691 480.758 510.652 290.872 680.828 450.649 48
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 420.743 650.794 320.655 840.684 410.822 490.497 410.719 670.622 350.617 340.977 80.447 690.339 140.750 260.664 730.703 430.790 300.596 540.946 100.855 310.647 49
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 430.732 700.772 430.786 460.677 430.866 80.517 290.848 250.509 790.626 310.952 420.536 310.225 680.545 730.704 640.689 510.810 120.564 690.903 390.854 330.729 18
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 440.884 160.754 550.795 430.647 520.818 560.422 760.802 450.612 390.604 410.945 620.462 590.189 850.563 660.853 330.726 290.765 440.632 370.904 370.821 510.606 63
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 450.704 790.741 660.754 580.656 470.829 410.501 360.741 620.609 420.548 570.950 480.522 380.371 40.633 460.756 520.715 370.771 400.623 420.861 760.814 540.658 45
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 460.866 190.748 590.819 270.645 540.794 710.450 620.802 450.587 530.604 410.945 620.464 580.201 800.554 690.840 380.723 320.732 630.602 520.907 350.822 500.603 66
KP-FCNN0.684 470.847 250.758 530.784 480.647 520.814 590.473 490.772 510.605 440.594 480.935 820.450 670.181 880.587 560.805 470.690 490.785 330.614 450.882 550.819 520.632 55
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
VACNN++0.684 470.728 730.757 540.776 510.690 370.804 660.464 550.816 380.577 590.587 500.945 620.508 430.276 450.671 360.710 620.663 590.750 570.589 590.881 560.832 440.653 47
DGNet0.684 470.712 780.784 380.782 500.658 460.835 360.499 400.823 370.641 280.597 460.950 480.487 490.281 410.575 610.619 770.647 670.764 450.620 440.871 710.846 390.688 37
PointContrast_LA_SEM0.683 500.757 590.784 380.786 460.639 560.824 470.408 790.775 500.604 450.541 590.934 860.532 340.269 520.552 700.777 500.645 700.793 270.640 340.913 340.824 470.671 41
Superpoint Network0.683 500.851 240.728 700.800 420.653 490.806 640.468 520.804 430.572 600.602 430.946 590.453 660.239 650.519 780.822 420.689 510.762 480.595 560.895 460.827 460.630 56
VI-PointConv0.676 520.770 540.754 550.783 490.621 600.814 590.552 130.758 550.571 620.557 550.954 340.529 350.268 540.530 760.682 680.675 540.719 660.603 510.888 510.833 420.665 43
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 530.789 410.748 590.763 560.635 580.814 590.407 810.747 590.581 570.573 520.950 480.484 500.271 500.607 530.754 530.649 640.774 370.596 540.883 540.823 480.606 63
SALANet0.670 540.816 350.770 460.768 530.652 500.807 630.451 590.747 590.659 230.545 580.924 920.473 550.149 1000.571 630.811 460.635 730.746 580.623 420.892 480.794 670.570 76
O3DSeg0.668 550.822 330.771 450.496 1040.651 510.833 380.541 180.761 540.555 680.611 360.966 130.489 480.370 50.388 980.580 800.776 130.751 550.570 640.956 60.817 530.646 50
PointConvpermissive0.666 560.781 450.759 510.699 690.644 550.822 490.475 480.779 490.564 650.504 750.953 380.428 760.203 790.586 580.754 530.661 600.753 540.588 600.902 400.813 560.642 51
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 560.703 800.781 400.751 600.655 480.830 400.471 500.769 520.474 890.537 610.951 440.475 540.279 430.635 440.698 670.675 540.751 550.553 750.816 870.806 580.703 33
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 580.746 630.708 730.722 620.638 570.820 520.451 590.566 950.599 480.541 590.950 480.510 420.313 250.648 410.819 440.616 780.682 810.590 580.869 720.810 570.656 46
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
MVF-GNN0.658 590.558 1010.751 570.655 840.690 370.722 930.453 580.867 170.579 580.576 510.893 1040.523 370.293 330.733 290.571 820.692 460.659 880.606 490.875 620.804 600.668 42
