Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail ioualarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefloorfolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwallwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3 ScanNet2000.393 30.592 30.330 20.216 20.520 30.109 40.108 150.000 30.337 20.000 10.310 110.394 80.494 110.753 80.848 20.256 30.717 70.000 30.842 30.192 30.065 30.449 90.346 30.546 60.190 120.000 90.384 60.000 10.000 30.218 30.505 10.791 20.000 10.136 30.000 20.903 20.073 100.687 60.000 70.168 10.551 40.387 70.941 20.000 10.000 20.397 120.654 30.000 100.714 40.759 140.752 70.118 50.264 40.926 20.000 10.048 50.575 40.000 70.597 10.366 20.755 10.469 10.474 20.798 10.140 90.617 20.692 60.000 80.592 20.971 20.188 30.000 10.133 90.593 20.349 10.650 30.717 70.699 30.455 20.790 20.523 30.636 10.301 10.000 10.622 20.000 100.017 140.259 30.000 40.921 40.337 10.733 20.210 30.514 30.860 80.407 10.000 10.688 20.109 70.000 120.000 40.000 10.151 40.671 80.782 10.115 120.641 20.903 20.349 10.616 40.088 50.832 70.000 50.480 20.000 10.428 10.000 30.497 90.000 40.000 70.000 10.662 40.690 20.612 10.828 10.575 10.000 10.404 60.644 10.325 70.887 40.728 10.009 150.134 60.026 160.000 10.761 30.731 30.172 60.077 30.528 70.727 70.000 10.603 40.220 30.022 30.000 10.740 10.000 20.000 10.661 40.586 20.566 30.436 50.531 50.978 20.457 10.708 30.583 50.141 80.748 30.000 10.026 50.822 30.871 40.879 50.000 10.851 20.405 20.914 10.000 10.682 30.000 140.281 30.738 20.463 6
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
BFANet ScanNet200permissive0.360 40.553 60.293 40.193 40.483 100.096 50.266 50.000 30.000 60.000 10.298 120.255 110.661 10.810 50.810 30.194 90.785 60.000 30.000 160.161 50.000 90.494 80.382 20.574 40.258 40.000 90.372 80.000 10.000 30.043 130.436 70.000 100.000 10.239 20.000 20.901 30.105 10.689 40.025 40.128 20.614 20.436 10.493 160.000 10.000 20.526 40.546 120.109 40.651 130.953 40.753 60.101 60.143 120.897 40.000 10.431 10.469 140.000 70.522 50.337 50.661 60.459 20.409 60.666 40.102 120.508 50.757 40.000 80.060 130.970 30.497 10.000 10.376 20.511 30.262 40.688 20.921 10.617 90.321 110.590 60.491 80.556 30.000 30.000 10.481 40.093 10.043 20.284 20.000 40.875 140.135 80.669 50.124 120.394 60.849 110.298 20.000 10.476 160.088 110.042 70.000 40.000 10.254 30.653 100.741 60.215 10.573 50.852 50.266 90.654 10.056 100.835 50.000 50.492 10.000 10.000 70.000 30.612 80.000 40.000 70.000 10.616 50.469 160.460 40.698 130.516 20.000 10.378 70.563 40.476 50.863 50.574 90.330 60.000 110.282 40.000 10.760 40.710 40.233 10.000 90.641 30.814 20.000 10.585 90.053 100.000 70.000 10.629 90.000 20.000 10.678 30.528 120.534 40.129 130.596 40.973 30.264 110.772 20.526 90.139 100.707 40.000 10.000 120.764 130.591 150.848 60.000 10.827 40.338 30.806 110.000 10.568 90.151 80.358 20.659 90.510 4
DITR0.409 20.616 10.351 10.215 30.651 10.238 10.400 20.000 30.340 10.000 10.534 20.476 40.585 20.687 150.853 10.143 120.854 20.000 30.865 20.167 40.000 90.175 160.573 10.617 20.372 10.362 10.591 10.000 10.000 30.330 10.494 20.247 90.000 10.385 10.000 20.878 60.037 130.791 10.053 20.118 30.479 110.429 40.940 30.000 10.000 20.461 70.562 100.093 50.628 140.991 10.762 20.135 30.270 30.917 30.000 10.140 40.597 20.000 70.361 110.375 10.730 20.431 50.459 30.410 120.008 150.656 10.814 10.036 60.554 30.947 50.139 100.000 10.263 50.896 10.191 80.615 40.839 30.757 10.399 50.877 10.504 50.524 60.000 30.000 10.587 30.000 100.022 110.077 90.921 10.928 20.132 90.670 40.759 10.652 10.862 70.091 100.000 10.662 30.072 150.000 120.000 40.000 10.496 10.852 20.752 40.152 30.743 10.953 10.301 30.625 30.053 110.913 10.399 10.452 40.000 10.000 70.000 30.742 20.000 40.000 70.000 10.694 20.643 40.444 60.784 70.000 80.000 10.571 10.614 30.491 40.938 10.559 100.357 50.107 70.404 10.000 10.796 20.688 60.148 80.186 10.629 40.827 10.000 10.558 110.198 40.000 70.000 10.723 20.000 20.000 10.833 10.619 10.609 20.478 40.617 10.959 40.370 30.597 80.737 20.191 50.752 20.000 10.118 10.853 10.925 20.670 130.000 10.831 30.000 160.873 30.000 10.699 10.005 110.360 10.723 30.235 12
OctFormer ScanNet200permissive0.326 120.539 90.265 90.131 110.499 60.110 30.522 10.000 30.000 60.000 10.318 100.427 60.455 140.743 100.765 120.175 100.842 30.000 30.828 40.204 20.033 60.429 100.335 50.601 30.312 30.000 90.357 90.000 10.000 30.047 100.423 80.000 100.000 10.105 80.000 20.873 90.079 80.670 120.000 70.117 40.471 130.432 30.829 100.000 10.000 20.584 20.417 160.089 60.684 80.837 110.705 150.021 120.178 100.892 50.000 10.028 70.505 120.000 70.457 80.200 130.662 40.412 90.244 140.496 70.000 160.451 70.626 80.000 80.102 100.943 90.138 130.000 10.000 120.149 70.291 30.534 80.722 60.632 60.331 90.253 140.453 100.487 110.000 30.000 10.479 50.000 100.022 110.000 110.000 40.900 100.128 100.684 30.164 90.413 40.854 100.000 110.000 10.512 150.074 130.003 100.000 40.000 10.000 100.469 140.613 120.132 80.529 70.871 30.227 150.582 70.026 160.787 110.000 50.339 140.000 10.000 70.000 30.626 60.000 40.029 60.000 10.587 80.612 70.411 70.724 90.000 80.000 10.407 50.552 50.513 30.849 90.655 40.408 30.000 110.296 30.000 10.686 140.645 130.145 90.022 70.414 130.633 110.000 10.637 10.224 20.000 70.000 10.650 70.000 20.000 10.622 80.535 110.343 110.483 30.230 120.943 100.289 90.618 60.596 40.140 90.679 70.000 10.022 60.783 100.620 110.906 10.000 10.806 80.137 100.865 40.000 10.378 120.000 140.168 140.680 70.227 13
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
LGroundpermissive0.272 140.485 140.184 140.106 140.476 110.077 90.218 70.000 30.000 60.000 10.547 10.295 100.540 50.746 90.745 140.058 150.112 150.005 10.658 100.077 140.000 90.322 130.178 150.512 110.190 120.199 20.277 140.000 10.000 30.173 60.399 110.000 100.000 10.039 150.000 20.858 140.085 60.676 110.002 50.103 50.498 70.323 130.703 110.000 10.000 20.296 140.549 110.216 10.702 50.768 130.718 130.028 100.092 150.786 150.000 10.000 100.453 150.022 50.251 160.252 90.572 140.348 140.321 100.514 60.063 130.279 150.552 140.000 80.019 150.932 140.132 150.000 10.000 120.000 140.156 160.457 140.623 110.518 130.265 150.358 110.381 140.395 140.000 30.000 10.127 160.012 70.051 10.000 110.000 40.886 130.014 130.437 160.179 70.244 140.826 140.000 110.000 10.599 90.136 10.085 30.000 40.000 10.000 100.565 120.612 130.143 50.207 140.566 140.232 140.446 140.127 20.708 140.000 50.384 80.000 10.000 70.000 30.402 130.000 40.059 50.000 10.525 140.566 100.229 110.659 140.000 80.000 10.265 140.446 130.147 150.720 160.597 80.066 130.000 110.187 80.000 10.726 120.467 160.134 120.000 90.413 140.629 120.000 10.363 150.055 90.022 30.000 10.626 100.000 20.000 10.323 140.479 160.154 150.117 140.028 150.901 140.243 140.415 150.295 160.143 70.610 150.000 10.000 120.777 110.397 160.324 150.000 10.778 140.179 80.702 150.000 10.274 160.404 30.233 90.622 140.398 7
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
