Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail ioualarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefloorfolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwallwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
BFANet ScanNet200permissive0.360 20.553 40.293 20.193 20.483 60.096 30.266 40.000 10.000 30.000 10.298 100.255 90.661 10.810 50.810 20.194 60.785 20.000 30.000 120.161 30.000 60.494 50.382 10.574 20.258 30.000 50.372 60.000 10.000 30.043 90.436 50.000 60.000 10.239 10.000 20.901 20.105 10.689 20.025 20.128 20.614 10.436 10.493 120.000 10.000 20.526 40.546 80.109 30.651 100.953 20.753 40.101 50.143 80.897 20.000 10.431 10.469 100.000 70.522 50.337 30.661 40.459 20.409 20.666 30.102 90.508 40.757 20.000 40.060 90.970 20.497 10.000 10.376 20.511 20.262 40.688 10.921 10.617 50.321 90.590 30.491 50.556 30.000 30.000 10.481 30.093 10.043 20.284 10.000 30.875 100.135 50.669 30.124 80.394 40.849 90.298 20.000 10.476 120.088 100.042 50.000 40.000 10.254 10.653 60.741 30.215 10.573 30.852 40.266 50.654 10.056 90.835 10.000 30.492 10.000 10.000 40.000 20.612 60.000 10.000 50.000 10.616 30.469 120.460 30.698 90.516 20.000 10.378 50.563 20.476 20.863 30.574 60.330 40.000 70.282 30.000 10.760 20.710 20.233 10.000 70.641 20.814 10.000 10.585 70.053 80.000 50.000 10.629 70.000 20.000 10.678 10.528 80.534 20.129 90.596 10.973 20.264 70.772 10.526 50.139 90.707 20.000 10.000 80.764 90.591 110.848 60.000 10.827 20.338 30.806 90.000 10.568 50.151 50.358 10.659 70.510 3
PonderV2 ScanNet2000.346 30.552 50.270 50.175 40.497 50.070 90.239 50.000 10.000 30.000 10.232 120.412 50.584 20.842 30.804 40.212 50.540 50.000 30.433 110.106 70.000 60.590 30.290 70.548 30.243 50.000 50.356 80.000 10.000 30.062 70.398 80.441 50.000 10.104 70.000 20.888 30.076 90.682 50.030 10.094 50.491 70.351 80.869 70.000 10.063 10.403 70.700 20.000 80.660 90.881 40.761 10.050 70.186 50.852 80.000 10.007 60.570 50.100 20.565 20.326 40.641 70.431 40.290 90.621 40.259 20.408 60.622 70.125 10.082 70.950 30.179 40.000 10.263 30.424 30.193 60.558 40.880 20.545 80.375 40.727 20.445 70.499 70.000 30.000 10.475 50.002 50.034 50.083 50.000 30.924 10.290 30.636 40.115 90.400 30.874 30.186 50.000 10.611 50.128 20.113 20.000 40.000 10.000 60.584 70.636 60.103 90.385 60.843 50.283 20.603 40.080 50.825 50.000 30.377 70.000 10.000 40.000 20.457 80.000 10.000 50.000 10.574 90.608 60.481 20.792 30.394 30.000 10.357 70.503 80.261 70.817 80.504 90.304 50.472 30.115 60.000 10.750 40.677 40.202 20.000 70.509 40.729 20.000 10.519 90.000 110.000 50.000 10.620 90.000 20.000 10.660 40.560 40.486 30.384 60.346 50.952 30.247 90.667 30.436 70.269 30.691 40.000 10.010 30.787 50.889 20.880 40.000 10.810 50.336 40.860 60.000 10.606 40.009 60.248 60.681 40.392 7
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
PTv3 ScanNet2000.393 10.592 10.330 10.216 10.520 10.109 20.108 110.000 10.337 10.000 10.310 90.394 60.494 90.753 80.848 10.256 20.717 30.000 30.842 10.192 20.065 20.449 60.346 20.546 40.190 80.000 50.384 40.000 10.000 30.218 10.505 10.791 10.000 10.136 20.000 20.903 10.073 100.687 40.000 50.168 10.551 30.387 60.941 10.000 10.000 20.397 80.654 30.000 80.714 30.759 100.752 50.118 40.264 20.926 10.000 10.048 30.575 20.000 70.597 10.366 10.755 10.469 10.474 10.798 10.140 60.617 10.692 40.000 40.592 20.971 10.188 30.000 10.133 50.593 10.349 10.650 20.717 50.699 10.455 10.790 10.523 30.636 10.301 10.000 10.622 20.000 70.017 100.259 20.000 30.921 20.337 10.733 10.210 10.514 10.860 60.407 10.000 10.688 10.109 60.000 100.000 40.000 10.151 20.671 40.782 10.115 80.641 10.903 10.349 10.616 20.088 40.832 30.000 30.480 20.000 10.428 10.000 20.497 70.000 10.000 50.000 10.662 20.690 10.612 10.828 10.575 10.000 10.404 40.644 10.325 40.887 20.728 10.009 110.134 50.026 120.000 10.761 10.731 10.172 40.077 20.528 30.727 30.000 10.603 40.220 20.022 20.000 10.740 10.000 20.000 10.661 20.586 10.566 10.436 40.531 20.978 10.457 10.708 20.583 30.141 70.748 10.000 10.026 10.822 10.871 30.879 50.000 10.851 10.405 20.914 10.000 10.682 20.000 100.281 20.738 10.463 5
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
L3DETR-ScanNet_2000.336 50.533 80.279 30.155 50.508 30.073 80.101 120.000 10.058 20.000 10.294 110.233 110.548 30.927 10.788 60.264 10.463 60.000 30.638 70.098 100.014 40.411 80.226 80.525 80.225 70.010 30.397 30.000 10.000 30.192 30.380 90.598 30.000 10.117 30.000 20.883 40.082 70.689 20.000 50.032 120.549 40.417 40.910 30.000 10.000 20.448 60.613 60.000 80.697 50.960 10.759 20.158 20.293 10.883 40.000 10.312 20.583 10.079 40.422 90.068 120.660 50.418 50.298 70.430 90.114 70.526 30.776 10.051 20.679 10.946 40.152 60.000 10.183 40.000 100.211 50.511 70.409 110.565 70.355 50.448 50.512 40.557 20.000 30.000 10.420 60.000 70.007 120.104 30.000 30.125 120.330 20.514 100.146 70.321 80.860 60.174 60.000 10.629 30.075 110.000 100.000 40.000 10.002 50.671 40.712 40.141 40.339 70.856 30.261 70.529 70.067 70.835 10.000 30.369 90.000 10.259 20.000 20.629 30.000 10.487 10.000 10.579 80.646 20.107 120.720 80.122 50.000 10.333 90.505 70.303 60.908 10.503 100.565 10.074 60.324 10.000 10.740 50.661 60.109 90.000 70.427 80.563 120.000 10.579 80.108 50.000 50.000 10.664 30.000 20.000 10.641 50.539 60.416 40.515 20.256 60.940 80.312 30.209 120.620 10.138 100.636 80.000 10.000 80.775 80.861 40.765 80.000 10.801 70.119 100.860 60.000 10.687 10.001 90.192 110.679 60.699 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
OA-CNN-L_ScanNet2000.333 60.558 20.269 60.124 80.448 100.080 60.272 30.000 10.000 30.000 10.342 50.515 20.524 50.713 120.789 50.158 80.384 70.000 30.806 30.125 40.000 60.496 40.332 40.498 110.227 60.024 20.474 10.000 10.003 20.071 60.487 20.000 60.000 10.110 50.000 20.876 50.013 120.703 10.000 50.076 70.473 80.355 70.906 40.000 10.000 20.476 50.706 10.000 80.672 80.835 80.748 60.015 110.223 40.860 60.000 10.000 80.572 40.000 70.509 60.313 50.662 20.398 90.396 30.411 100.276 10.527 20.711 30.000 40.076 80.946 40.166 50.000 10.022 60.160 40.183 80.493 80.699 60.637 30.403 30.330 90.406 80.526 50.024 20.000 10.392 80.000 70.016 110.000 70.196 20.915 40.112 70.557 60.197 20.352 70.877 20.000 70.000 10.592 90.103 80.000 100.067 10.000 10.089 30.735 30.625 70.130 70.568 40.836 60.271 30.534 60.043 100.799 60.001 20.445 30.000 10.000 40.024 10.661 20.000 10.262 20.000 10.591 50.517 100.373 60.788 50.021 60.000 10.455 10.517 60.320 50.823 70.200 120.001 120.150 40.100 70.000 10.736 60.668 50.103 100.052 40.662 10.720 40.000 10.602 50.112 40.002 40.000 10.637 60.000 20.000 10.621 70.569 20.398 60.412 50.234 70.949 40.363 20.492 100.495 60.251 40.665 60.000 10.001 70.805 30.833 50.794 70.000 10.821 30.314 50.843 80.000 10.560 60.245 20.262 40.713 20.370 9