DCM-Net0.658 590.778 460.702 760.806 380.619 610.813 620.468 520.693 750.494 820.524 670.941 740.449 680.298 310.510 800.821 430.675 540.727 650.568 670.826 850.803 610.637 53
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 610.698 820.743 640.650 860.564 780.820 520.505 340.758 550.631 320.479 790.945 620.480 520.226 660.572 620.774 510.690 490.735 610.614 450.853 790.776 820.597 69
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 620.752 600.734 680.664 820.583 730.815 580.399 830.754 570.639 290.535 630.942 720.470 560.309 270.665 370.539 840.650 630.708 710.635 360.857 780.793 690.642 51
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 630.778 460.731 690.699 690.577 740.829 410.446 640.736 630.477 880.523 690.945 620.454 630.269 520.484 880.749 560.618 760.738 590.599 530.827 840.792 720.621 58
PointConv-SFPN0.641 640.776 480.703 750.721 630.557 810.826 440.451 590.672 800.563 660.483 780.943 710.425 790.162 950.644 420.726 580.659 610.709 700.572 630.875 620.786 770.559 82
MVPNetpermissive0.641 640.831 290.715 710.671 790.590 690.781 770.394 850.679 770.642 270.553 560.937 790.462 590.256 580.649 400.406 980.626 740.691 780.666 270.877 600.792 720.608 62
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 660.717 770.701 770.692 720.576 750.801 670.467 540.716 680.563 660.459 850.953 380.429 750.169 920.581 590.854 320.605 790.710 680.550 770.894 470.793 690.575 74
FPConvpermissive0.639 670.785 430.760 500.713 670.603 640.798 690.392 860.534 1000.603 460.524 670.948 540.457 610.250 600.538 740.723 600.598 830.696 760.614 450.872 680.799 620.567 79
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 680.797 390.769 470.641 920.590 690.820 520.461 560.537 990.637 300.536 620.947 560.388 890.206 760.656 380.668 710.647 670.732 630.585 610.868 730.793 690.473 102
PointSPNet0.637 690.734 690.692 840.714 660.576 750.797 700.446 640.743 610.598 490.437 900.942 720.403 850.150 990.626 480.800 490.649 640.697 750.557 730.846 810.777 810.563 80
SConv0.636 700.830 300.697 800.752 590.572 770.780 790.445 660.716 680.529 720.530 640.951 440.446 700.170 910.507 830.666 720.636 720.682 810.541 830.886 520.799 620.594 70
Supervoxel-CNN0.635 710.656 870.711 720.719 640.613 620.757 880.444 690.765 530.534 710.566 530.928 900.478 530.272 480.636 430.531 860.664 580.645 920.508 900.864 750.792 720.611 59
joint point-basedpermissive0.634 720.614 950.778 410.667 810.633 590.825 450.420 770.804 430.467 910.561 540.951 440.494 450.291 350.566 640.458 930.579 890.764 450.559 720.838 820.814 540.598 68
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 730.731 710.688 870.675 760.591 680.784 760.444 690.565 960.610 400.492 760.949 520.456 620.254 590.587 560.706 630.599 820.665 870.612 480.868 730.791 750.579 73
3DSM_DMMF0.631 740.626 920.745 620.801 410.607 630.751 890.506 330.729 660.565 640.491 770.866 1070.434 710.197 830.595 540.630 760.709 390.705 730.560 700.875 620.740 920.491 97
PointNet2-SFPN0.631 740.771 520.692 840.672 770.524 860.837 330.440 710.706 730.538 700.446 870.944 680.421 810.219 710.552 700.751 550.591 850.737 600.543 820.901 420.768 840.557 83
APCF-Net0.631 740.742 660.687 890.672 770.557 810.792 740.408 790.665 810.545 690.508 720.952 420.428 760.186 860.634 450.702 650.620 750.706 720.555 740.873 660.798 640.581 72
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
FusionAwareConv0.630 770.604 970.741 660.766 550.590 690.747 900.501 360.734 640.503 810.527 650.919 960.454 630.323 220.550 720.420 970.678 530.688 790.544 800.896 450.795 660.627 57
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 780.800 380.625 1000.719 640.545 830.806 640.445 660.597 890.448 960.519 700.938 780.481 510.328 200.489 870.499 910.657 620.759 500.592 570.881 560.797 650.634 54