PonderV2 ScanNet2000.346 50.552 70.270 70.175 80.497 70.070 110.239 60.000 30.000 60.000 10.232 160.412 70.584 30.842 30.804 50.212 60.540 90.000 30.433 150.106 90.000 90.590 40.290 110.548 50.243 60.000 90.356 100.000 10.000 30.062 90.398 120.441 80.000 10.104 90.000 20.888 40.076 90.682 90.030 30.094 60.491 100.351 120.869 90.000 10.063 10.403 110.700 20.000 100.660 120.881 80.761 30.050 80.186 90.852 120.000 10.007 80.570 70.100 20.565 20.326 60.641 90.431 50.290 130.621 50.259 30.408 100.622 90.125 20.082 110.950 40.179 40.000 10.263 50.424 40.193 70.558 60.880 20.545 120.375 60.727 30.445 110.499 80.000 30.000 10.475 60.002 80.034 50.083 80.000 40.924 30.290 30.636 60.115 130.400 50.874 40.186 80.000 10.611 70.128 30.113 20.000 40.000 10.000 100.584 110.636 100.103 130.385 90.843 60.283 40.603 60.080 60.825 90.000 50.377 90.000 10.000 70.000 30.457 100.000 40.000 70.000 10.574 110.608 80.481 30.792 40.394 40.000 10.357 90.503 100.261 100.817 120.504 130.304 70.472 40.115 100.000 10.750 60.677 80.202 20.000 90.509 80.729 60.000 10.519 120.000 130.000 70.000 10.620 110.000 20.000 10.660 60.560 60.486 50.384 70.346 90.952 50.247 130.667 40.436 110.269 30.691 60.000 10.010 70.787 90.889 30.880 40.000 10.810 70.336 40.860 70.000 10.606 80.009 90.248 80.681 60.392 8
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
PPT-SpUNet-F.T.0.332 110.556 50.270 60.123 130.519 40.091 60.349 30.000 30.000 60.000 10.339 80.383 90.498 100.833 40.807 40.241 40.584 80.000 30.755 60.124 70.000 90.608 20.330 70.530 90.314 20.000 90.374 70.000 10.000 30.197 40.459 60.000 100.000 10.117 50.000 20.876 70.095 20.682 90.000 70.086 70.518 60.433 20.930 40.000 10.000 20.563 30.542 130.077 70.715 30.858 100.756 50.008 160.171 110.874 70.000 10.039 60.550 100.000 70.545 40.256 80.657 80.453 30.351 90.449 90.213 60.392 110.611 100.000 80.037 140.946 60.138 130.000 10.000 120.063 100.308 20.537 70.796 40.673 40.323 100.392 100.400 130.509 70.000 30.000 10.649 10.000 100.023 100.000 110.000 40.914 70.002 150.506 150.163 100.359 80.872 50.000 110.000 10.623 60.112 50.001 110.000 40.000 10.021 80.753 50.565 150.150 40.579 40.806 90.267 80.616 40.042 130.783 120.000 50.374 100.000 10.000 70.000 30.620 70.000 40.000 70.000 10.572 120.634 50.350 90.792 40.000 80.000 10.376 80.535 60.378 60.855 60.672 30.074 120.000 110.185 90.000 10.727 110.660 110.076 160.000 90.432 110.646 100.000 10.594 70.006 120.000 70.000 10.658 60.000 20.000 10.661 40.549 90.300 130.291 90.045 130.942 110.304 70.600 70.572 60.135 120.695 50.000 10.008 90.793 80.942 10.899 20.000 10.816 60.181 70.897 20.000 10.679 40.223 60.264 40.691 50.345 11
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
IMFSegNet0.334 80.532 120.251 100.179 60.486 90.041 150.139 120.003 10.283 30.000 10.274 140.191 140.457 130.704 130.795 70.197 80.830 50.000 30.710 80.055 150.064 40.518 50.305 90.458 160.216 110.027 50.284 120.000 10.000 30.044 110.406 90.561 50.000 10.080 110.000 20.873 90.021 140.683 80.000 70.076 80.494 90.363 90.648 150.000 10.000 20.425 90.649 40.000 100.668 110.908 60.740 100.010 140.206 70.862 90.000 10.000 100.560 80.000 70.359 120.237 110.631 110.408 110.411 40.322 140.246 40.439 90.599 120.047 40.213 60.940 100.139 100.000 10.369 40.124 90.188 110.495 100.624 100.626 70.320 130.595 40.495 70.496 100.000 30.000 10.340 110.014 50.032 60.135 50.000 40.903 80.277 50.612 80.196 60.344 110.848 130.260 40.000 10.574 120.073 140.062 40.000 40.000 10.091 50.839 30.776 20.123 110.392 80.756 120.274 50.518 110.029 150.842 30.000 50.357 120.000 10.035 60.000 30.444 110.793 10.245 40.000 10.512 150.512 140.159 140.713 120.000 80.000 10.336 120.484 110.569 20.852 80.615 60.120 110.068 100.228 70.000 10.733 90.773 10.190 40.000 90.608 50.792 40.000 10.597 60.000 130.025 20.000 10.573 160.000 20.000 10.508 100.555 70.363 90.139 110.610 20.947 80.305 60.594 90.527 80.009 160.633 120.000 10.060 30.820 50.604 140.799 80.000 10.799 100.034 130.784 120.000 10.618 60.424 10.134 150.646 120.214 14
OA-CNN-L_ScanNet2000.333 100.558 40.269 80.124 120.448 140.080 80.272 40.000 30.000 60.000 10.342 70.515 20.524 70.713 120.789 90.158 110.384 110.000 30.806 50.125 60.000 90.496 70.332 60.498 130.227 70.024 60.474 20.000 10.003 20.071 80.487 30.000 100.000 10.110 70.000 20.876 70.013 160.703 30.000 70.076 80.473 120.355 110.906 60.000 10.000 20.476 50.706 10.000 100.672 90.835 120.748 80.015 130.223 60.860 100.000 10.000 100.572 60.000 70.509 60.313 70.662 40.398 130.396 70.411 110.276 20.527 30.711 50.000 80.076 120.946 60.166 50.000 10.022 100.160 60.183 120.493 120.699 80.637 50.403 40.330 120.406 120.526 50.024 20.000 10.392 100.000 100.016 150.000 110.196 30.915 60.112 110.557 100.197 50.352 90.877 30.000 110.000 10.592 110.103 90.000 120.067 10.000 10.089 60.735 70.625 110.130 90.568 60.836 70.271 70.534 80.043 120.799 100.001 40.445 50.000 10.000 70.024 20.661 40.000 40.262 20.000 10.591 70.517 120.373 80.788 60.021 70.000 10.455 30.517 80.320 80.823 110.200 160.001 160.150 50.100 110.000 10.736 80.668 90.103 140.052 50.662 20.720 80.000 10.602 50.112 60.002 60.000 10.637 80.000 20.000 10.621 90.569 40.398 80.412 60.234 110.949 60.363 40.492 140.495 100.251 40.665 80.000 10.001 110.805 70.833 60.794 100.000 10.821 50.314 50.843 100.000 10.560 100.245 50.262 50.713 40.370 10
CSC-Pretrainpermissive0.249 160.455 160.171 150.079 160.418 150.059 130.186 90.000 30.000 60.000 10.335 90.250 120.316 150.766 70.697 160.142 130.170 130.003 20.553 130.112 80.097 10.201 150.186 130.476 140.081 150.000 90.216 160.000 10.000 30.001 160.314 160.000 100.000 10.055 140.000 20.832 160.094 30.659 140.002 50.076 80.310 160.293 160.664 130.000 10.000 20.175 160.634 60.130 20.552 160.686 160.700 160.076 70.110 140.770 160.000 10.000 100.430 160.000 70.319 140.166 140.542 160.327 150.205 150.332 130.052 140.375 120.444 160.000 80.012 160.930 160.203 20.000 10.000 120.046 110.175 130.413 150.592 130.471 150.299 140.152 160.340 150.247 160.000 30.000 10.225 140.058 30.037 30.000 110.207 20.862 150.014 130.548 120.033 150.233 150.816 150.000 110.000 10.542 140.123 40.121 10.019 20.000 10.000 100.463 150.454 160.045 160.128 160.557 150.235 130.441 150.063 90.484 160.000 50.308 160.000 10.000 70.000 30.318 160.000 40.000 70.000 10.545 130.543 110.164 130.734 80.000 80.000 10.215 160.371 150.198 130.743 130.205 150.062 140.000 110.079 130.000 10.683 150.547 150.142 100.000 90.441 100.579 150.000 10.464 140.098 80.041 10.000 10.590 130.000 20.000 10.373 120.494 130.174 140.105 150.001 160.895 150.222 150.537 120.307 150.180 60.625 130.000 10.000 120.591 160.609 130.398 140.000 10.766 160.014 150.638 160.000 10.377 130.004 120.206 120.609 160.465 5
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
GSTran0.334 90.533 110.250 110.179 70.487 80.041 150.139 120.003 10.273 40.000 10.273 150.189 150.465 120.704 130.794 80.198 70.831 40.000 30.712 70.055 150.063 50.518 50.306 80.459 150.217 90.028 40.282 130.000 10.000 30.044 110.405 100.558 60.000 10.080 110.000 20.873 90.020 150.684 70.000 70.075 110.496 80.363 90.651 140.000 10.000 20.425 90.648 50.000 100.669 100.914 50.741 90.009 150.200 80.864 80.000 10.000 100.560 80.000 70.357 130.233 120.633 100.408 110.411 40.320 150.242 50.440 80.598 130.047 40.205 70.940 100.139 100.000 10.372 30.138 80.191 80.495 100.618 120.624 80.321 110.595 40.496 60.499 80.000 30.000 10.340 110.014 50.032 60.136 40.000 40.903 80.279 40.601 90.198 40.345 100.849 110.260 40.000 10.573 130.072 150.060 50.000 40.000 10.089 60.838 40.775 30.125 100.381 100.752 130.274 50.517 120.032 140.841 40.000 50.354 130.000 10.047 50.000 30.439 120.787 20.252 30.000 10.512 150.507 150.158 150.717 110.000 80.000 10.337 110.483 120.570 10.853 70.614 70.121 100.070 90.229 60.000 10.732 100.773 10.193 30.000 90.606 60.791 50.000 10.593 80.000 130.010 50.000 10.574 150.000 20.000 10.507 110.554 80.361 100.136 120.608 30.948 70.304 70.593 100.533 70.011 150.634 110.000 10.060 30.821 40.613 120.797 90.000 10.799 100.036 120.782 130.000 10.609 70.423 20.133 160.647 110.213 15