PPT-SpUNet-F.T.0.332 70.556 30.270 40.123 90.519 20.091 40.349 20.000 10.000 30.000 10.339 60.383 70.498 80.833 40.807 30.241 30.584 40.000 30.755 40.124 50.000 60.608 20.330 50.530 70.314 10.000 50.374 50.000 10.000 30.197 20.459 40.000 60.000 10.117 30.000 20.876 50.095 20.682 50.000 50.086 60.518 50.433 20.930 20.000 10.000 20.563 30.542 90.077 50.715 20.858 60.756 30.008 120.171 70.874 50.000 10.039 40.550 60.000 70.545 40.256 60.657 60.453 30.351 50.449 80.213 30.392 70.611 80.000 40.037 100.946 40.138 90.000 10.000 80.063 60.308 20.537 50.796 30.673 20.323 80.392 70.400 90.509 60.000 30.000 10.649 10.000 70.023 70.000 70.000 30.914 50.002 110.506 110.163 60.359 60.872 40.000 70.000 10.623 40.112 40.001 90.000 40.000 10.021 40.753 10.565 110.150 20.579 20.806 80.267 40.616 20.042 110.783 80.000 30.374 80.000 10.000 40.000 20.620 50.000 10.000 50.000 10.572 100.634 30.350 70.792 30.000 70.000 10.376 60.535 40.378 30.855 40.672 20.074 80.000 70.185 50.000 10.727 70.660 70.076 120.000 70.432 70.646 60.000 10.594 60.006 100.000 50.000 10.658 40.000 20.000 10.661 20.549 50.300 90.291 80.045 90.942 70.304 40.600 60.572 40.135 110.695 30.000 10.008 50.793 40.942 10.899 20.000 10.816 40.181 70.897 20.000 10.679 30.223 30.264 30.691 30.345 10
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormer ScanNet200permissive0.326 80.539 70.265 70.131 70.499 40.110 10.522 10.000 10.000 30.000 10.318 80.427 40.455 100.743 100.765 80.175 70.842 10.000 30.828 20.204 10.033 30.429 70.335 30.601 10.312 20.000 50.357 70.000 10.000 30.047 80.423 60.000 60.000 10.105 60.000 20.873 70.079 80.670 80.000 50.117 30.471 90.432 30.829 80.000 10.000 20.584 20.417 120.089 40.684 70.837 70.705 110.021 100.178 60.892 30.000 10.028 50.505 80.000 70.457 70.200 90.662 20.412 70.244 100.496 60.000 120.451 50.626 60.000 40.102 60.943 70.138 90.000 10.000 80.149 50.291 30.534 60.722 40.632 40.331 70.253 110.453 60.487 80.000 30.000 10.479 40.000 70.022 80.000 70.000 30.900 60.128 60.684 20.164 50.413 20.854 80.000 70.000 10.512 110.074 120.003 80.000 40.000 10.000 60.469 100.613 80.132 60.529 50.871 20.227 110.582 50.026 120.787 70.000 30.339 100.000 10.000 40.000 20.626 40.000 10.029 40.000 10.587 60.612 50.411 50.724 70.000 70.000 10.407 30.552 30.513 10.849 50.655 30.408 20.000 70.296 20.000 10.686 100.645 90.145 60.022 50.414 90.633 70.000 10.637 10.224 10.000 50.000 10.650 50.000 20.000 10.622 60.535 70.343 70.483 30.230 80.943 60.289 50.618 50.596 20.140 80.679 50.000 10.022 20.783 60.620 90.906 10.000 10.806 60.137 90.865 30.000 10.378 80.000 100.168 120.680 50.227 11
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CeCo0.340 40.551 60.247 80.181 30.475 80.057 120.142 90.000 10.000 30.000 10.387 30.463 30.499 70.924 20.774 70.213 40.257 80.000 30.546 100.100 80.006 50.615 10.177 120.534 50.246 40.000 50.400 20.000 10.338 10.006 110.484 30.609 20.000 10.083 80.000 20.873 70.089 50.661 90.000 50.048 110.560 20.408 50.892 50.000 10.000 20.586 10.616 50.000 80.692 60.900 30.721 70.162 10.228 30.860 60.000 10.000 80.575 20.083 30.550 30.347 20.624 80.410 80.360 40.740 20.109 80.321 100.660 50.000 40.121 40.939 80.143 70.000 10.400 10.003 80.190 70.564 30.652 70.615 60.421 20.304 100.579 10.547 40.000 30.000 10.296 90.000 70.030 60.096 40.000 30.916 30.037 80.551 70.171 40.376 50.865 50.286 30.000 10.633 20.102 90.027 60.011 30.000 10.000 60.474 90.742 20.133 50.311 80.824 70.242 80.503 90.068 60.828 40.000 30.429 40.000 10.063 30.000 20.781 10.000 10.000 50.000 10.665 10.633 40.450 40.818 20.000 70.000 10.429 20.532 50.226 80.825 60.510 80.377 30.709 10.079 90.000 10.753 30.683 30.102 110.063 30.401 110.620 90.000 10.619 20.000 110.000 50.000 10.595 100.000 20.000 10.345 90.564 30.411 50.603 10.384 40.945 50.266 60.643 40.367 90.304 10.663 70.000 10.010 30.726 100.767 60.898 30.000 10.784 80.435 10.861 50.000 10.447 70.000 100.257 50.656 80.377 8
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
AWCS0.305 90.508 90.225 90.142 60.463 90.063 100.195 70.000 10.000 30.000 10.467 20.551 10.504 60.773 60.764 90.142 90.029 120.000 30.626 80.100 80.000 60.360 90.179 100.507 100.137 100.006 40.300 90.000 10.000 30.172 50.364 100.512 40.000 10.056 90.000 20.865 90.093 40.634 120.000 50.071 90.396 100.296 110.876 60.000 10.000 20.373 90.436 110.063 70.749 10.877 50.721 70.131 30.124 90.804 100.000 10.000 80.515 70.010 60.452 80.252 70.578 90.417 60.179 120.484 70.171 40.337 90.606 90.000 40.115 50.937 90.142 80.000 10.008 70.000 100.157 110.484 90.402 120.501 100.339 60.553 40.529 20.478 90.000 30.000 10.404 70.001 60.022 80.077 60.000 30.894 80.219 40.628 50.093 100.305 90.886 10.233 40.000 10.603 60.112 40.023 70.000 40.000 10.000 60.741 20.664 50.097 100.253 90.782 90.264 60.523 80.154 10.707 110.000 30.411 50.000 10.000 40.000 20.332 110.000 10.000 50.000 10.602 40.595 70.185 100.656 110.159 40.000 10.355 80.424 100.154 100.729 100.516 70.220 70.620 20.084 80.000 10.707 90.651 80.173 30.014 60.381 120.582 100.000 10.619 20.049 90.000 50.000 10.702 20.000 20.000 10.302 110.489 100.317 80.334 70.392 30.922 90.254 80.533 90.394 80.129 120.613 100.000 10.000 80.820 20.649 80.749 90.000 10.782 90.282 60.863 40.000 10.288 110.006 70.220 80.633 90.542 2
LGroundpermissive0.272 100.485 100.184 100.106 100.476 70.077 70.218 60.000 10.000 30.000 10.547 10.295 80.540 40.746 90.745 100.058 110.112 110.005 10.658 60.077 120.000 60.322 100.178 110.512 90.190 80.199 10.277 100.000 10.000 30.173 40.399 70.000 60.000 10.039 110.000 20.858 100.085 60.676 70.002 30.103 40.498 60.323 90.703 90.000 10.000 20.296 100.549 70.216 10.702 40.768 90.718 90.028 80.092 110.786 110.000 10.000 80.453 110.022 50.251 120.252 70.572 100.348 100.321 60.514 50.063 100.279 110.552 100.000 40.019 110.932 100.132 110.000 10.000 80.000 100.156 120.457 100.623 80.518 90.265 110.358 80.381 100.395 100.000 30.000 10.127 120.012 40.051 10.000 70.000 30.886 90.014 90.437 120.179 30.244 100.826 100.000 70.000 10.599 70.136 10.085 30.000 40.000 10.000 60.565 80.612 90.143 30.207 100.566 100.232 100.446 100.127 20.708 100.000 30.384 60.000 10.000 40.000 20.402 90.000 10.059 30.000 10.525 120.566 80.229 90.659 100.000 70.000 10.265 100.446 90.147 110.720 120.597 50.066 90.000 70.187 40.000 10.726 80.467 120.134 80.000 70.413 100.629 80.000 10.363 110.055 70.022 20.000 10.626 80.000 20.000 10.323 100.479 120.154 110.117 100.028 110.901 100.243 100.415 110.295 120.143 60.610 110.000 10.000 80.777 70.397 120.324 110.000 10.778 100.179 80.702 110.000 10.274 120.404 10.233 70.622 100.398 6