SegGroup_sempermissive0.627 790.818 340.747 610.701 680.602 650.764 850.385 900.629 860.490 840.508 720.931 890.409 840.201 800.564 650.725 590.618 760.692 770.539 840.873 660.794 670.548 86
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 800.830 300.694 820.757 570.563 790.772 830.448 630.647 840.520 750.509 710.949 520.431 740.191 840.496 850.614 780.647 670.672 850.535 860.876 610.783 780.571 75
dtc_net0.625 800.703 800.751 570.794 440.535 840.848 230.480 470.676 790.528 730.469 820.944 680.454 630.004 1130.464 900.636 750.704 420.758 510.548 790.924 260.787 760.492 96
HPEIN0.618 820.729 720.668 900.647 880.597 670.766 840.414 780.680 760.520 750.525 660.946 590.432 720.215 730.493 860.599 790.638 710.617 970.570 640.897 440.806 580.605 65
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 830.858 230.772 430.489 1050.532 850.792 740.404 820.643 850.570 630.507 740.935 820.414 830.046 1100.510 800.702 650.602 810.705 730.549 780.859 770.773 830.534 89
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 840.760 570.667 910.649 870.521 870.793 720.457 570.648 830.528 730.434 920.947 560.401 860.153 980.454 910.721 610.648 660.717 670.536 850.904 370.765 850.485 98
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 850.634 910.743 640.697 710.601 660.781 770.437 730.585 920.493 830.446 870.933 870.394 870.011 1120.654 390.661 740.603 800.733 620.526 870.832 830.761 870.480 99
LAP-D0.594 860.720 750.692 840.637 930.456 970.773 820.391 880.730 650.587 530.445 890.940 760.381 900.288 360.434 940.453 950.591 850.649 900.581 620.777 910.749 910.610 61
DPC0.592 870.720 750.700 780.602 970.480 930.762 870.380 910.713 710.585 560.437 900.940 760.369 920.288 360.434 940.509 900.590 870.639 950.567 680.772 930.755 890.592 71
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 880.766 560.659 950.683 740.470 960.740 920.387 890.620 880.490 840.476 800.922 940.355 950.245 630.511 790.511 890.571 900.643 930.493 940.872 680.762 860.600 67
ROSMRF0.580 890.772 510.707 740.681 750.563 790.764 850.362 930.515 1010.465 920.465 840.936 810.427 780.207 750.438 920.577 810.536 930.675 840.486 950.723 990.779 790.524 92
SD-DETR0.576 900.746 630.609 1040.445 1090.517 880.643 1040.366 920.714 700.456 940.468 830.870 1060.432 720.264 550.558 680.674 690.586 880.688 790.482 960.739 970.733 940.537 88
SQN_0.1%0.569 910.676 840.696 810.657 830.497 890.779 800.424 750.548 970.515 770.376 970.902 1030.422 800.357 80.379 990.456 940.596 840.659 880.544 800.685 1020.665 1050.556 84
TextureNetpermissive0.566 920.672 860.664 920.671 790.494 910.719 940.445 660.678 780.411 1020.396 950.935 820.356 940.225 680.412 960.535 850.565 910.636 960.464 980.794 900.680 1020.568 78
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 930.648 880.700 780.770 520.586 720.687 980.333 970.650 820.514 780.475 810.906 1000.359 930.223 700.340 1010.442 960.422 1040.668 860.501 910.708 1000.779 790.534 89
Pointnet++ & Featurepermissive0.557 940.735 680.661 940.686 730.491 920.744 910.392 860.539 980.451 950.375 980.946 590.376 910.205 770.403 970.356 1010.553 920.643 930.497 920.824 860.756 880.515 93
GMLPs0.538 950.495 1060.693 830.647 880.471 950.793 720.300 1000.477 1020.505 800.358 1000.903 1020.327 980.081 1070.472 890.529 870.448 1020.710 680.509 880.746 950.737 930.554 85
PanopticFusion-label0.529 960.491 1070.688 870.604 960.386 1020.632 1050.225 1100.705 740.434 990.293 1060.815 1080.348 960.241 640.499 840.669 700.507 950.649 900.442 1040.796 890.602 1090.561 81
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 970.676 840.591 1070.609 940.442 980.774 810.335 960.597 890.422 1010.357 1010.932 880.341 970.094 1060.298 1030.528 880.473 1000.676 830.495 930.602 1080.721 970.349 109