AWCS0.305 130.508 130.225 130.142 100.463 130.063 120.195 80.000 30.000 60.000 10.467 30.551 10.504 80.773 60.764 130.142 130.029 160.000 30.626 120.100 100.000 90.360 120.179 140.507 120.137 140.006 80.300 110.000 10.000 30.172 70.364 140.512 70.000 10.056 130.000 20.865 130.093 40.634 160.000 70.071 120.396 140.296 150.876 80.000 10.000 20.373 130.436 150.063 90.749 20.877 90.721 110.131 40.124 130.804 140.000 10.000 100.515 110.010 60.452 90.252 90.578 130.417 80.179 160.484 80.171 70.337 130.606 110.000 80.115 90.937 130.142 80.000 10.008 110.000 140.157 150.484 130.402 160.501 140.339 80.553 70.529 20.478 120.000 30.000 10.404 90.001 90.022 110.077 90.000 40.894 120.219 60.628 70.093 140.305 130.886 10.233 70.000 10.603 80.112 50.023 90.000 40.000 10.000 100.741 60.664 80.097 140.253 130.782 100.264 100.523 100.154 10.707 150.000 50.411 70.000 10.000 70.000 30.332 150.000 40.000 70.000 10.602 60.595 90.185 120.656 150.159 50.000 10.355 100.424 140.154 140.729 140.516 110.220 90.620 30.084 120.000 10.707 130.651 120.173 50.014 80.381 160.582 140.000 10.619 20.049 110.000 70.000 10.702 40.000 20.000 10.302 150.489 140.317 120.334 80.392 70.922 130.254 120.533 130.394 120.129 140.613 140.000 10.000 120.820 50.649 100.749 120.000 10.782 130.282 60.863 50.000 10.288 150.006 100.220 100.633 130.542 3
Minkowski 34Dpermissive0.253 150.463 150.154 160.102 150.381 160.084 70.134 140.000 30.000 60.000 10.386 60.141 160.279 160.737 110.703 150.014 160.164 140.000 30.663 90.092 130.000 90.224 140.291 100.531 80.056 160.000 90.242 150.000 10.000 30.013 140.331 150.000 100.000 10.035 160.001 10.858 140.059 120.650 150.000 70.056 130.353 150.299 140.670 120.000 10.000 20.284 150.484 140.071 80.594 150.720 150.710 140.027 110.068 160.813 130.000 10.005 90.492 130.164 10.274 150.111 150.571 150.307 160.293 120.307 160.150 80.163 160.531 150.002 70.545 40.932 140.093 160.000 10.000 120.002 130.159 140.368 160.581 140.440 160.228 160.406 90.282 160.294 150.000 30.000 10.189 150.060 20.036 40.000 110.000 40.897 110.000 160.525 130.025 160.205 160.771 160.000 110.000 10.593 100.108 80.044 60.000 40.000 10.000 100.282 160.589 140.094 150.169 150.466 160.227 150.419 160.125 30.757 130.002 30.334 150.000 10.000 70.000 30.357 140.000 40.000 70.000 10.582 90.513 130.337 100.612 160.000 80.000 10.250 150.352 160.136 160.724 150.655 40.280 80.000 110.046 150.000 10.606 160.559 140.159 70.102 20.445 90.655 90.000 10.310 160.117 50.000 70.000 10.581 140.026 10.000 10.265 160.483 150.084 160.097 160.044 140.865 160.142 160.588 110.351 140.272 20.596 160.000 10.003 100.622 150.720 90.096 160.000 10.771 150.016 140.772 140.000 10.302 140.194 70.214 110.621 150.197 16
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CeCo0.340 60.551 80.247 120.181 50.475 120.057 140.142 110.000 30.000 60.000 10.387 50.463 50.499 90.924 20.774 110.213 50.257 120.000 30.546 140.100 100.006 80.615 10.177 160.534 70.246 50.000 90.400 40.000 10.338 10.006 150.484 40.609 30.000 10.083 100.000 20.873 90.089 50.661 130.000 70.048 140.560 30.408 60.892 70.000 10.000 20.586 10.616 80.000 100.692 70.900 70.721 110.162 10.228 50.860 100.000 10.000 100.575 40.083 30.550 30.347 40.624 120.410 100.360 80.740 20.109 110.321 140.660 70.000 80.121 80.939 120.143 70.000 10.400 10.003 120.190 100.564 50.652 90.615 100.421 30.304 130.579 10.547 40.000 30.000 10.296 130.000 100.030 80.096 70.000 40.916 50.037 120.551 110.171 80.376 70.865 60.286 30.000 10.633 40.102 100.027 80.011 30.000 10.000 100.474 130.742 50.133 70.311 120.824 80.242 120.503 130.068 70.828 80.000 50.429 60.000 10.063 40.000 30.781 10.000 40.000 70.000 10.665 30.633 60.450 50.818 20.000 80.000 10.429 40.532 70.226 120.825 100.510 120.377 40.709 20.079 130.000 10.753 50.683 70.102 150.063 40.401 150.620 130.000 10.619 20.000 130.000 70.000 10.595 120.000 20.000 10.345 130.564 50.411 70.603 10.384 80.945 90.266 100.643 50.367 130.304 10.663 90.000 10.010 70.726 140.767 70.898 30.000 10.784 120.435 10.861 60.000 10.447 110.000 140.257 60.656 100.377 9
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
ALS-MinkowskiNetcopyleft0.414 10.610 20.322 30.271 10.542 20.153 20.159 100.000 30.000 60.000 10.404 40.503 30.532 60.672 160.804 50.285 10.888 10.000 30.900 10.226 10.087 20.598 30.342 40.671 10.217 90.087 30.449 30.000 10.000 30.253 20.477 51.000 10.000 10.118 40.000 20.905 10.071 110.710 20.076 10.047 150.665 10.376 80.981 10.000 10.000 20.466 60.632 70.113 30.769 10.956 30.795 10.031 90.314 10.936 10.000 10.390 20.601 10.000 70.458 70.366 20.719 30.440 40.564 10.699 30.314 10.464 60.784 20.200 10.283 50.973 10.142 80.000 10.250 70.285 50.220 50.718 10.752 50.723 20.460 10.248 150.475 90.463 130.000 30.000 10.446 70.021 40.025 90.285 10.000 40.972 10.149 70.769 10.230 20.535 20.879 20.252 60.000 10.693 10.129 20.000 120.000 40.000 10.447 20.958 10.662 90.159 20.598 30.780 110.344 20.646 20.106 40.893 20.135 20.455 30.000 10.194 30.259 10.726 30.475 30.000 70.000 10.741 10.865 10.571 20.817 30.445 30.000 10.506 20.630 20.230 110.916 20.728 10.635 11.000 10.252 50.000 10.804 10.697 50.137 110.043 60.717 10.807 30.000 10.510 130.245 10.000 70.000 10.709 30.000 20.000 10.703 20.572 30.646 10.223 100.531 50.984 10.397 20.813 10.798 10.135 120.800 10.000 10.097 20.832 20.752 80.842 70.000 10.852 10.149 90.846 90.000 10.666 50.359 40.252 70.777 10.690 2
L3DETR-ScanNet_2000.336 70.533 100.279 50.155 90.508 50.073 100.101 160.000 30.058 50.000 10.294 130.233 130.548 40.927 10.788 100.264 20.463 100.000 30.638 110.098 120.014 70.411 110.226 120.525 100.225 80.010 70.397 50.000 10.000 30.192 50.380 130.598 40.000 10.117 50.000 20.883 50.082 70.689 40.000 70.032 160.549 50.417 50.910 50.000 10.000 20.448 80.613 90.000 100.697 60.960 20.759 40.158 20.293 20.883 60.000 10.312 30.583 30.079 40.422 100.068 160.660 70.418 70.298 110.430 100.114 100.526 40.776 30.051 30.679 10.946 60.152 60.000 10.183 80.000 140.211 60.511 90.409 150.565 110.355 70.448 80.512 40.557 20.000 30.000 10.420 80.000 100.007 160.104 60.000 40.125 160.330 20.514 140.146 110.321 120.860 80.174 90.000 10.629 50.075 120.000 120.000 40.000 10.002 90.671 80.712 70.141 60.339 110.856 40.261 110.529 90.067 80.835 50.000 50.369 110.000 10.259 20.000 30.629 50.000 40.487 10.000 10.579 100.646 30.107 160.720 100.122 60.000 10.333 130.505 90.303 90.908 30.503 140.565 20.074 80.324 20.000 10.740 70.661 100.109 130.000 90.427 120.563 160.000 10.579 100.108 70.000 70.000 10.664 50.000 20.000 10.641 70.539 100.416 60.515 20.256 100.940 120.312 50.209 160.620 30.138 110.636 100.000 10.000 120.775 120.861 50.765 110.000 10.801 90.119 110.860 70.000 10.687 20.001 130.192 130.679 80.699 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavgalarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D Scannet2000.388 10.542 10.357 10.237 10.610 10.091 10.125 50.000 10.000 10.000 10.065 30.668 10.451 11.000 10.955 10.640 10.500 10.039 10.125 20.063 20.409 10.311 20.291 10.609 30.266 10.000 10.163 10.000 10.008 10.044 20.496 11.000 10.000 10.018 20.000 10.756 10.573 10.808 20.000 10.010 10.042 30.130 30.552 10.042 10.000 11.000 10.725 40.750 10.883 11.000 10.832 40.024 20.107 10.614 30.226 10.250 10.628 20.792 10.677 20.400 10.741 10.278 10.511 10.077 50.111 10.313 20.715 20.302 10.017 30.200 20.000 10.188 10.000 10.178 20.736 11.000 10.615 10.514 10.409 20.380 50.600 10.000 10.000 10.400 10.013 20.254 10.381 10.000 10.123 40.400 10.839 10.258 10.463 10.926 10.265 10.000 10.857 20.099 10.021 20.500 10.027 10.028 11.000 10.502 50.016 10.076 40.500 10.612 10.578 10.005 20.597 20.194 10.497 10.000 10.500 10.000 20.323 40.000 11.000 10.000 10.748 10.708 20.050 40.890 21.000 10.008 20.151 30.301 11.000 11.000 10.792 30.945 11.000 10.511 10.004 20.753 10.776 20.287 20.020 20.003 40.974 30.033 10.412 50.000 10.000 20.000 20.667 10.000 10.000 10.491 10.676 20.352 10.335 10.060 20.822 50.527 21.000 10.517 10.606 10.853 10.000 10.004 10.806 11.000 10.727 10.000 10.042 20.739 20.000 10.399 30.391 10.504 10.591 10.571 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