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
CSC-Pretrainpermissive0.249 120.455 120.171 110.079 120.418 110.059 110.186 80.000 10.000 30.000 10.335 70.250 100.316 110.766 70.697 120.142 90.170 90.003 20.553 90.112 60.097 10.201 120.186 90.476 120.081 110.000 50.216 120.000 10.000 30.001 120.314 120.000 60.000 10.055 100.000 20.832 120.094 30.659 100.002 30.076 70.310 120.293 120.664 110.000 10.000 20.175 120.634 40.130 20.552 120.686 120.700 120.076 60.110 100.770 120.000 10.000 80.430 120.000 70.319 100.166 100.542 120.327 110.205 110.332 110.052 110.375 80.444 120.000 40.012 120.930 120.203 20.000 10.000 80.046 70.175 90.413 110.592 90.471 110.299 100.152 120.340 110.247 120.000 30.000 10.225 100.058 30.037 30.000 70.207 10.862 110.014 90.548 80.033 110.233 110.816 110.000 70.000 10.542 100.123 30.121 10.019 20.000 10.000 60.463 110.454 120.045 120.128 120.557 110.235 90.441 110.063 80.484 120.000 30.308 120.000 10.000 40.000 20.318 120.000 10.000 50.000 10.545 110.543 90.164 110.734 60.000 70.000 10.215 120.371 110.198 90.743 90.205 110.062 100.000 70.079 90.000 10.683 110.547 110.142 70.000 70.441 60.579 110.000 10.464 100.098 60.041 10.000 10.590 110.000 20.000 10.373 80.494 90.174 100.105 110.001 120.895 110.222 110.537 80.307 110.180 50.625 90.000 10.000 80.591 120.609 100.398 100.000 10.766 120.014 120.638 120.000 10.377 90.004 80.206 100.609 120.465 4
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
Minkowski 34Dpermissive0.253 110.463 110.154 120.102 110.381 120.084 50.134 100.000 10.000 30.000 10.386 40.141 120.279 120.737 110.703 110.014 120.164 100.000 30.663 50.092 110.000 60.224 110.291 60.531 60.056 120.000 50.242 110.000 10.000 30.013 100.331 110.000 60.000 10.035 120.001 10.858 100.059 110.650 110.000 50.056 100.353 110.299 100.670 100.000 10.000 20.284 110.484 100.071 60.594 110.720 110.710 100.027 90.068 120.813 90.000 10.005 70.492 90.164 10.274 110.111 110.571 110.307 120.293 80.307 120.150 50.163 120.531 110.002 30.545 30.932 100.093 120.000 10.000 80.002 90.159 100.368 120.581 100.440 120.228 120.406 60.282 120.294 110.000 30.000 10.189 110.060 20.036 40.000 70.000 30.897 70.000 120.525 90.025 120.205 120.771 120.000 70.000 10.593 80.108 70.044 40.000 40.000 10.000 60.282 120.589 100.094 110.169 110.466 120.227 110.419 120.125 30.757 90.002 10.334 110.000 10.000 40.000 20.357 100.000 10.000 50.000 10.582 70.513 110.337 80.612 120.000 70.000 10.250 110.352 120.136 120.724 110.655 30.280 60.000 70.046 110.000 10.606 120.559 100.159 50.102 10.445 50.655 50.000 10.310 120.117 30.000 50.000 10.581 120.026 10.000 10.265 120.483 110.084 120.097 120.044 100.865 120.142 120.588 70.351 100.272 20.596 120.000 10.003 60.622 110.720 70.096 120.000 10.771 110.016 110.772 100.000 10.302 100.194 40.214 90.621 110.197 12
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg ap 50%head ap 50%common ap 50%tail ap 50%alarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TD3D Scannet200permissive0.320 20.501 20.264 20.164 20.506 30.062 20.500 10.000 10.000 10.000 10.208 10.431 20.252 31.000 10.733 30.587 20.000 20.008 20.000 30.106 10.000 20.356 10.123 40.686 10.101 20.000 10.152 20.000 10.000 20.226 10.280 30.000 20.000 10.250 10.000 10.619 20.061 30.841 10.000 10.000 20.167 10.194 10.333 20.000 20.000 10.667 20.820 10.250 30.790 41.000 10.879 20.077 10.094 30.708 10.217 20.049 20.634 10.792 10.331 40.033 50.716 20.159 20.396 20.331 40.099 20.415 10.842 10.000 20.458 10.542 10.000 10.101 20.000 10.218 10.513 20.500 20.458 20.104 20.516 10.456 10.268 40.000 10.000 10.400 10.022 10.233 20.143 20.000 10.677 10.400 10.504 50.095 30.083 50.890 20.061 20.000 10.906 10.076 20.231 10.125 20.000 20.003 20.792 30.881 10.000 20.098 30.125 40.498 50.459 20.063 10.715 10.000 20.241 40.000 10.396 20.063 10.605 10.000 10.000 20.000 10.448 50.629 30.202 20.967 10.250 20.038 10.192 10.185 20.083 41.000 11.000 10.857 20.000 20.470 20.012 10.565 30.798 10.621 10.111 10.500 11.000 10.017 20.509 10.000 10.008 11.000 10.525 20.000 10.000 10.332 30.679 10.264 20.333 20.267 11.000 10.549 10.299 50.387 20.328 30.744 40.000 10.000 20.435 51.000 10.283 40.000 10.196 10.817 10.000 10.472 10.222 30.123 40.560 20.156 2
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
Mask3D Scannet2000.388 10.542 10.357 10.237 10.610 10.091 10.125 50.000 10.000 10.000 10.065 30.668 10.451 11.000 10.955 10.640 10.500 10.039 10.125 20.063 20.409 10.311 20.291 10.609 30.266 10.000 10.163 10.000 10.008 10.044 20.496 11.000 10.000 10.018 20.000 10.756 10.573 10.808 20.000 10.010 10.042 30.130 30.552 10.042 10.000 11.000 10.725 40.750 10.883 11.000 10.832 40.024 20.107 10.614 30.226 10.250 10.628 20.792 10.677 20.400 10.741 10.278 10.511 10.077 50.111 10.313 20.715 20.302 10.017 30.200 20.000 10.188 10.000 10.178 20.736 11.000 10.615 10.514 10.409 20.380 50.600 10.000 10.000 10.400 10.013 20.254 10.381 10.000 10.123 40.400 10.839 10.258 10.463 10.926 10.265 10.000 10.857 20.099 10.021 20.500 10.027 10.028 11.000 10.502 50.016 10.076 40.500 10.612 10.578 10.005 20.597 20.194 10.497 10.000 10.500 10.000 20.323 40.000 11.000 10.000 10.748 10.708 20.050 40.890 21.000 10.008 20.151 30.301 11.000 11.000 10.792 30.945 11.000 10.511 10.004 20.753 10.776 20.287 20.020 20.003 40.974 30.033 10.412 50.000 10.000 20.000 20.667 10.000 10.000 10.491 10.676 20.352 10.335 10.060 20.822 50.527 21.000 10.517 10.606 10.853 10.000 10.004 10.806 11.000 10.727 10.000 10.042 20.739 20.000 10.399 30.391 10.504 10.591 10.571 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