Online SegFusion0.515 980.607 960.644 980.579 990.434 990.630 1060.353 940.628 870.440 970.410 930.762 1120.307 1000.167 930.520 770.403 990.516 940.565 1000.447 1020.678 1030.701 990.514 94
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 990.558 1010.608 1050.424 1110.478 940.690 970.246 1060.586 910.468 900.450 860.911 980.394 870.160 960.438 920.212 1080.432 1030.541 1060.475 970.742 960.727 950.477 100
PCNN0.498 1000.559 1000.644 980.560 1010.420 1010.711 960.229 1080.414 1030.436 980.352 1020.941 740.324 990.155 970.238 1080.387 1000.493 960.529 1070.509 880.813 880.751 900.504 95
Weakly-Openseg v30.489 1010.749 620.664 920.646 900.496 900.559 1100.122 1130.577 930.257 1130.364 990.805 1090.198 1110.096 1050.510 800.496 920.361 1080.563 1010.359 1110.777 910.644 1060.532 91
3DMV0.484 1020.484 1080.538 1090.643 910.424 1000.606 1090.310 980.574 940.433 1000.378 960.796 1100.301 1010.214 740.537 750.208 1090.472 1010.507 1100.413 1070.693 1010.602 1090.539 87
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1030.577 990.611 1030.356 1130.321 1100.715 950.299 1020.376 1070.328 1090.319 1040.944 680.285 1030.164 940.216 1110.229 1060.484 980.545 1050.456 1000.755 940.709 980.475 101
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1040.679 830.604 1060.578 1000.380 1030.682 990.291 1030.106 1130.483 870.258 1110.920 950.258 1070.025 1110.231 1100.325 1020.480 990.560 1030.463 990.725 980.666 1040.231 113
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1050.474 1090.623 1010.463 1070.366 1050.651 1020.310 980.389 1060.349 1070.330 1030.937 790.271 1050.126 1020.285 1040.224 1070.350 1100.577 990.445 1030.625 1060.723 960.394 105
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1060.548 1030.548 1080.597 980.363 1060.628 1070.300 1000.292 1080.374 1040.307 1050.881 1050.268 1060.186 860.238 1080.204 1100.407 1050.506 1110.449 1010.667 1040.620 1080.462 103
SurfaceConvPF0.442 1060.505 1050.622 1020.380 1120.342 1080.654 1010.227 1090.397 1050.367 1050.276 1080.924 920.240 1080.198 820.359 1000.262 1040.366 1060.581 980.435 1050.640 1050.668 1030.398 104
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1080.437 1110.646 970.474 1060.369 1040.645 1030.353 940.258 1100.282 1110.279 1070.918 970.298 1020.147 1010.283 1050.294 1030.487 970.562 1020.427 1060.619 1070.633 1070.352 108
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1090.525 1040.647 960.522 1020.324 1090.488 1130.077 1140.712 720.353 1060.401 940.636 1140.281 1040.176 890.340 1010.565 830.175 1140.551 1040.398 1080.370 1140.602 1090.361 107
SPLAT Netcopyleft0.393 1100.472 1100.511 1100.606 950.311 1110.656 1000.245 1070.405 1040.328 1090.197 1120.927 910.227 1100.000 1150.001 1150.249 1050.271 1130.510 1080.383 1100.593 1090.699 1000.267 111
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1110.297 1130.491 1110.432 1100.358 1070.612 1080.274 1040.116 1120.411 1020.265 1090.904 1010.229 1090.079 1080.250 1060.185 1110.320 1110.510 1080.385 1090.548 1100.597 1120.394 105
PointNet++permissive0.339 1120.584 980.478 1120.458 1080.256 1130.360 1140.250 1050.247 1110.278 1120.261 1100.677 1130.183 1120.117 1030.212 1120.145 1130.364 1070.346 1140.232 1140.548 1100.523 1130.252 112
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
SSC-UNetpermissive0.308 1130.353 1120.290 1140.278 1140.166 1140.553 1110.169 1120.286 1090.147 1140.148 1140.908 990.182 1130.064 1090.023 1140.018 1150.354 1090.363 1120.345 1120.546 1120.685 1010.278 110
ScanNetpermissive0.306 1140.203 1140.366 1130.501 1030.311 1110.524 1120.211 1110.002 1150.342 1080.189 1130.786 1110.145 1140.102 1040.245 1070.152 1120.318 1120.348 1130.300 1130.460 1130.437 1140.182 114