TD3D Scannet200permissive0.320 20.501 20.264 20.164 20.506 30.062 20.500 10.000 10.000 10.000 10.208 10.431 20.252 31.000 10.733 30.587 20.000 20.008 20.000 30.106 10.000 20.356 10.123 40.686 10.101 20.000 10.152 20.000 10.000 20.226 10.280 30.000 20.000 10.250 10.000 10.619 20.061 30.841 10.000 10.000 20.167 10.194 10.333 20.000 20.000 10.667 20.820 10.250 30.790 41.000 10.879 20.077 10.094 30.708 10.217 20.049 20.634 10.792 10.331 40.033 50.716 20.159 20.396 20.331 40.099 20.415 10.842 10.000 20.458 10.542 10.000 10.101 20.000 10.218 10.513 20.500 20.458 20.104 20.516 10.456 10.268 40.000 10.000 10.400 10.022 10.233 20.143 20.000 10.677 10.400 10.504 50.095 30.083 50.890 20.061 20.000 10.906 10.076 20.231 10.125 20.000 20.003 20.792 30.881 10.000 20.098 30.125 40.498 50.459 20.063 10.715 10.000 20.241 40.000 10.396 20.063 10.605 10.000 10.000 20.000 10.448 50.629 30.202 20.967 10.250 20.038 10.192 10.185 20.083 41.000 11.000 10.857 20.000 20.470 20.012 10.565 30.798 10.621 10.111 10.500 11.000 10.017 20.509 10.000 10.008 11.000 10.525 20.000 10.000 10.332 30.679 10.264 20.333 20.267 11.000 10.549 10.299 50.387 20.328 30.744 40.000 10.000 20.435 51.000 10.283 40.000 10.196 10.817 10.000 10.472 10.222 30.123 40.560 20.156 2
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
Minkowski 34D Inst.permissive0.203 50.369 40.134 50.078 50.479 40.003 40.500 10.000 10.000 10.000 10.100 20.371 30.300 20.667 40.746 20.400 30.000 20.000 30.000 30.031 30.000 20.074 40.165 30.413 50.000 40.000 10.070 40.000 10.000 20.000 30.221 50.000 20.000 10.000 30.000 10.372 50.070 20.706 40.000 10.000 20.000 50.123 40.033 50.000 20.000 10.422 50.732 30.000 40.778 51.000 10.845 30.000 30.090 40.636 20.000 30.000 30.158 40.000 30.250 50.050 40.693 30.123 40.051 50.385 30.009 40.118 50.406 50.000 20.000 40.200 20.000 10.000 30.000 10.133 40.307 50.500 20.251 40.000 40.281 30.402 40.317 20.000 10.000 10.000 30.000 30.060 40.000 30.000 10.396 20.200 30.669 20.021 40.218 40.720 50.000 30.000 10.696 30.025 40.000 30.000 30.000 20.000 30.125 50.596 20.000 20.191 10.500 10.595 20.369 40.000 30.500 40.000 20.143 50.000 10.000 30.000 20.226 50.000 10.000 20.000 10.701 20.511 40.000 50.851 40.000 30.000 30.150 40.052 50.100 30.981 30.500 40.286 30.000 20.000 50.000 30.545 40.522 50.250 30.000 30.000 50.522 50.000 30.500 20.000 10.000 20.000 20.282 50.000 10.000 10.178 50.382 40.018 50.056 40.000 30.997 30.107 50.677 20.313 40.000 40.726 50.000 10.000 20.583 40.903 40.200 50.000 10.000 30.333 40.000 10.442 20.083 40.109 50.387 40.000 5
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrain Inst.permissive0.209 40.361 50.157 40.085 40.506 20.007 30.500 10.000 10.000 10.000 10.000 50.093 50.221 40.667 40.524 50.400 30.000 20.000 30.000 30.004 40.000 20.000 50.109 50.589 40.000 40.000 10.059 50.000 10.000 20.000 30.322 20.000 20.000 10.000 30.000 10.405 30.055 40.700 50.000 10.000 20.028 40.091 50.083 30.000 20.000 10.667 20.768 20.000 40.807 31.000 10.776 50.000 30.000 50.340 50.000 30.000 30.103 50.000 30.750 10.200 30.634 50.053 50.246 30.677 20.006 50.198 30.432 40.000 20.000 40.050 40.000 10.000 30.000 10.111 50.356 40.500 20.188 50.000 40.220 40.448 20.050 50.000 10.000 10.000 30.000 30.032 50.000 30.000 10.396 20.000 40.573 40.000 50.228 30.747 40.000 30.000 10.573 50.021 50.000 30.000 30.000 20.000 30.500 40.573 30.000 20.000 50.125 40.592 30.364 50.000 30.450 50.000 20.364 20.000 10.000 30.000 20.340 30.000 10.000 20.000 10.610 30.833 10.221 10.702 50.000 30.000 30.135 50.094 40.125 20.571 40.500 40.143 50.000 20.125 30.000 30.618 20.667 40.115 50.000 30.125 21.000 10.000 30.500 20.000 10.000 20.000 20.502 40.000 10.000 10.312 40.248 50.050 40.000 50.000 30.997 30.420 30.500 40.149 50.451 20.748 20.000 10.000 20.636 30.667 50.600 20.000 10.000 30.278 50.000 10.333 40.000 50.294 20.381 50.110 3
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
LGround Inst.permissive0.246 30.413 30.170 30.130 30.455 50.003 50.500 10.000 10.000 10.000 10.017 40.333 40.111 51.000 10.681 40.400 30.000 20.000 31.000 10.003 50.000 20.167 30.190 20.637 20.067 30.000 10.081 30.000 10.000 20.000 30.264 40.000 20.000 10.000 30.000 10.387 40.031 50.754 30.000 10.000 20.151 20.135 20.056 40.000 20.000 10.582 40.589 50.500 20.815 21.000 10.903 10.000 30.097 20.588 40.000 30.000 30.234 30.000 30.500 30.400 10.682 40.156 30.159 40.750 10.046 30.125 40.660 30.000 20.200 20.000 50.000 10.000 30.000 10.164 30.402 30.500 20.373 30.025 30.143 50.426 30.317 20.000 10.000 10.000 30.000 30.063 30.000 30.000 10.000 50.000 40.575 30.250 20.241 20.772 30.000 30.000 10.653 40.034 30.000 30.000 30.000 20.000 31.000 10.561 40.000 20.100 20.500 10.541 40.452 30.000 30.581 30.000 20.364 20.000 10.000 30.000 20.571 20.000 10.000 20.000 10.568 40.511 40.167 30.857 30.000 30.000 30.164 20.112 30.000 50.530 51.000 10.286 30.000 20.125 30.000 30.464 50.706 30.208 40.000 30.125 20.744 40.000 30.500 20.000 10.000 20.000 20.511 30.000 10.000 10.344 20.541 30.068 30.333 20.000 31.000 10.196 40.533 30.318 30.000 40.748 30.000 10.000 20.690 21.000 10.400 30.000 10.000 30.667 30.000 10.333 40.333 20.270 30.399 30.083 4
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 100.812 210.854 70.770 120.856 140.555 150.943 10.660 240.735 20.979 10.606 70.492 10.792 40.934 30.841 20.819 50.716 80.947 100.906 10.822 1
PTv3 ScanNet0.794 20.941 30.813 200.851 90.782 60.890 30.597 10.916 50.696 90.713 50.979 10.635 20.384 30.793 30.907 100.821 50.790 330.696 130.967 30.903 20.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
DITR ScanNet0.793 30.811 390.852 20.889 10.774 90.907 10.592 20.927 30.719 10.718 30.961 170.652 10.348 120.817 10.927 50.795 90.824 20.749 10.948 90.887 70.771 11
PonderV20.785 40.978 10.800 290.833 260.788 40.853 190.545 190.910 80.713 20.705 60.979 10.596 90.390 20.769 150.832 440.821 50.792 320.730 20.975 10.897 50.785 6
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 10.843 180.781 70.858 130.575 70.831 360.685 150.714 40.979 10.594 100.310 290.801 20.892 180.841 20.819 50.723 50.940 150.887 70.725 27
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 210.818 150.836 230.790 30.875 50.576 60.905 90.704 60.739 10.969 110.611 30.349 110.756 250.958 10.702 480.805 160.708 90.916 350.898 40.801 3
TTT-KD0.773 70.646 940.818 150.809 380.774 90.878 40.581 30.943 10.687 130.704 70.978 50.607 60.336 180.775 110.912 80.838 40.823 30.694 140.967 30.899 30.794 5
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 70.771 110.840 330.564 110.900 110.686 140.677 140.961 170.537 340.348 120.769 150.903 120.785 130.815 80.676 250.939 160.880 130.772 10
PPT-SpUNet-Joint0.766 90.932 50.794 350.829 280.751 250.854 170.540 230.903 100.630 370.672 170.963 150.565 240.357 90.788 50.900 140.737 280.802 170.685 190.950 70.887 70.780 7
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormerpermissive0.766 90.925 70.808 250.849 110.786 50.846 290.566 100.876 180.690 110.674 160.960 190.576 200.226 700.753 270.904 110.777 150.815 80.722 60.923 300.877 160.776 9