Minkowski 34D Inst.permissive0.203 50.369 40.134 50.078 50.479 40.003 40.500 10.000 10.000 10.000 10.100 20.371 30.300 20.667 40.746 20.400 30.000 20.000 30.000 30.031 30.000 20.074 40.165 30.413 50.000 40.000 10.070 40.000 10.000 20.000 30.221 50.000 20.000 10.000 30.000 10.372 50.070 20.706 40.000 10.000 20.000 50.123 40.033 50.000 20.000 10.422 50.732 30.000 40.778 51.000 10.845 30.000 30.090 40.636 20.000 30.000 30.158 40.000 30.250 50.050 40.693 30.123 40.051 50.385 30.009 40.118 50.406 50.000 20.000 40.200 20.000 10.000 30.000 10.133 40.307 50.500 20.251 40.000 40.281 30.402 40.317 20.000 10.000 10.000 30.000 30.060 40.000 30.000 10.396 20.200 30.669 20.021 40.218 40.720 50.000 30.000 10.696 30.025 40.000 30.000 30.000 20.000 30.125 50.596 20.000 20.191 10.500 10.595 20.369 40.000 30.500 40.000 20.143 50.000 10.000 30.000 20.226 50.000 10.000 20.000 10.701 20.511 40.000 50.851 40.000 30.000 30.150 40.052 50.100 30.981 30.500 40.286 30.000 20.000 50.000 30.545 40.522 50.250 30.000 30.000 50.522 50.000 30.500 20.000 10.000 20.000 20.282 50.000 10.000 10.178 50.382 40.018 50.056 40.000 30.997 30.107 50.677 20.313 40.000 40.726 50.000 10.000 20.583 40.903 40.200 50.000 10.000 30.333 40.000 10.442 20.083 40.109 50.387 40.000 5
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrain Inst.permissive0.209 40.361 50.157 40.085 40.506 20.007 30.500 10.000 10.000 10.000 10.000 50.093 50.221 40.667 40.524 50.400 30.000 20.000 30.000 30.004 40.000 20.000 50.109 50.589 40.000 40.000 10.059 50.000 10.000 20.000 30.322 20.000 20.000 10.000 30.000 10.405 30.055 40.700 50.000 10.000 20.028 40.091 50.083 30.000 20.000 10.667 20.768 20.000 40.807 31.000 10.776 50.000 30.000 50.340 50.000 30.000 30.103 50.000 30.750 10.200 30.634 50.053 50.246 30.677 20.006 50.198 30.432 40.000 20.000 40.050 40.000 10.000 30.000 10.111 50.356 40.500 20.188 50.000 40.220 40.448 20.050 50.000 10.000 10.000 30.000 30.032 50.000 30.000 10.396 20.000 40.573 40.000 50.228 30.747 40.000 30.000 10.573 50.021 50.000 30.000 30.000 20.000 30.500 40.573 30.000 20.000 50.125 40.592 30.364 50.000 30.450 50.000 20.364 20.000 10.000 30.000 20.340 30.000 10.000 20.000 10.610 30.833 10.221 10.702 50.000 30.000 30.135 50.094 40.125 20.571 40.500 40.143 50.000 20.125 30.000 30.618 20.667 40.115 50.000 30.125 21.000 10.000 30.500 20.000 10.000 20.000 20.502 40.000 10.000 10.312 40.248 50.050 40.000 50.000 30.997 30.420 30.500 40.149 50.451 20.748 20.000 10.000 20.636 30.667 50.600 20.000 10.000 30.278 50.000 10.333 40.000 50.294 20.381 50.110 3
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
LGround Inst.permissive0.246 30.413 30.170 30.130 30.455 50.003 50.500 10.000 10.000 10.000 10.017 40.333 40.111 51.000 10.681 40.400 30.000 20.000 31.000 10.003 50.000 20.167 30.190 20.637 20.067 30.000 10.081 30.000 10.000 20.000 30.264 40.000 20.000 10.000 30.000 10.387 40.031 50.754 30.000 10.000 20.151 20.135 20.056 40.000 20.000 10.582 40.589 50.500 20.815 21.000 10.903 10.000 30.097 20.588 40.000 30.000 30.234 30.000 30.500 30.400 10.682 40.156 30.159 40.750 10.046 30.125 40.660 30.000 20.200 20.000 50.000 10.000 30.000 10.164 30.402 30.500 20.373 30.025 30.143 50.426 30.317 20.000 10.000 10.000 30.000 30.063 30.000 30.000 10.000 50.000 40.575 30.250 20.241 20.772 30.000 30.000 10.653 40.034 30.000 30.000 30.000 20.000 31.000 10.561 40.000 20.100 20.500 10.541 40.452 30.000 30.581 30.000 20.364 20.000 10.000 30.000 20.571 20.000 10.000 20.000 10.568 40.511 40.167 30.857 30.000 30.000 30.164 20.112 30.000 50.530 51.000 10.286 30.000 20.125 30.000 30.464 50.706 30.208 40.000 30.125 20.744 40.000 30.500 20.000 10.000 20.000 20.511 30.000 10.000 10.344 20.541 30.068 30.333 20.000 31.000 10.196 40.533 30.318 30.000 40.748 30.000 10.000 20.690 21.000 10.400 30.000 10.000 30.667 30.000 10.333 40.333 20.270 30.399 30.083 4
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3 ScanNet0.794 10.941 30.813 180.851 70.782 60.890 20.597 10.916 20.696 80.713 30.979 10.635 10.384 20.793 20.907 80.821 40.790 300.696 110.967 30.903 10.805 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
PonderV20.785 20.978 10.800 260.833 220.788 40.853 160.545 160.910 50.713 10.705 40.979 10.596 70.390 10.769 110.832 410.821 40.792 290.730 10.975 10.897 40.785 4
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 30.964 20.855 10.843 160.781 70.858 120.575 60.831 320.685 140.714 20.979 10.594 80.310 260.801 10.892 160.841 20.819 40.723 40.940 130.887 60.725 23
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 40.861 200.818 140.836 190.790 30.875 40.576 50.905 60.704 50.739 10.969 100.611 20.349 100.756 210.958 10.702 440.805 140.708 70.916 310.898 30.801 2
TTT-KD0.773 50.646 900.818 140.809 340.774 90.878 30.581 20.943 10.687 120.704 50.978 40.607 50.336 150.775 80.912 60.838 30.823 20.694 120.967 30.899 20.794 3
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 60.939 40.824 60.854 60.771 100.840 300.564 100.900 80.686 130.677 110.961 160.537 300.348 110.769 110.903 100.785 100.815 60.676 210.939 140.880 110.772 8
PPT-SpUNet-Joint0.766 70.932 50.794 320.829 240.751 220.854 140.540 200.903 70.630 330.672 140.963 140.565 210.357 80.788 30.900 120.737 250.802 150.685 160.950 70.887 60.780 5
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormerpermissive0.766 70.925 70.808 220.849 90.786 50.846 260.566 90.876 140.690 100.674 130.960 170.576 170.226 660.753 230.904 90.777 120.815 60.722 50.923 270.877 130.776 7
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CU-Hybrid Net0.764 90.924 80.819 120.840 170.757 170.853 160.580 30.848 250.709 30.643 230.958 200.587 120.295 320.753 230.884 200.758 190.815 60.725 30.927 240.867 210.743 14
OccuSeg+Semantic0.764 90.758 580.796 300.839 180.746 240.907 10.562 110.850 240.680 160.672 140.978 40.610 30.335 170.777 60.819 440.847 10.830 10.691 140.972 20.885 80.727 21
O-CNNpermissive0.762 110.924 80.823 70.844 150.770 110.852 180.577 40.847 270.711 20.640 270.958 200.592 90.217 720.762 160.888 170.758 190.813 100.726 20.932 220.868 200.744 13
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DTC0.757 120.843 260.820 100.847 120.791 20.862 100.511 320.870 160.707 40.652 190.954 340.604 60.279 430.760 170.942 20.734 260.766 430.701 100.884 530.874 180.736 15
OA-CNN-L_ScanNet200.756 130.783 440.826 50.858 40.776 80.837 330.548 150.896 110.649 250.675 120.962 150.586 130.335 170.771 100.802 480.770 150.787 320.691 140.936 170.880 110.761 10
ConDaFormer0.755 140.927 60.822 80.836 190.801 10.849 210.516 300.864 210.651 240.680 100.958 200.584 150.282 400.759 190.855 310.728 280.802 150.678 180.880 580.873 190.756 11
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
PNE0.755 140.786 420.835 40.834 210.758 150.849 210.570 80.836 310.648 260.668 160.978 40.581 160.367 60.683 340.856 290.804 60.801 190.678 180.961 50.889 50.716 28