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1150.000 1150.041 1150.172 1150.030 1150.062 1150.001 1150.035 1140.004 1150.051 1150.143 1150.019 1150.003 1140.041 1130.050 1140.003 1150.054 1150.018 1150.005 1150.264 1150.082 115


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OneFormer3Dcopyleft0.896 11.000 11.000 10.913 50.858 50.951 50.786 110.837 160.916 100.908 10.778 50.803 50.750 111.000 10.976 40.926 40.882 50.995 430.849 1
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
MG-Former0.887 21.000 10.991 100.837 220.801 180.935 140.887 20.857 90.946 30.891 60.748 130.805 40.739 131.000 10.993 30.809 530.876 121.000 10.842 2
UniPerception0.884 31.000 10.979 160.872 150.869 20.892 230.806 80.890 50.835 260.892 50.755 110.811 10.779 80.955 430.951 50.876 210.914 10.997 360.840 3
InsSSM0.883 41.000 10.996 30.800 350.865 30.960 20.808 70.852 130.940 50.899 30.785 30.810 20.700 171.000 10.912 160.851 380.895 20.997 360.827 5
SIM3D0.880 51.000 10.969 220.841 210.808 160.952 40.816 50.775 290.901 120.896 40.767 60.807 30.837 11.000 10.930 130.879 190.856 171.000 10.810 11
TST3D0.879 61.000 10.994 50.921 40.807 170.939 110.771 120.887 60.923 80.862 120.722 170.768 100.756 101.000 10.910 250.904 60.836 210.999 350.824 7
TD3Dpermissive0.875 71.000 10.976 190.877 120.783 250.970 10.889 10.828 170.945 40.803 180.713 190.720 190.709 151.000 10.936 110.934 30.873 131.000 10.791 15
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
Spherical Mask(CtoF)0.875 71.000 10.991 110.873 140.850 60.946 70.691 220.752 320.926 60.889 80.759 90.794 70.820 31.000 10.912 160.900 90.878 91.000 10.769 18
Queryformer0.874 91.000 10.978 180.809 330.876 10.936 130.702 190.716 370.920 90.875 110.766 70.772 90.818 51.000 10.995 20.916 50.892 31.000 10.767 19
SoftGroup++0.874 91.000 10.972 200.947 10.839 90.898 220.556 360.913 20.881 170.756 200.828 20.748 140.821 21.000 10.937 100.937 10.887 41.000 10.821 8
Mask3D0.870 111.000 10.985 130.782 420.818 140.938 120.760 130.749 330.923 70.877 100.760 80.785 80.820 31.000 10.912 160.864 320.878 90.983 490.825 6
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
ExtMask3D0.867 121.000 11.000 10.756 490.816 150.940 100.795 90.760 310.862 200.888 90.739 140.763 110.774 91.000 10.929 140.878 200.879 71.000 10.819 10
SoftGrouppermissive0.865 131.000 10.969 210.860 170.860 40.913 180.558 330.899 30.911 110.760 190.828 10.736 160.802 70.981 400.919 150.875 220.877 111.000 10.820 9
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
MAFT0.860 141.000 10.990 120.810 320.829 100.949 60.809 60.688 430.836 250.904 20.751 120.796 60.741 121.000 10.864 350.848 400.837 191.000 10.828 4
EV3D0.852 151.000 10.963 270.893 70.790 230.940 90.707 180.818 210.865 190.839 130.676 260.700 200.689 221.000 11.000 10.901 80.747 351.000 10.799 13
IPCA-Inst0.851 161.000 10.968 230.884 110.842 80.862 350.693 210.812 230.888 160.677 320.783 40.698 210.807 61.000 10.911 220.865 310.865 151.000 10.757 22
SPFormerpermissive0.851 161.000 10.994 60.806 340.774 270.942 80.637 250.849 140.859 220.889 70.720 180.730 170.665 231.000 10.911 220.868 300.873 141.000 10.796 14
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
Mask3D_evaluation0.843 181.000 10.955 290.847 190.795 200.932 150.750 150.780 280.891 140.818 150.737 150.633 300.703 161.000 10.902 270.870 260.820 220.941 570.805 12
SphereSeg0.835 191.000 10.963 260.891 90.794 210.954 30.822 40.710 380.961 20.721 240.693 250.530 430.653 251.000 10.867 340.857 350.859 160.991 460.771 17
ISBNetpermissive0.835 191.000 10.950 300.731 510.819 120.918 160.790 100.740 340.851 240.831 140.661 280.742 150.650 261.000 10.937 90.814 520.836 201.000 10.765 20