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CU-Hybrid Net0.764 110.924 80.819 130.840 200.757 200.853 190.580 40.848 290.709 40.643 270.958 230.587 150.295 360.753 270.884 220.758 220.815 80.725 40.927 260.867 250.743 18
OccuSeg+Semantic0.764 110.758 600.796 330.839 210.746 280.907 10.562 120.850 280.680 170.672 170.978 50.610 40.335 200.777 90.819 480.847 10.830 10.691 160.972 20.885 100.727 25
O-CNNpermissive0.762 130.924 80.823 80.844 170.770 120.852 210.577 50.847 310.711 30.640 310.958 230.592 110.217 760.762 200.888 190.758 220.813 120.726 30.932 240.868 240.744 17
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 770.789 400.843 180.762 160.856 140.562 120.920 40.657 270.658 210.958 230.589 130.337 170.782 60.879 230.787 110.779 380.678 210.926 280.880 130.799 4
DTC0.757 150.843 270.820 110.847 140.791 20.862 110.511 360.870 200.707 50.652 230.954 380.604 80.279 470.760 210.942 20.734 290.766 470.701 120.884 570.874 220.736 19
OA-CNN-L_ScanNet200.756 160.783 460.826 60.858 50.776 80.837 360.548 180.896 140.649 290.675 150.962 160.586 160.335 200.771 140.802 520.770 180.787 350.691 160.936 190.880 130.761 13
PNE0.755 170.786 440.835 50.834 250.758 180.849 240.570 90.836 350.648 300.668 190.978 50.581 190.367 70.683 380.856 320.804 70.801 210.678 210.961 50.889 60.716 32
P. Hermosilla: Point Neighborhood Embeddings.
ConDaFormer0.755 170.927 60.822 90.836 230.801 10.849 240.516 330.864 250.651 280.680 130.958 230.584 180.282 440.759 230.855 340.728 310.802 170.678 210.880 620.873 230.756 15
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
PointTransformerV20.752 190.742 680.809 240.872 20.758 180.860 120.552 160.891 160.610 440.687 80.960 190.559 280.304 320.766 180.926 60.767 190.797 250.644 360.942 130.876 190.722 29
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
DMF-Net0.752 190.906 130.793 370.802 440.689 430.825 490.556 140.867 210.681 160.602 470.960 190.555 300.365 80.779 80.859 290.747 250.795 290.717 70.917 340.856 330.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
BPNetcopyleft0.749 210.909 110.818 150.811 360.752 230.839 350.485 500.842 320.673 190.644 260.957 280.528 400.305 310.773 120.859 290.788 100.818 70.693 150.916 350.856 330.723 28
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
PointConvFormer0.749 210.793 420.790 380.807 400.750 270.856 140.524 290.881 170.588 560.642 300.977 90.591 120.274 500.781 70.929 40.804 70.796 260.642 370.947 100.885 100.715 33
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
MSP0.748 230.623 970.804 270.859 40.745 290.824 510.501 400.912 70.690 110.685 100.956 290.567 230.320 260.768 170.918 70.720 360.802 170.676 250.921 320.881 120.779 8
StratifiedFormerpermissive0.747 240.901 140.803 280.845 160.757 200.846 290.512 350.825 390.696 90.645 250.956 290.576 200.262 610.744 320.861 280.742 260.770 450.705 100.899 470.860 300.734 20
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
VMNetpermissive0.746 250.870 190.838 30.858 50.729 340.850 230.501 400.874 190.587 570.658 210.956 290.564 250.299 340.765 190.900 140.716 390.812 130.631 420.939 160.858 310.709 34
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
Virtual MVFusion0.746 250.771 540.819 130.848 130.702 400.865 100.397 880.899 120.699 70.664 200.948 580.588 140.330 220.746 310.851 380.764 200.796 260.704 110.935 200.866 260.728 23
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
DiffSeg3D20.745 270.725 770.814 190.837 220.751 250.831 430.514 340.896 140.674 180.684 110.960 190.564 250.303 330.773 120.820 470.713 420.798 240.690 180.923 300.875 200.757 14
Retro-FPN0.744 280.842 280.800 290.767 580.740 300.836 380.541 210.914 60.672 200.626 350.958 230.552 310.272 520.777 90.886 210.696 490.801 210.674 280.941 140.858 310.717 30
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 290.620 980.799 320.849 110.730 330.822 530.493 470.897 130.664 210.681 120.955 320.562 270.378 40.760 210.903 120.738 270.801 210.673 290.907 390.877 160.745 16
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
LRPNet0.742 300.816 360.806 260.807 400.752 230.828 470.575 70.839 340.699 70.637 320.954 380.520 430.320 260.755 260.834 420.760 210.772 420.676 250.915 370.862 280.717 30
SAT0.742 300.860 220.765 520.819 310.769 140.848 260.533 250.829 370.663 220.631 340.955 320.586 160.274 500.753 270.896 160.729 300.760 530.666 310.921 320.855 350.733 21
LargeKernel3D0.739 320.909 110.820 110.806 420.740 300.852 210.545 190.826 380.594 550.643 270.955 320.541 330.263 600.723 360.858 310.775 170.767 460.678 210.933 220.848 400.694 39
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
MinkowskiNetpermissive0.736 330.859 230.818 150.832 270.709 380.840 330.521 310.853 270.660 240.643 270.951 480.544 320.286 420.731 340.893 170.675 580.772 420.683 200.874 690.852 380.727 25
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
RPN0.736 330.776 500.790 380.851 90.754 220.854 170.491 490.866 230.596 540.686 90.955 320.536 350.342 150.624 530.869 250.787 110.802 170.628 430.927 260.875 200.704 36
IPCA0.731 350.890 150.837 40.864 30.726 350.873 60.530 280.824 400.489 900.647 240.978 50.609 50.336 180.624 530.733 610.758 220.776 400.570 680.949 80.877 160.728 23
PointTransformer++0.725 360.727 760.811 230.819 310.765 150.841 320.502 390.814 450.621 400.623 370.955 320.556 290.284 430.620 550.866 260.781 140.757 570.648 340.932 240.862 280.709 34
SparseConvNet0.725 360.647 930.821 100.846 150.721 360.869 70.533 250.754 610.603 500.614 390.955 320.572 220.325 240.710 370.870 240.724 340.823 30.628 430.934 210.865 270.683 42
MatchingNet0.724 380.812 380.812 210.810 370.735 320.834 400.495 460.860 260.572 640.602 470.954 380.512 450.280 460.757 240.845 400.725 330.780 370.606 530.937 180.851 390.700 38
INS-Conv-semantic0.717 390.751 630.759 550.812 350.704 390.868 80.537 240.842 320.609 460.608 430.953 420.534 370.293 370.616 560.864 270.719 380.793 300.640 380.933 220.845 440.663 48
PointMetaBase0.714 400.835 290.785 410.821 290.684 450.846 290.531 270.865 240.614 410.596 510.953 420.500 480.246 660.674 390.888 190.692 500.764 490.624 450.849 840.844 450.675 44
contrastBoundarypermissive0.705 410.769 570.775 460.809 380.687 440.820 560.439 760.812 460.661 230.591 530.945 660.515 440.171 940.633 500.856 320.720 360.796 260.668 300.889 540.847 410.689 40
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 420.774 520.800 290.793 490.760 170.847 280.471 540.802 490.463 970.634 330.968 130.491 510.271 540.726 350.910 90.706 440.815 80.551 800.878 630.833 460.570 80
RFCR0.702 430.889 160.745 660.813 340.672 480.818 600.493 470.815 440.623 380.610 410.947 600.470 600.249 650.594 590.848 390.705 450.779 380.646 350.892 520.823 520.611 63
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 440.825 330.796 330.723 650.716 370.832 420.433 780.816 420.634 350.609 420.969 110.418 860.344 140.559 710.833 430.715 400.808 150.560 740.902 440.847 410.680 43
JSENetpermissive0.699 450.881 180.762 530.821 290.667 490.800 720.522 300.792 520.613 420.607 440.935 860.492 500.205 810.576 640.853 360.691 520.758 550.652 330.872 720.828 490.649 52
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 460.743 670.794 350.655 880.684 450.822 530.497 450.719 710.622 390.617 380.977 90.447 730.339 160.750 300.664 770.703 470.790 330.596 580.946 120.855 350.647 53
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 470.732 720.772 470.786 500.677 470.866 90.517 320.848 290.509 830.626 350.952 460.536 350.225 720.545 770.704 680.689 550.810 140.564 730.903 430.854 370.729 22