P. Hermosilla: Point Neighborhood Embeddings.
DMF-Net0.752 160.906 120.793 340.802 400.689 390.825 450.556 120.867 170.681 150.602 430.960 170.555 260.365 70.779 50.859 260.747 220.795 260.717 60.917 300.856 290.764 9
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PointTransformerV20.752 160.742 660.809 210.872 10.758 150.860 110.552 130.891 120.610 400.687 60.960 170.559 240.304 290.766 140.926 40.767 160.797 220.644 320.942 110.876 160.722 25
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
PointConvFormer0.749 180.793 400.790 350.807 360.750 230.856 130.524 260.881 130.588 520.642 260.977 80.591 100.274 460.781 40.929 30.804 60.796 230.642 330.947 90.885 80.715 29
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
BPNetcopyleft0.749 180.909 100.818 140.811 320.752 200.839 320.485 460.842 280.673 170.644 220.957 240.528 360.305 280.773 90.859 260.788 80.818 50.693 130.916 310.856 290.723 24
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MSP0.748 200.623 930.804 240.859 30.745 250.824 470.501 360.912 40.690 100.685 80.956 250.567 200.320 230.768 130.918 50.720 330.802 150.676 210.921 280.881 100.779 6
StratifiedFormerpermissive0.747 210.901 130.803 250.845 140.757 170.846 260.512 310.825 350.696 80.645 210.956 250.576 170.262 570.744 280.861 250.742 230.770 410.705 80.899 430.860 260.734 16
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
VMNetpermissive0.746 220.870 180.838 20.858 40.729 300.850 200.501 360.874 150.587 530.658 180.956 250.564 220.299 300.765 150.900 120.716 360.812 110.631 380.939 140.858 270.709 30
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
Virtual MVFusion0.746 220.771 520.819 120.848 110.702 360.865 90.397 840.899 90.699 60.664 170.948 540.588 110.330 190.746 270.851 350.764 170.796 230.704 90.935 180.866 220.728 19
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
Retro-FPN0.744 240.842 270.800 260.767 540.740 260.836 350.541 180.914 30.672 180.626 310.958 200.552 270.272 480.777 60.886 190.696 450.801 190.674 240.941 120.858 270.717 26
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 250.620 940.799 290.849 90.730 290.822 490.493 430.897 100.664 190.681 90.955 280.562 230.378 30.760 170.903 100.738 240.801 190.673 250.907 350.877 130.745 12
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
SAT0.742 260.860 210.765 480.819 270.769 120.848 230.533 220.829 330.663 200.631 300.955 280.586 130.274 460.753 230.896 140.729 270.760 490.666 270.921 280.855 310.733 17
LRPNet0.742 260.816 350.806 230.807 360.752 200.828 430.575 60.839 300.699 60.637 280.954 340.520 390.320 230.755 220.834 390.760 180.772 380.676 210.915 330.862 240.717 26
LargeKernel3D0.739 280.909 100.820 100.806 380.740 260.852 180.545 160.826 340.594 510.643 230.955 280.541 290.263 560.723 320.858 280.775 140.767 420.678 180.933 200.848 360.694 35
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
MinkowskiNetpermissive0.736 290.859 220.818 140.832 230.709 340.840 300.521 280.853 230.660 220.643 230.951 440.544 280.286 380.731 300.893 150.675 540.772 380.683 170.874 650.852 340.727 21
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
RPN0.736 290.776 480.790 350.851 70.754 190.854 140.491 450.866 190.596 500.686 70.955 280.536 310.342 130.624 490.869 220.787 90.802 150.628 390.927 240.875 170.704 32
IPCA0.731 310.890 140.837 30.864 20.726 310.873 50.530 250.824 360.489 860.647 200.978 40.609 40.336 150.624 490.733 570.758 190.776 360.570 640.949 80.877 130.728 19
SparseConvNet0.725 320.647 890.821 90.846 130.721 320.869 60.533 220.754 570.603 460.614 350.955 280.572 190.325 210.710 330.870 210.724 310.823 20.628 390.934 190.865 230.683 38
PointTransformer++0.725 320.727 740.811 200.819 270.765 130.841 290.502 350.814 410.621 360.623 330.955 280.556 250.284 390.620 510.866 230.781 110.757 530.648 300.932 220.862 240.709 30
MatchingNet0.724 340.812 370.812 190.810 330.735 280.834 370.495 420.860 220.572 600.602 430.954 340.512 410.280 420.757 200.845 370.725 300.780 340.606 490.937 160.851 350.700 34
INS-Conv-semantic0.717 350.751 610.759 510.812 310.704 350.868 70.537 210.842 280.609 420.608 390.953 380.534 330.293 330.616 520.864 240.719 350.793 270.640 340.933 200.845 400.663 44
PointMetaBase0.714 360.835 280.785 370.821 250.684 410.846 260.531 240.865 200.614 370.596 470.953 380.500 440.246 620.674 350.888 170.692 460.764 450.624 410.849 800.844 410.675 40
contrastBoundarypermissive0.705 370.769 550.775 420.809 340.687 400.820 520.439 720.812 420.661 210.591 490.945 620.515 400.171 900.633 460.856 290.720 330.796 230.668 260.889 500.847 370.689 36
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 380.774 500.800 260.793 450.760 140.847 250.471 500.802 450.463 930.634 290.968 120.491 470.271 500.726 310.910 70.706 400.815 60.551 760.878 590.833 420.570 76
RFCR0.702 390.889 150.745 620.813 300.672 440.818 560.493 430.815 400.623 340.610 370.947 560.470 560.249 610.594 550.848 360.705 410.779 350.646 310.892 480.823 480.611 59
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 400.825 320.796 300.723 610.716 330.832 390.433 740.816 380.634 310.609 380.969 100.418 820.344 120.559 670.833 400.715 370.808 130.560 700.902 400.847 370.680 39
JSENetpermissive0.699 410.881 170.762 490.821 250.667 450.800 680.522 270.792 480.613 380.607 400.935 820.492 460.205 770.576 600.853 330.691 480.758 510.652 290.872 680.828 450.649 48
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 420.743 650.794 320.655 840.684 410.822 490.497 410.719 670.622 350.617 340.977 80.447 690.339 140.750 260.664 730.703 430.790 300.596 540.946 100.855 310.647 49
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 430.732 700.772 430.786 460.677 430.866 80.517 290.848 250.509 790.626 310.952 420.536 310.225 680.545 730.704 640.689 510.810 120.564 690.903 390.854 330.729 18
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 440.884 160.754 550.795 430.647 520.818 560.422 760.802 450.612 390.604 410.945 620.462 590.189 850.563 660.853 330.726 290.765 440.632 370.904 370.821 510.606 63
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 450.704 790.741 660.754 580.656 470.829 410.501 360.741 620.609 420.548 570.950 480.522 380.371 40.633 460.756 520.715 370.771 400.623 420.861 760.814 540.658 45
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 460.866 190.748 590.819 270.645 540.794 710.450 620.802 450.587 530.604 410.945 620.464 580.201 800.554 690.840 380.723 320.732 630.602 520.907 350.822 500.603 66
KP-FCNN0.684 470.847 250.758 530.784 480.647 520.814 590.473 490.772 510.605 440.594 480.935 820.450 670.181 880.587 560.805 470.690 490.785 330.614 450.882 550.819 520.632 55
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
VACNN++0.684 470.728 730.757 540.776 510.690 370.804 660.464 550.816 380.577 590.587 500.945 620.508 430.276 450.671 360.710 620.663 590.750 570.589 590.881 560.832 440.653 47
DGNet0.684 470.712 780.784 380.782 500.658 460.835 360.499 400.823 370.641 280.597 460.950 480.487 490.281 410.575 610.619 770.647 670.764 450.620 440.871 710.846 390.688 37
PointContrast_LA_SEM0.683 500.757 590.784 380.786 460.639 560.824 470.408 790.775 500.604 450.541 590.934 860.532 340.269 520.552 700.777 500.645 700.793 270.640 340.913 340.824 470.671 41
Superpoint Network0.683 500.851 240.728 700.800 420.653 490.806 640.468 520.804 430.572 600.602 430.946 590.453 660.239 650.519 780.822 420.689 510.762 480.595 560.895 460.827 460.630 56
VI-PointConv0.676 520.770 540.754 550.783 490.621 600.814 590.552 130.758 550.571 620.557 550.954 340.529 350.268 540.530 760.682 680.675 540.719 660.603 510.888 510.833 420.665 43
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 530.789 410.748 590.763 560.635 580.814 590.407 810.747 590.581 570.573 520.950 480.484 500.271 500.607 530.754 530.649 640.774 370.596 540.883 540.823 480.606 63
SALANet0.670 540.816 350.770 460.768 530.652 500.807 630.451 590.747 590.659 230.545 580.924 920.473 550.149 1000.571 630.811 460.635 730.746 580.623 420.892 480.794 670.570 76
O3DSeg0.668 550.822 330.771 450.496 1040.651 510.833 380.541 180.761 540.555 680.611 360.966 130.489 480.370 50.388 980.580 800.776 130.751 550.570 640.956 60.817 530.646 50