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
GraphCut0.832 211.000 10.922 440.724 530.798 190.902 210.701 200.856 110.859 210.715 250.706 200.748 130.640 371.000 10.934 120.862 330.880 61.000 10.729 25
TopoSeg0.832 211.000 10.981 150.933 20.819 130.826 440.524 420.841 150.811 300.681 310.759 100.687 220.727 140.981 400.911 220.883 150.853 181.000 10.756 23
PBNetpermissive0.825 231.000 10.963 250.837 240.843 70.865 300.822 30.647 460.878 180.733 220.639 350.683 230.650 261.000 10.853 360.870 270.820 231.000 10.744 24
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
SSEC0.820 241.000 10.983 140.924 30.826 110.817 470.415 510.899 40.793 340.673 330.731 160.636 280.653 241.000 10.939 80.804 550.878 81.000 10.780 16
DKNet0.815 251.000 10.930 360.844 200.765 310.915 170.534 400.805 250.805 320.807 170.654 290.763 120.650 261.000 10.794 480.881 160.766 271.000 10.758 21
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
RPGN0.806 261.000 10.992 80.789 370.723 440.891 240.650 240.810 240.832 270.665 350.699 230.658 240.700 171.000 10.881 290.832 440.774 250.997 360.613 45
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
Box2Mask0.803 271.000 10.962 280.874 130.707 480.887 270.686 230.598 510.961 10.715 260.694 240.469 480.700 171.000 10.912 160.902 70.753 320.997 360.637 39
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
HAISpermissive0.803 271.000 10.994 60.820 280.759 320.855 360.554 370.882 70.827 290.615 410.676 270.638 270.646 351.000 10.912 160.797 580.767 260.994 440.726 26
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
Mask-Group0.792 291.000 10.968 240.812 290.766 300.864 310.460 450.815 220.888 150.598 450.651 320.639 260.600 430.918 460.941 60.896 110.721 401.000 10.723 27
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
CSC-Pretrained0.791 301.000 10.996 30.829 270.767 290.889 260.600 280.819 200.770 390.594 460.620 390.541 400.700 171.000 10.941 60.889 130.763 281.000 10.526 55
SSTNetpermissive0.789 311.000 10.840 580.888 100.717 450.835 400.717 170.684 440.627 540.724 230.652 310.727 180.600 431.000 10.912 160.822 470.757 311.000 10.691 33
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
GICN0.788 321.000 10.978 170.867 160.781 260.833 410.527 410.824 180.806 310.549 540.596 420.551 360.700 171.000 10.853 360.935 20.733 371.000 10.651 36
DENet0.786 331.000 10.929 370.736 500.750 380.720 600.755 140.934 10.794 330.590 470.561 480.537 410.650 261.000 10.882 280.804 560.789 241.000 10.719 28
DANCENET0.786 331.000 10.936 330.783 400.737 410.852 380.742 160.647 460.765 410.811 160.624 380.579 330.632 401.000 10.909 260.898 100.696 450.944 530.601 48
DualGroup0.782 351.000 10.927 380.811 300.772 280.853 370.631 270.805 250.773 360.613 420.611 400.610 310.650 260.835 570.881 290.879 180.750 341.000 10.675 34
PointGroup0.778 361.000 10.900 480.798 360.715 460.863 320.493 430.706 390.895 130.569 520.701 210.576 340.639 381.000 10.880 310.851 370.719 410.997 360.709 30
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
PE0.776 371.000 10.900 490.860 170.728 430.869 280.400 520.857 100.774 350.568 530.701 220.602 320.646 350.933 450.843 390.890 120.691 490.997 360.709 29
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
AOIA0.767 381.000 10.937 320.810 310.740 400.906 190.550 380.800 270.706 460.577 510.624 370.544 390.596 480.857 490.879 330.880 170.750 330.992 450.658 35
DD-UNet+Group0.764 391.000 10.897 510.837 230.753 350.830 430.459 470.824 180.699 480.629 390.653 300.438 510.650 261.000 10.880 310.858 340.690 501.000 10.650 37
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
INS-Conv-instance0.762 401.000 10.923 410.765 450.785 240.905 200.600 280.655 450.646 530.683 300.647 330.530 420.650 261.000 10.824 410.830 450.693 480.944 530.644 38