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 480.884 170.754 590.795 470.647 560.818 600.422 800.802 490.612 430.604 450.945 660.462 630.189 890.563 700.853 360.726 320.765 480.632 410.904 410.821 550.606 67
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 490.704 830.741 700.754 620.656 510.829 450.501 400.741 660.609 460.548 610.950 520.522 420.371 50.633 500.756 560.715 400.771 440.623 460.861 800.814 580.658 49
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 500.866 200.748 630.819 310.645 580.794 750.450 660.802 490.587 570.604 450.945 660.464 620.201 840.554 730.840 410.723 350.732 670.602 560.907 390.822 540.603 70
KP-FCNN0.684 510.847 260.758 570.784 520.647 560.814 630.473 530.772 550.605 480.594 520.935 860.450 710.181 920.587 600.805 510.690 530.785 360.614 490.882 590.819 560.632 59
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
VACNN++0.684 510.728 750.757 580.776 550.690 410.804 700.464 590.816 420.577 630.587 540.945 660.508 470.276 490.671 400.710 660.663 630.750 610.589 630.881 600.832 480.653 51
DGNet0.684 510.712 820.784 420.782 540.658 500.835 390.499 440.823 410.641 320.597 500.950 520.487 530.281 450.575 650.619 810.647 710.764 490.620 480.871 750.846 430.688 41
PointContrast_LA_SEM0.683 540.757 610.784 420.786 500.639 600.824 510.408 830.775 540.604 490.541 630.934 900.532 380.269 560.552 740.777 540.645 740.793 300.640 380.913 380.824 510.671 45
Superpoint Network0.683 540.851 250.728 740.800 460.653 530.806 680.468 560.804 470.572 640.602 470.946 630.453 700.239 690.519 820.822 450.689 550.762 520.595 600.895 500.827 500.630 60
VI-PointConv0.676 560.770 560.754 590.783 530.621 640.814 630.552 160.758 590.571 660.557 590.954 380.529 390.268 580.530 800.682 720.675 580.719 700.603 550.888 550.833 460.665 47
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 570.789 430.748 630.763 600.635 620.814 630.407 850.747 630.581 610.573 560.950 520.484 540.271 540.607 570.754 570.649 680.774 410.596 580.883 580.823 520.606 67
SALANet0.670 580.816 360.770 500.768 570.652 540.807 670.451 630.747 630.659 260.545 620.924 960.473 590.149 1040.571 670.811 500.635 770.746 620.623 460.892 520.794 710.570 80
O3DSeg0.668 590.822 340.771 490.496 1080.651 550.833 410.541 210.761 580.555 720.611 400.966 140.489 520.370 60.388 1020.580 840.776 160.751 590.570 680.956 60.817 570.646 54
PointASNLpermissive0.666 600.703 840.781 440.751 640.655 520.830 440.471 540.769 560.474 930.537 650.951 480.475 580.279 470.635 480.698 710.675 580.751 590.553 790.816 910.806 620.703 37
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PointConvpermissive0.666 600.781 470.759 550.699 730.644 590.822 530.475 520.779 530.564 690.504 790.953 420.428 800.203 830.586 620.754 570.661 640.753 580.588 640.902 440.813 600.642 55
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PPCNN++permissive0.663 620.746 650.708 770.722 660.638 610.820 560.451 630.566 990.599 520.541 630.950 520.510 460.313 280.648 450.819 480.616 820.682 850.590 620.869 760.810 610.656 50
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
DCM-Net0.658 630.778 480.702 800.806 420.619 650.813 660.468 560.693 790.494 860.524 710.941 780.449 720.298 350.510 840.821 460.675 580.727 690.568 710.826 890.803 650.637 57
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
MVF-GNN0.658 630.558 1050.751 610.655 880.690 410.722 970.453 620.867 210.579 620.576 550.893 1080.523 410.293 370.733 330.571 860.692 500.659 920.606 530.875 660.804 640.668 46
HPGCNN0.656 650.698 860.743 680.650 900.564 820.820 560.505 380.758 590.631 360.479 830.945 660.480 560.226 700.572 660.774 550.690 530.735 650.614 490.853 830.776 860.597 73
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 660.752 620.734 720.664 860.583 770.815 620.399 870.754 610.639 330.535 670.942 760.470 600.309 300.665 410.539 880.650 670.708 750.635 400.857 820.793 730.642 55
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 670.778 480.731 730.699 730.577 780.829 450.446 680.736 670.477 920.523 730.945 660.454 670.269 560.484 920.749 600.618 800.738 630.599 570.827 880.792 760.621 62
PointConv-SFPN0.641 680.776 500.703 790.721 670.557 850.826 480.451 630.672 840.563 700.483 820.943 750.425 830.162 990.644 460.726 620.659 650.709 740.572 670.875 660.786 810.559 86
MVPNetpermissive0.641 680.831 300.715 750.671 830.590 730.781 810.394 890.679 810.642 310.553 600.937 830.462 630.256 620.649 440.406 1020.626 780.691 820.666 310.877 640.792 760.608 66
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 700.717 810.701 810.692 760.576 790.801 710.467 580.716 720.563 700.459 890.953 420.429 790.169 960.581 630.854 350.605 830.710 720.550 810.894 510.793 730.575 78
FPConvpermissive0.639 710.785 450.760 540.713 710.603 680.798 730.392 900.534 1040.603 500.524 710.948 580.457 650.250 640.538 780.723 640.598 870.696 800.614 490.872 720.799 660.567 83
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 720.797 410.769 510.641 960.590 730.820 560.461 600.537 1030.637 340.536 660.947 600.388 930.206 800.656 420.668 750.647 710.732 670.585 650.868 770.793 730.473 106
PointSPNet0.637 730.734 710.692 880.714 700.576 790.797 740.446 680.743 650.598 530.437 940.942 760.403 890.150 1030.626 520.800 530.649 680.697 790.557 770.846 850.777 850.563 84
SConv0.636 740.830 310.697 840.752 630.572 810.780 830.445 700.716 720.529 760.530 680.951 480.446 740.170 950.507 870.666 760.636 760.682 850.541 870.886 560.799 660.594 74
Supervoxel-CNN0.635 750.656 910.711 760.719 680.613 660.757 920.444 730.765 570.534 750.566 570.928 940.478 570.272 520.636 470.531 900.664 620.645 960.508 940.864 790.792 760.611 63
joint point-basedpermissive0.634 760.614 990.778 450.667 850.633 630.825 490.420 810.804 470.467 950.561 580.951 480.494 490.291 390.566 680.458 970.579 930.764 490.559 760.838 860.814 580.598 72
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 770.731 730.688 910.675 800.591 720.784 800.444 730.565 1000.610 440.492 800.949 560.456 660.254 630.587 600.706 670.599 860.665 910.612 520.868 770.791 790.579 77
3DSM_DMMF0.631 780.626 960.745 660.801 450.607 670.751 930.506 370.729 700.565 680.491 810.866 1110.434 750.197 870.595 580.630 800.709 430.705 770.560 740.875 660.740 960.491 101
PointNet2-SFPN0.631 780.771 540.692 880.672 810.524 900.837 360.440 750.706 770.538 740.446 910.944 720.421 850.219 750.552 740.751 590.591 890.737 640.543 860.901 460.768 880.557 87
APCF-Net0.631 780.742 680.687 930.672 810.557 850.792 780.408 830.665 850.545 730.508 760.952 460.428 800.186 900.634 490.702 690.620 790.706 760.555 780.873 700.798 680.581 76
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
FusionAwareConv0.630 810.604 1010.741 700.766 590.590 730.747 940.501 400.734 680.503 850.527 690.919 1000.454 670.323 250.550 760.420 1010.678 570.688 830.544 840.896 490.795 700.627 61
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 820.800 400.625 1040.719 680.545 870.806 680.445 700.597 930.448 1000.519 740.938 820.481 550.328 230.489 910.499 950.657 660.759 540.592 610.881 600.797 690.634 58
SegGroup_sempermissive0.627 830.818 350.747 650.701 720.602 690.764 890.385 940.629 900.490 880.508 760.931 930.409 880.201 840.564 690.725 630.618 800.692 810.539 880.873 700.794 710.548 90
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 840.830 310.694 860.757 610.563 830.772 870.448 670.647 880.520 790.509 750.949 560.431 780.191 880.496 890.614 820.647 710.672 890.535 900.876 650.783 820.571 79
dtc_net0.625 840.703 840.751 610.794 480.535 880.848 260.480 510.676 830.528 770.469 860.944 720.454 670.004 1170.464 940.636 790.704 460.758 550.548 830.924 290.787 800.492 100