PointConvpermissive0.666 560.781 450.759 510.699 690.644 550.822 490.475 480.779 490.564 650.504 750.953 380.428 760.203 790.586 580.754 530.661 600.753 540.588 600.902 400.813 560.642 51
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 560.703 800.781 400.751 600.655 480.830 400.471 500.769 520.474 890.537 610.951 440.475 540.279 430.635 440.698 670.675 540.751 550.553 750.816 870.806 580.703 33
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 580.746 630.708 730.722 620.638 570.820 520.451 590.566 950.599 480.541 590.950 480.510 420.313 250.648 410.819 440.616 780.682 810.590 580.869 720.810 570.656 46
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
MVF-GNN0.658 590.558 1010.751 570.655 840.690 370.722 930.453 580.867 170.579 580.576 510.893 1040.523 370.293 330.733 290.571 820.692 460.659 880.606 490.875 620.804 600.668 42
DCM-Net0.658 590.778 460.702 760.806 380.619 610.813 620.468 520.693 750.494 820.524 670.941 740.449 680.298 310.510 800.821 430.675 540.727 650.568 670.826 850.803 610.637 53
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 610.698 820.743 640.650 860.564 780.820 520.505 340.758 550.631 320.479 790.945 620.480 520.226 660.572 620.774 510.690 490.735 610.614 450.853 790.776 820.597 69
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 620.752 600.734 680.664 820.583 730.815 580.399 830.754 570.639 290.535 630.942 720.470 560.309 270.665 370.539 840.650 630.708 710.635 360.857 780.793 690.642 51
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 630.778 460.731 690.699 690.577 740.829 410.446 640.736 630.477 880.523 690.945 620.454 630.269 520.484 880.749 560.618 760.738 590.599 530.827 840.792 720.621 58
PointConv-SFPN0.641 640.776 480.703 750.721 630.557 810.826 440.451 590.672 800.563 660.483 780.943 710.425 790.162 950.644 420.726 580.659 610.709 700.572 630.875 620.786 770.559 82
MVPNetpermissive0.641 640.831 290.715 710.671 790.590 690.781 770.394 850.679 770.642 270.553 560.937 790.462 590.256 580.649 400.406 980.626 740.691 780.666 270.877 600.792 720.608 62
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 660.717 770.701 770.692 720.576 750.801 670.467 540.716 680.563 660.459 850.953 380.429 750.169 920.581 590.854 320.605 790.710 680.550 770.894 470.793 690.575 74
FPConvpermissive0.639 670.785 430.760 500.713 670.603 640.798 690.392 860.534 1000.603 460.524 670.948 540.457 610.250 600.538 740.723 600.598 830.696 760.614 450.872 680.799 620.567 79
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 680.797 390.769 470.641 920.590 690.820 520.461 560.537 990.637 300.536 620.947 560.388 890.206 760.656 380.668 710.647 670.732 630.585 610.868 730.793 690.473 102
PointSPNet0.637 690.734 690.692 840.714 660.576 750.797 700.446 640.743 610.598 490.437 900.942 720.403 850.150 990.626 480.800 490.649 640.697 750.557 730.846 810.777 810.563 80
SConv0.636 700.830 300.697 800.752 590.572 770.780 790.445 660.716 680.529 720.530 640.951 440.446 700.170 910.507 830.666 720.636 720.682 810.541 830.886 520.799 620.594 70
Supervoxel-CNN0.635 710.656 870.711 720.719 640.613 620.757 880.444 690.765 530.534 710.566 530.928 900.478 530.272 480.636 430.531 860.664 580.645 920.508 900.864 750.792 720.611 59
joint point-basedpermissive0.634 720.614 950.778 410.667 810.633 590.825 450.420 770.804 430.467 910.561 540.951 440.494 450.291 350.566 640.458 930.579 890.764 450.559 720.838 820.814 540.598 68
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 730.731 710.688 870.675 760.591 680.784 760.444 690.565 960.610 400.492 760.949 520.456 620.254 590.587 560.706 630.599 820.665 870.612 480.868 730.791 750.579 73
3DSM_DMMF0.631 740.626 920.745 620.801 410.607 630.751 890.506 330.729 660.565 640.491 770.866 1070.434 710.197 830.595 540.630 760.709 390.705 730.560 700.875 620.740 920.491 97
PointNet2-SFPN0.631 740.771 520.692 840.672 770.524 860.837 330.440 710.706 730.538 700.446 870.944 680.421 810.219 710.552 700.751 550.591 850.737 600.543 820.901 420.768 840.557 83
APCF-Net0.631 740.742 660.687 890.672 770.557 810.792 740.408 790.665 810.545 690.508 720.952 420.428 760.186 860.634 450.702 650.620 750.706 720.555 740.873 660.798 640.581 72
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
FusionAwareConv0.630 770.604 970.741 660.766 550.590 690.747 900.501 360.734 640.503 810.527 650.919 960.454 630.323 220.550 720.420 970.678 530.688 790.544 800.896 450.795 660.627 57
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 780.800 380.625 1000.719 640.545 830.806 640.445 660.597 890.448 960.519 700.938 780.481 510.328 200.489 870.499 910.657 620.759 500.592 570.881 560.797 650.634 54
SegGroup_sempermissive0.627 790.818 340.747 610.701 680.602 650.764 850.385 900.629 860.490 840.508 720.931 890.409 840.201 800.564 650.725 590.618 760.692 770.539 840.873 660.794 670.548 86
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 800.830 300.694 820.757 570.563 790.772 830.448 630.647 840.520 750.509 710.949 520.431 740.191 840.496 850.614 780.647 670.672 850.535 860.876 610.783 780.571 75
dtc_net0.625 800.703 800.751 570.794 440.535 840.848 230.480 470.676 790.528 730.469 820.944 680.454 630.004 1130.464 900.636 750.704 420.758 510.548 790.924 260.787 760.492 96
HPEIN0.618 820.729 720.668 900.647 880.597 670.766 840.414 780.680 760.520 750.525 660.946 590.432 720.215 730.493 860.599 790.638 710.617 970.570 640.897 440.806 580.605 65
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 830.858 230.772 430.489 1050.532 850.792 740.404 820.643 850.570 630.507 740.935 820.414 830.046 1100.510 800.702 650.602 810.705 730.549 780.859 770.773 830.534 89
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 840.760 570.667 910.649 870.521 870.793 720.457 570.648 830.528 730.434 920.947 560.401 860.153 980.454 910.721 610.648 660.717 670.536 850.904 370.765 850.485 98
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 850.634 910.743 640.697 710.601 660.781 770.437 730.585 920.493 830.446 870.933 870.394 870.011 1120.654 390.661 740.603 800.733 620.526 870.832 830.761 870.480 99
LAP-D0.594 860.720 750.692 840.637 930.456 970.773 820.391 880.730 650.587 530.445 890.940 760.381 900.288 360.434 940.453 950.591 850.649 900.581 620.777 910.749 910.610 61
DPC0.592 870.720 750.700 780.602 970.480 930.762 870.380 910.713 710.585 560.437 900.940 760.369 920.288 360.434 940.509 900.590 870.639 950.567 680.772 930.755 890.592 71
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 880.766 560.659 950.683 740.470 960.740 920.387 890.620 880.490 840.476 800.922 940.355 950.245 630.511 790.511 890.571 900.643 930.493 940.872 680.762 860.600 67
ROSMRF0.580 890.772 510.707 740.681 750.563 790.764 850.362 930.515 1010.465 920.465 840.936 810.427 780.207 750.438 920.577 810.536 930.675 840.486 950.723 990.779 790.524 92
SD-DETR0.576 900.746 630.609 1040.445 1090.517 880.643 1040.366 920.714 700.456 940.468 830.870 1060.432 720.264 550.558 680.674 690.586 880.688 790.482 960.739 970.733 940.537 88
SQN_0.1%0.569 910.676 840.696 810.657 830.497 890.779 800.424 750.548 970.515 770.376 970.902 1030.422 800.357 80.379 990.456 940.596 840.659 880.544 800.685 1020.665 1050.556 84
TextureNetpermissive0.566 920.672 860.664 920.671 790.494 910.719 940.445 660.678 780.411 1020.396 950.935 820.356 940.225 680.412 960.535 850.565 910.636 960.464 980.794 900.680 1020.568 78
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 930.648 880.700 780.770 520.586 720.687 980.333 970.650 820.514 780.475 810.906 1000.359 930.223 700.340 1010.442 960.422 1040.668 860.501 910.708 1000.779 790.534 89
Pointnet++ & Featurepermissive0.557 940.735 680.661 940.686 730.491 920.744 910.392 860.539 980.451 950.375 980.946 590.376 910.205 770.403 970.356 1010.553 920.643 930.497 920.824 860.756 880.515 93
GMLPs0.538 950.495 1060.693 830.647 880.471 950.793 720.300 1000.477 1020.505 800.358 1000.903 1020.327 980.081 1070.472 890.529 870.448 1020.710 680.509 880.746 950.737 930.554 85
PanopticFusion-label0.529 960.491 1070.688 870.604 960.386 1020.632 1050.225 1100.705 740.434 990.293 1060.815 1080.348 960.241 640.499 840.669 700.507 950.649 900.442 1040.796 890.602 1090.561 81