Dyco3Dcopyleft0.761 411.000 10.935 340.893 70.752 370.863 330.600 280.588 520.742 430.641 370.633 360.546 380.550 500.857 490.789 500.853 360.762 290.987 470.699 31
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
OccuSeg+instance0.742 421.000 10.923 410.785 380.745 390.867 290.557 340.578 550.729 440.670 340.644 340.488 460.577 491.000 10.794 480.830 450.620 581.000 10.550 51
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
RWSeg0.739 431.000 10.899 500.759 470.753 360.823 450.282 570.691 420.658 510.582 500.594 430.547 370.628 411.000 10.795 470.868 290.728 391.000 10.692 32
3D-MPA0.737 441.000 10.933 350.785 380.794 220.831 420.279 590.588 520.695 490.616 400.559 490.556 350.650 261.000 10.809 450.875 230.696 461.000 10.608 47
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
MTML0.731 451.000 10.992 80.779 440.609 570.746 550.308 560.867 80.601 570.607 430.539 520.519 440.550 501.000 10.824 410.869 280.729 381.000 10.616 43
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
OSIS0.725 461.000 10.885 540.653 590.657 540.801 480.576 320.695 410.828 280.698 280.534 530.457 500.500 570.857 490.831 400.841 420.627 561.000 10.619 42
SSEN0.724 471.000 10.926 390.781 430.661 520.845 390.596 310.529 580.764 420.653 360.489 590.461 490.500 570.859 480.765 510.872 250.761 301.000 10.577 49
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
NeuralBF0.718 481.000 10.945 310.901 60.754 340.817 460.460 450.700 400.772 370.688 290.568 470.000 700.500 570.981 400.606 610.872 240.740 361.000 10.614 44
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
Sparse R-CNN0.714 491.000 10.926 400.694 540.699 500.890 250.636 260.516 590.693 500.743 210.588 440.369 550.601 420.594 630.800 460.886 140.676 510.986 480.546 52
SALoss-ResNet0.695 501.000 10.855 560.579 640.589 590.735 580.484 440.588 520.856 230.634 380.571 460.298 560.500 571.000 10.824 410.818 480.702 440.935 600.545 53
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
PanopticFusion-inst0.693 511.000 10.852 570.655 580.616 560.788 500.334 540.763 300.771 380.457 640.555 500.652 250.518 540.857 490.765 510.732 640.631 540.944 530.577 50
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
Occipital-SCS0.688 521.000 10.913 450.730 520.737 420.743 570.442 480.855 120.655 520.546 550.546 510.263 580.508 560.889 470.568 620.771 610.705 430.889 630.625 41
3D-BoNet0.687 531.000 10.887 530.836 250.587 600.643 670.550 380.620 480.724 450.522 590.501 570.243 590.512 551.000 10.751 530.807 540.661 530.909 620.612 46
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
ClickSeg_Instance0.685 541.000 10.818 600.600 620.715 470.795 490.557 340.533 570.591 590.601 440.519 550.429 530.638 390.938 440.706 560.817 500.624 570.944 530.502 57
PCJC0.684 551.000 10.895 520.757 480.659 530.862 340.189 660.739 350.606 560.712 270.581 450.515 450.650 260.857 490.357 670.785 590.631 550.889 630.635 40
SPG_WSIS0.678 561.000 10.880 550.836 250.701 490.727 590.273 610.607 500.706 470.541 570.515 560.174 620.600 430.857 490.716 550.846 410.711 421.000 10.506 56
One_Thing_One_Clickpermissive0.675 571.000 10.823 590.782 410.621 550.766 520.211 630.736 360.560 610.586 480.522 540.636 290.453 610.641 610.853 360.850 390.694 470.997 360.411 62
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
SegGroup_inspermissive0.637 581.000 10.923 430.593 630.561 610.746 560.143 680.504 600.766 400.485 620.442 600.372 540.530 530.714 580.815 440.775 600.673 521.000 10.431 61
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
MASCpermissive0.615 590.711 660.802 610.540 650.757 330.777 510.029 690.577 560.588 600.521 600.600 410.436 520.534 52