HPEIN0.618 860.729 740.668 940.647 920.597 710.766 880.414 820.680 800.520 790.525 700.946 630.432 760.215 770.493 900.599 830.638 750.617 1010.570 680.897 480.806 620.605 69
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 870.858 240.772 470.489 1090.532 890.792 780.404 860.643 890.570 670.507 780.935 860.414 870.046 1140.510 840.702 690.602 850.705 770.549 820.859 810.773 870.534 93
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 880.760 590.667 950.649 910.521 910.793 760.457 610.648 870.528 770.434 960.947 600.401 900.153 1020.454 950.721 650.648 700.717 710.536 890.904 410.765 890.485 102
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 890.634 950.743 680.697 750.601 700.781 810.437 770.585 960.493 870.446 910.933 910.394 910.011 1160.654 430.661 780.603 840.733 660.526 910.832 870.761 910.480 103
LAP-D0.594 900.720 790.692 880.637 970.456 1010.773 860.391 920.730 690.587 570.445 930.940 800.381 940.288 400.434 980.453 990.591 890.649 940.581 660.777 950.749 950.610 65
DPC0.592 910.720 790.700 820.602 1010.480 970.762 910.380 950.713 750.585 600.437 940.940 800.369 960.288 400.434 980.509 940.590 910.639 990.567 720.772 970.755 930.592 75
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 920.766 580.659 990.683 780.470 1000.740 960.387 930.620 920.490 880.476 840.922 980.355 990.245 670.511 830.511 930.571 940.643 970.493 980.872 720.762 900.600 71
ROSMRF0.580 930.772 530.707 780.681 790.563 830.764 890.362 970.515 1050.465 960.465 880.936 850.427 820.207 790.438 960.577 850.536 970.675 880.486 990.723 1030.779 830.524 96
SD-DETR0.576 940.746 650.609 1080.445 1130.517 920.643 1080.366 960.714 740.456 980.468 870.870 1100.432 760.264 590.558 720.674 730.586 920.688 830.482 1000.739 1010.733 980.537 92
SQN_0.1%0.569 950.676 880.696 850.657 870.497 930.779 840.424 790.548 1010.515 810.376 1010.902 1070.422 840.357 90.379 1030.456 980.596 880.659 920.544 840.685 1060.665 1090.556 88
TextureNetpermissive0.566 960.672 900.664 960.671 830.494 950.719 980.445 700.678 820.411 1060.396 990.935 860.356 980.225 720.412 1000.535 890.565 950.636 1000.464 1020.794 940.680 1060.568 82
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 970.648 920.700 820.770 560.586 760.687 1020.333 1010.650 860.514 820.475 850.906 1040.359 970.223 740.340 1050.442 1000.422 1080.668 900.501 950.708 1040.779 830.534 93
Pointnet++ & Featurepermissive0.557 980.735 700.661 980.686 770.491 960.744 950.392 900.539 1020.451 990.375 1020.946 630.376 950.205 810.403 1010.356 1050.553 960.643 970.497 960.824 900.756 920.515 97
GMLPs0.538 990.495 1100.693 870.647 920.471 990.793 760.300 1040.477 1060.505 840.358 1040.903 1060.327 1020.081 1110.472 930.529 910.448 1060.710 720.509 920.746 990.737 970.554 89
PanopticFusion-label0.529 1000.491 1110.688 910.604 1000.386 1060.632 1090.225 1140.705 780.434 1030.293 1100.815 1120.348 1000.241 680.499 880.669 740.507 990.649 940.442 1080.796 930.602 1130.561 85
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1010.676 880.591 1110.609 980.442 1020.774 850.335 1000.597 930.422 1050.357 1050.932 920.341 1010.094 1100.298 1070.528 920.473 1040.676 870.495 970.602 1120.721 1010.349 113
Online SegFusion0.515 1020.607 1000.644 1020.579 1030.434 1030.630 1100.353 980.628 910.440 1010.410 970.762 1160.307 1040.167 970.520 810.403 1030.516 980.565 1040.447 1060.678 1070.701 1030.514 98
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1030.558 1050.608 1090.424 1150.478 980.690 1010.246 1100.586 950.468 940.450 900.911 1020.394 910.160 1000.438 960.212 1120.432 1070.541 1100.475 1010.742 1000.727 990.477 104
PCNN0.498 1040.559 1040.644 1020.560 1050.420 1050.711 1000.229 1120.414 1070.436 1020.352 1060.941 780.324 1030.155 1010.238 1120.387 1040.493 1000.529 1110.509 920.813 920.751 940.504 99
Weakly-Openseg v30.489 1050.749 640.664 960.646 940.496 940.559 1140.122 1170.577 970.257 1170.364 1030.805 1130.198 1150.096 1090.510 840.496 960.361 1120.563 1050.359 1150.777 950.644 1100.532 95
3DMV0.484 1060.484 1120.538 1130.643 950.424 1040.606 1130.310 1020.574 980.433 1040.378 1000.796 1140.301 1050.214 780.537 790.208 1130.472 1050.507 1140.413 1110.693 1050.602 1130.539 91
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1070.577 1030.611 1070.356 1170.321 1140.715 990.299 1060.376 1110.328 1130.319 1080.944 720.285 1070.164 980.216 1150.229 1100.484 1020.545 1090.456 1040.755 980.709 1020.475 105
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1080.679 870.604 1100.578 1040.380 1070.682 1030.291 1070.106 1170.483 910.258 1150.920 990.258 1110.025 1150.231 1140.325 1060.480 1030.560 1070.463 1030.725 1020.666 1080.231 117
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1090.474 1130.623 1050.463 1110.366 1090.651 1060.310 1020.389 1100.349 1110.330 1070.937 830.271 1090.126 1060.285 1080.224 1110.350 1140.577 1030.445 1070.625 1100.723 1000.394 109
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1100.548 1070.548 1120.597 1020.363 1100.628 1110.300 1040.292 1120.374 1080.307 1090.881 1090.268 1100.186 900.238 1120.204 1140.407 1090.506 1150.449 1050.667 1080.620 1120.462 107
SurfaceConvPF0.442 1100.505 1090.622 1060.380 1160.342 1120.654 1050.227 1130.397 1090.367 1090.276 1120.924 960.240 1120.198 860.359 1040.262 1080.366 1100.581 1020.435 1090.640 1090.668 1070.398 108
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1120.437 1150.646 1010.474 1100.369 1080.645 1070.353 980.258 1140.282 1150.279 1110.918 1010.298 1060.147 1050.283 1090.294 1070.487 1010.562 1060.427 1100.619 1110.633 1110.352 112
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1130.525 1080.647 1000.522 1060.324 1130.488 1170.077 1180.712 760.353 1100.401 980.636 1180.281 1080.176 930.340 1050.565 870.175 1180.551 1080.398 1120.370 1180.602 1130.361 111
SPLAT Netcopyleft0.393 1140.472 1140.511 1140.606 990.311 1150.656 1040.245 1110.405 1080.328 1130.197 1160.927 950.227 1140.000 1190.001 1190.249 1090.271 1170.510 1120.383 1140.593 1130.699 1040.267 115
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1150.297 1170.491 1150.432 1140.358 1110.612 1120.274 1080.116 1160.411 1060.265 1130.904 1050.229 1130.079 1120.250 1100.185 1150.320 1150.510 1120.385 1130.548 1140.597 1160.394 109
PointNet++permissive0.339 1160.584 1020.478 1160.458 1120.256 1170.360 1180.250 1090.247 1150.278 1160.261 1140.677 1170.183 1160.117 1070.212 1160.145 1170.364 1110.346 1180.232 1180.548 1140.523 1170.252 116
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
SSC-UNetpermissive0.308 1170.353 1160.290 1180.278 1180.166 1180.553 1150.169 1160.286 1130.147 1180.148 1180.908 1030.182 1170.064 1130.023 1180.018 1190.354 1130.363 1160.345 1160.546 1160.685 1050.278 114
ScanNetpermissive0.306 1180.203 1180.366 1170.501 1070.311 1150.524 1160.211 1150.002 1190.342 1120.189 1170.786 1150.145 1180.102 1080.245 1110.152 1160.318 1160.348 1170.300 1170.460 1170.437 1180.182 118
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1190.000 1190.041 1190.172 1190.030 1190.062 1190.001 1190.035 1180.004 1190.051 1190.143 1190.019 1190.003 1180.041 1170.050 1180.003 1190.054 1190.018 1190.005 1190.264 1190.082 119


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PointRel0.816 11.000 10.971 70.908 60.743 20.923 60.573 60.714 220.695 170.734 80.747 20.725 100.809 11.000 10.814 80.899 30.820 31.000 10.610 16
: Relation3D (PointRel): Enhancing Relation Modeling for Point Cloud Instance Segmentation.