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 970.676 840.591 1070.609 940.442 980.774 810.335 960.597 890.422 1010.357 1010.932 880.341 970.094 1060.298 1030.528 880.473 1000.676 830.495 930.602 1080.721 970.349 109
Online SegFusion0.515 980.607 960.644 980.579 990.434 990.630 1060.353 940.628 870.440 970.410 930.762 1120.307 1000.167 930.520 770.403 990.516 940.565 1000.447 1020.678 1030.701 990.514 94
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 990.558 1010.608 1050.424 1110.478 940.690 970.246 1060.586 910.468 900.450 860.911 980.394 870.160 960.438 920.212 1080.432 1030.541 1060.475 970.742 960.727 950.477 100
PCNN0.498 1000.559 1000.644 980.560 1010.420 1010.711 960.229 1080.414 1030.436 980.352 1020.941 740.324 990.155 970.238 1080.387 1000.493 960.529 1070.509 880.813 880.751 900.504 95
Weakly-Openseg v30.489 1010.749 620.664 920.646 900.496 900.559 1100.122 1130.577 930.257 1130.364 990.805 1090.198 1110.096 1050.510 800.496 920.361 1080.563 1010.359 1110.777 910.644 1060.532 91
3DMV0.484 1020.484 1080.538 1090.643 910.424 1000.606 1090.310 980.574 940.433 1000.378 960.796 1100.301 1010.214 740.537 750.208 1090.472 1010.507 1100.413 1070.693 1010.602 1090.539 87
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1030.577 990.611 1030.356 1130.321 1100.715 950.299 1020.376 1070.328 1090.319 1040.944 680.285 1030.164 940.216 1110.229 1060.484 980.545 1050.456 1000.755 940.709 980.475 101
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1040.679 830.604 1060.578 1000.380 1030.682 990.291 1030.106 1130.483 870.258 1110.920 950.258 1070.025 1110.231 1100.325 1020.480 990.560 1030.463 990.725 980.666 1040.231 113
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1050.474 1090.623 1010.463 1070.366 1050.651 1020.310 980.389 1060.349 1070.330 1030.937 790.271 1050.126 1020.285 1040.224 1070.350 1100.577 990.445 1030.625 1060.723 960.394 105
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1060.548 1030.548 1080.597 980.363 1060.628 1070.300 1000.292 1080.374 1040.307 1050.881 1050.268 1060.186 860.238 1080.204 1100.407 1050.506 1110.449 1010.667 1040.620 1080.462 103
SurfaceConvPF0.442 1060.505 1050.622 1020.380 1120.342 1080.654 1010.227 1090.397 1050.367 1050.276 1080.924 920.240 1080.198 820.359 1000.262 1040.366 1060.581 980.435 1050.640 1050.668 1030.398 104
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1080.437 1110.646 970.474 1060.369 1040.645 1030.353 940.258 1100.282 1110.279 1070.918 970.298 1020.147 1010.283 1050.294 1030.487 970.562 1020.427 1060.619 1070.633 1070.352 108
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1090.525 1040.647 960.522 1020.324 1090.488 1130.077 1140.712 720.353 1060.401 940.636 1140.281 1040.176 890.340 1010.565 830.175 1140.551 1040.398 1080.370 1140.602 1090.361 107
SPLAT Netcopyleft0.393 1100.472 1100.511 1100.606 950.311 1110.656 1000.245 1070.405 1040.328 1090.197 1120.927 910.227 1100.000 1150.001 1150.249 1050.271 1130.510 1080.383 1100.593 1090.699 1000.267 111
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1110.297 1130.491 1110.432 1100.358 1070.612 1080.274 1040.116 1120.411 1020.265 1090.904 1010.229 1090.079 1080.250 1060.185 1110.320 1110.510 1080.385 1090.548 1100.597 1120.394 105
PointNet++permissive0.339 1120.584 980.478 1120.458 1080.256 1130.360 1140.250 1050.247 1110.278 1120.261 1100.677 1130.183 1120.117 1030.212 1120.145 1130.364 1070.346 1140.232 1140.548 1100.523 1130.252 112
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
SSC-UNetpermissive0.308 1130.353 1120.290 1140.278 1140.166 1140.553 1110.169 1120.286 1090.147 1140.148 1140.908 990.182 1130.064 1090.023 1140.018 1150.354 1090.363 1120.345 1120.546 1120.685 1010.278 110
ScanNetpermissive0.306 1140.203 1140.366 1130.501 1030.311 1110.524 1120.211 1110.002 1150.342 1080.189 1130.786 1110.145 1140.102 1040.245 1070.152 1120.318 1120.348 1130.300 1130.460 1130.437 1140.182 114
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1150.000 1150.041 1150.172 1150.030 1150.062 1150.001 1150.035 1140.004 1150.051 1150.143 1150.019 1150.003 1140.041 1130.050 1140.003 1150.054 1150.018 1150.005 1150.264 1150.082 115


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Spherical Mask(CtoF)0.812 11.000 10.973 40.852 110.718 40.917 50.574 40.677 270.748 90.729 80.715 50.795 20.809 21.000 10.831 20.854 70.787 81.000 10.638 4
SIM3D0.803 21.000 10.964 50.841 140.683 140.924 40.539 80.724 210.670 160.717 90.685 100.806 10.824 11.000 10.800 60.851 100.778 121.000 10.641 3
OneFormer3Dcopyleft0.801 31.000 10.973 30.909 50.698 100.928 20.582 30.668 310.685 140.780 20.687 90.698 140.702 121.000 10.794 80.900 20.784 100.986 480.635 5
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
UniPerception0.800 41.000 10.930 70.872 90.727 30.862 200.454 140.764 130.820 10.746 60.706 70.750 40.772 80.926 410.764 140.818 240.826 10.997 360.660 2
InsSSM0.799 51.000 10.915 90.710 370.729 20.925 30.664 10.670 290.770 60.766 30.739 20.737 50.700 131.000 10.792 90.829 180.815 30.997 360.625 7
TST3D0.795 61.000 10.929 80.918 40.709 70.884 150.596 20.704 240.769 70.734 70.644 160.699 130.751 101.000 10.794 70.876 40.757 180.997 360.550 28
MG-Former0.791 71.000 10.980 20.837 150.626 220.897 80.543 70.759 150.800 50.766 40.659 120.769 30.697 161.000 10.791 100.707 440.791 71.000 10.610 13
ExtMask3D0.789 81.000 10.988 10.756 290.706 80.912 60.429 150.647 360.806 40.755 50.673 110.689 150.772 91.000 10.789 110.852 80.811 41.000 10.617 10
Queryformer0.787 91.000 10.933 60.601 460.754 10.886 130.558 60.661 330.767 80.665 150.716 40.639 210.808 41.000 10.844 10.897 30.804 51.000 10.624 8
MAFT0.786 101.000 10.894 140.807 190.694 120.893 110.486 100.674 280.740 100.786 10.704 80.727 70.739 111.000 10.707 200.849 110.756 191.000 10.685 1
Mask3D0.780 111.000 10.786 380.716 350.696 110.885 140.500 90.714 220.810 30.672 140.715 50.679 170.809 21.000 10.831 20.833 160.787 81.000 10.602 16
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
SPFormerpermissive0.770 120.903 520.903 110.806 200.609 280.886 120.568 50.815 60.705 130.711 100.655 130.652 200.685 201.000 10.789 120.809 250.776 141.000 10.583 21
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
SoftGroup++0.769 131.000 10.803 310.937 10.684 130.865 170.213 310.870 20.664 180.571 210.758 10.702 110.807 51.000 10.653 270.902 10.792 61.000 10.626 6
SoftGrouppermissive0.761 141.000 10.808 270.845 120.716 50.862 190.243 280.824 40.655 200.620 160.734 30.699 120.791 70.981 350.716 180.844 120.769 151.000 10.594 19
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
ISBNetpermissive0.757 151.000 10.904 100.731 330.678 150.895 90.458 120.644 380.670 170.710 110.620 220.732 60.650 221.000 10.756 150.778 280.779 111.000 10.614 11
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
TD3Dpermissive0.751 161.000 10.774 390.867 100.621 240.934 10.404 170.706 230.812 20.605 190.633 190.626 220.690 181.000 10.640 290.820 210.777 131.000 10.612 12
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
PBNetpermissive0.747 171.000 10.818 230.837 160.713 60.844 220.457 130.647 360.711 120.614 170.617 240.657 190.650 221.000 10.692 210.822 200.765 171.000 10.595 18
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
EV3D0.747 171.000 10.696 560.755 300.675 160.909 70.420 160.724 200.599 240.683 120.631 200.689 160.689 191.000 10.822 50.842 130.699 231.000 10.605 14
GraphCut0.732 191.000 10.788 360.724 340.642 210.859 210.248 270.787 110.618 230.596 200.653 150.722 90.583 431.000 10.766 130.861 50.825 21.000 10.504 34
IPCA-Inst0.731 201.000 10.788 370.884 80.698 90.788 380.252 260.760 140.646 210.511 290.637 180.665 180.804 61.000 10.644 280.778 290.747 211.000 10.561 25
TopoSeg0.725 211.000 10.806 300.933 20.668 180.758 420.272 250.734 190.630 220.549 250.654 140.606 230.697 170.966 380.612 330.839 140.754 201.000 10.573 22
DKNet0.718 221.000 10.814 240.782 230.619 250.872 160.224 290.751 170.569 280.677 130.585 280.724 80.633 330.981 350.515 430.819 220.736 221.000 10.617 9
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
SSEC0.707 231.000 10.850 160.924 30.648 190.747 450.162 330.862 30.572 270.520 270.624 210.549 260.649 311.000 10.560 380.706 450.768 161.000 10.591 20
HAISpermissive0.699 241.000 10.849 170.820 170.675 170.808 320.279 230.757 160.465 340.517 280.596 260.559 250.600 371.000 10.654 260.767 310.676 270.994 440.560 26
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
SSTNetpermissive0.698 251.000 10.697 550.888 70.556 350.803 330.387 180.626 400.417 390.556 240.585 290.702 100.600 371.000 10.824 40.720 430.692 251.000 10.509 33
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
DualGroup0.694 261.000 10.799 330.811 180.622 230.817 270.376 190.805 90.590 260.487 330.568 320.525 300.650 220.835 510.600 340.829 170.655 301.000 10.526 30
DANCENET0.680 271.000 10.807 280.733 320.600 290.768 410.375 200.543 480.538 290.610 180.599 250.498 310.632 350.981 350.739 170.856 60.633 360.882 590.454 43
SphereSeg0.680 271.000 10.856 150.744 310.618 260.893 100.151 340.651 350.713 110.537 260.579 310.430 400.651 211.000 10.389 540.744 380.697 240.991 460.601 17
Box2Mask0.677 291.000 10.847 180.771 250.509 440.816 280.277 240.558 470.482 310.562 230.640 170.448 360.700 131.000 10.666 220.852 90.578 430.997 360.488 38
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
OccuSeg+instance0.672 301.000 10.758 470.682 390.576 330.842 230.477 110.504 540.524 300.567 220.585 300.451 350.557 451.000 10.751 160.797 260.563 461.000 10.467 42
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
Mask-Group0.664 311.000 10.822 220.764 280.616 270.815 290.139 380.694 260.597 250.459 370.566 330.599 240.600 370.516 610.715 190.819 230.635 341.000 10.603 15
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
INS-Conv-instance0.657 321.000 10.760 450.667 410.581 310.863 180.323 210.655 340.477 320.473 350.549 350.432 390.650 221.000 10.655 250.738 390.585 420.944 510.472 41
CSC-Pretrained0.648 331.000 10.810 250.768 260.523 420.813 300.143 370.819 50.389 420.422 460.511 390.443 370.650 221.000 10.624 310.732 400.634 351.000 10.375 50
PE0.645 341.000 10.773 410.798 220.538 370.786 390.088 460.799 100.350 460.435 440.547 360.545 270.646 320.933 400.562 370.761 340.556 510.997 360.501 36
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
RPGN0.643 351.000 10.758 460.582 520.539 360.826 260.046 510.765 120.372 440.436 430.588 270.539 290.650 221.000 10.577 350.750 360.653 320.997 360.495 37
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
Dyco3Dcopyleft0.641 361.000 10.841 190.893 60.531 390.802 340.115 430.588 450.448 360.438 410.537 380.430 410.550 460.857 430.534 410.764 330.657 290.987 470.568 23
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
GICN0.638 371.000 10.895 130.800 210.480 480.676 500.144 360.737 180.354 450.447 380.400 520.365 470.700 131.000 10.569 360.836 150.599 381.000 10.473 40
PointGroup0.636 381.000 10.765 420.624 430.505 460.797 350.116 420.696 250.384 430.441 390.559 340.476 330.596 401.000 10.666 220.756 350.556 500.997 360.513 32
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
DD-UNet+Group0.635 390.667 540.797 350.714 360.562 340.774 400.146 350.810 80.429 380.476 340.546 370.399 430.633 331.000 10.632 300.722 420.609 371.000 10.514 31
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
Mask3D_evaluation0.631 401.000 10.829 210.606 450.646 200.836 240.068 470.511 520.462 350.507 300.619 230.389 450.610 361.000 10.432 490.828 190.673 280.788 630.552 27
DENet0.629 411.000 10.797 340.608 440.589 300.627 540.219 300.882 10.310 480.402 510.383 540.396 440.650 221.000 10.663 240.543 620.691 261.000 10.568 24
3D-MPA0.611 421.000 10.833 200.765 270.526 410.756 430.136 400.588 450.470 330.438 420.432 480.358 490.650 220.857 430.429 500.765 320.557 491.000 10.430 45
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
OSIS0.605 431.000 10.801 320.599 470.535 380.728 470.286 220.436 580.679 150.491 310.433 460.256 510.404 580.857 430.620 320.724 410.510 561.000 10.539 29
AOIA0.601 441.000 10.761 440.687 380.485 470.828 250.008 580.663 320.405 410.405 500.425 490.490 320.596 400.714 540.553 400.779 270.597 390.992 450.424 47
PCJC0.578 451.000 10.810 260.583 510.449 510.813 310.042 520.603 430.341 470.490 320.465 430.410 420.650 220.835 510.264 600.694 490.561 470.889 560.504 35
SSEN0.575 461.000 10.761 430.473 540.477 490.795 360.066 480.529 500.658 190.460 360.461 440.380 460.331 600.859 420.401 530.692 510.653 311.000 10.348 52
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
RWSeg0.567 470.528 640.708 540.626 420.580 320.745 460.063 490.627 390.240 520.400 520.497 400.464 340.515 471.000 10.475 450.745 370.571 441.000 10.429 46
NeuralBF0.555 480.667 540.896 120.843 130.517 430.751 440.029 530.519 510.414 400.439 400.465 420.000 700.484 490.857 430.287 580.693 500.651 331.000 10.485 39
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
MTML0.549 491.000 10.807 290.588 500.327 560.647 520.004 600.815 70.180 550.418 470.364 560.182 540.445 521.000 10.442 480.688 520.571 451.000 10.396 48
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
ClickSeg_Instance0.539 501.000 10.621 590.300 570.530 400.698 480.127 410.533 490.222 530.430 450.400 510.365 470.574 440.938 390.472 460.659 540.543 520.944 510.347 53
One_Thing_One_Clickpermissive0.529 510.667 540.718 500.777 240.399 520.683 490.000 630.669 300.138 580.391 530.374 550.539 280.360 590.641 580.556 390.774 300.593 400.997 360.251 58
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Sparse R-CNN0.515 521.000 10.538 640.282 580.468 500.790 370.173 320.345 600.429 370.413 490.484 410.176 550.595 420.591 590.522 420.668 530.476 570.986 490.327 54
Occipital-SCS0.512 531.000 10.716 510.509 530.506 450.611 550.092 450.602 440.177 560.346 560.383 530.165 560.442 530.850 500.386 550.618 580.543 530.889 560.389 49
3D-BoNet0.488 541.000 10.672 580.590 490.301 580.484 650.098 440.620 410.306 490.341 570.259 600.125 580.434 550.796 530.402 520.499 640.513 550.909 550.439 44
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
PanopticFusion-inst0.478 550.667 540.712 530.595 480.259 610.550 610.000 630.613 420.175 570.250 620.434 450.437 380.411 570.857 430.485 440.591 610.267 670.944 510.359 51
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
SPG_WSIS0.470 560.667 540.685 570.677 400.372 540.562 590.000 630.482 550.244 510.316 590.298 570.052 650.442 540.857 430.267 590.702 460.559 481.000 10.287 56
SALoss-ResNet0.459 571.000 10.737 490.159 680.259 600.587 570.138 390.475 560.217 540.416 480.408 500.128 570.315 610.714 540.411 510.536 630.590 410.873 600.304 55
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MASCpermissive0.447 580.528 640.555 620.381 550.382 530.633 530.002 610.509 530.260 500.361 550.432 470.327 500.451 510.571 600.367 560.639 560.386 580.980 500.276 57
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
SegGroup_inspermissive0.445 590.667 540.773 400.185 650.317 570.656 510.000 630.407 590.134 590.381 540.267 590.217 530.476 500.714 540.452 470.629 570.514 541.000 10.222 61
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
3D-SISpermissive0.382 601.000 10.432 670.245 600.190 620.577 580.013 570.263 620.033 650.320 580.240 610.075 610.422 560.857 430.117 650.699 470.271 660.883 580.235 60
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
Hier3Dcopyleft0.323 610.667 540.542 630.264 590.157 650.550 600.000 630.205 650.009 670.270 610.218 620.075 610.500 480.688 570.007 710.698 480.301 630.459 680.200 62
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
UNet-backbone0.319 620.667 540.715 520.233 610.189 630.479 660.008 580.218 630.067 640.201 640.173 630.107 590.123 660.438 620.150 620.615 590.355 590.916 540.093 70
R-PointNet0.306 630.500 660.405 680.311 560.348 550.589 560.054 500.068 680.126 600.283 600.290 580.028 660.219 640.214 650.331 570.396 680.275 640.821 620.245 59
Region-18class0.284 640.250 700.751 480.228 630.270 590.521 620.000 630.468 570.008 690.205 630.127 640.000 700.068 680.070 690.262 610.652 550.323 610.740 640.173 63
SemRegionNet-20cls0.250 650.333 670.613 600.229 620.163 640.493 630.000 630.304 610.107 610.147 670.100 660.052 640.231 620.119 670.039 670.445 660.325 600.654 650.141 66
3D-BEVIS0.248 660.667 540.566 610.076 690.035 710.394 690.027 550.035 700.098 620.099 69