Spherical Mask(CtoF)0.812 21.000 10.973 60.852 130.718 50.917 80.574 40.677 290.748 100.729 120.715 60.795 20.809 11.000 10.831 40.854 90.787 101.000 10.638 5
EV3D0.811 31.000 10.968 80.852 130.717 60.921 70.574 50.677 290.748 100.730 110.703 110.795 20.809 11.000 10.831 40.854 90.778 141.000 10.638 6
SIM3D0.803 41.000 10.967 90.863 120.692 170.924 50.552 100.732 210.667 210.732 100.662 150.796 10.789 91.000 10.803 90.864 60.766 191.000 10.643 4
OneFormer3Dcopyleft0.801 51.000 10.973 50.909 50.698 140.928 30.582 30.668 340.685 180.780 20.687 130.698 180.702 141.000 10.794 110.900 20.784 120.986 510.635 7
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
Competitor-SPFormer0.800 61.000 10.986 20.845 150.705 120.915 90.532 120.733 200.757 90.733 90.708 80.698 170.648 340.981 370.890 10.830 180.796 70.997 380.644 3
UniPerception0.800 61.000 10.930 110.872 100.727 40.862 230.454 180.764 130.820 10.746 60.706 90.750 50.772 100.926 440.764 170.818 260.826 10.997 380.660 2
InsSSM0.799 81.000 10.915 130.710 400.729 30.925 40.664 10.670 320.770 60.766 30.739 30.737 60.700 151.000 10.792 120.829 200.815 40.997 380.625 9
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
TST3D0.795 91.000 10.929 120.918 40.709 90.884 180.596 20.704 250.769 70.734 70.644 200.699 160.751 121.000 10.794 100.876 50.757 220.997 380.550 31
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
MG-Former0.791 101.000 10.980 40.837 180.626 250.897 110.543 110.759 150.800 50.766 40.659 160.769 40.697 181.000 10.791 130.707 470.791 91.000 10.610 15
ExtMask3D0.789 111.000 10.988 10.756 330.706 110.912 100.429 190.647 390.806 40.755 50.673 140.689 190.772 111.000 10.789 140.852 110.811 51.000 10.617 12
Queryformer0.787 121.000 10.933 100.601 490.754 10.886 160.558 90.661 360.767 80.665 180.716 50.639 240.808 51.000 10.844 30.897 40.804 61.000 10.624 10
MAFT0.786 131.000 10.894 180.807 220.694 160.893 140.486 140.674 310.740 120.786 10.704 100.727 90.739 131.000 10.707 230.849 130.756 231.000 10.685 1
KmaxOneFormerNetpermissive0.783 140.903 540.981 30.794 260.706 100.931 20.561 80.701 260.706 150.727 130.697 120.731 80.689 211.000 10.856 20.750 380.761 211.000 10.599 20
Mask3D0.780 151.000 10.786 420.716 380.696 150.885 170.500 130.714 220.810 30.672 170.715 60.679 200.809 11.000 10.831 40.833 170.787 101.000 10.602 18
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
SPFormerpermissive0.770 160.903 540.903 150.806 230.609 310.886 150.568 70.815 60.705 160.711 140.655 170.652 230.685 221.000 10.789 150.809 270.776 161.000 10.583 24
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
SoftGroup++0.769 171.000 10.803 350.937 10.684 180.865 200.213 340.870 20.664 220.571 240.758 10.702 140.807 61.000 10.653 300.902 10.792 81.000 10.626 8
SoftGrouppermissive0.761 181.000 10.808 310.845 150.716 70.862 220.243 310.824 40.655 240.620 190.734 40.699 150.791 80.981 370.716 210.844 140.769 171.000 10.594 22
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
ISBNetpermissive0.757 191.000 10.904 140.731 360.678 190.895 120.458 160.644 410.670 200.710 150.620 250.732 70.650 241.000 10.756 180.778 300.779 131.000 10.614 13
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
TD3Dpermissive0.751 201.000 10.774 430.867 110.621 270.934 10.404 200.706 240.812 20.605 220.633 230.626 250.690 201.000 10.640 320.820 230.777 151.000 10.612 14
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
PBNetpermissive0.747 211.000 10.818 270.837 190.713 80.844 250.457 170.647 390.711 140.614 200.617 270.657 220.650 241.000 10.692 240.822 220.765 201.000 10.595 21
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
GraphCut0.732 221.000 10.788 400.724 370.642 240.859 240.248 300.787 110.618 270.596 230.653 190.722 120.583 461.000 10.766 160.861 70.825 21.000 10.504 37
IPCA-Inst0.731 231.000 10.788 410.884 90.698 130.788 410.252 290.760 140.646 250.511 320.637 220.665 210.804 71.000 10.644 310.778 310.747 251.000 10.561 28
TopoSeg0.725 241.000 10.806 340.933 20.668 210.758 450.272 280.734 190.630 260.549 280.654 180.606 260.697 190.966 410.612 360.839 150.754 241.000 10.573 25
DKNet0.718 251.000 10.814 280.782 270.619 280.872 190.224 320.751 170.569 310.677 160.585 310.724 110.633 360.981 370.515 460.819 240.736 261.000 10.617 11
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
SSEC0.707 261.000 10.850 200.924 30.648 220.747 480.162 360.862 30.572 300.520 300.624 240.549 290.649 331.000 10.560 410.706 480.768 181.000 10.591 23
HAISpermissive0.699 271.000 10.849 210.820 200.675 200.808 350.279 260.757 160.465 370.517 310.596 290.559 280.600 401.000 10.654 290.767 330.676 300.994 470.560 29
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
SSTNetpermissive0.698 281.000 10.697 590.888 80.556 380.803 360.387 210.626 430.417 420.556 270.585 320.702 130.600 401.000 10.824 70.720 460.692 281.000 10.509 36
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
DualGroup0.694 291.000 10.799 370.811 210.622 260.817 300.376 220.805 90.590 290.487 360.568 350.525 330.650 240.835 540.600 370.829 190.655 331.000 10.526 33
SphereSeg0.680 301.000 10.856 190.744 340.618 290.893 130.151 370.651 380.713 130.537 290.579 340.430 430.651 231.000 10.389 570.744 410.697 270.991 490.601 19
DANCENET0.680 301.000 10.807 320.733 350.600 320.768 440.375 230.543 510.538 320.610 210.599 280.498 340.632 380.981 370.739 200.856 80.633 390.882 620.454 46
Box2Mask0.677 321.000 10.847 220.771 290.509 470.816 310.277 270.558 500.482 340.562 260.640 210.448 390.700 151.000 10.666 250.852 120.578 460.997 380.488 41
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
OccuSeg+instance0.672 331.000 10.758 510.682 420.576 360.842 260.477 150.504 570.524 330.567 250.585 330.451 380.557 481.000 10.751 190.797 280.563 491.000 10.467 45
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
Mask-Group0.664 341.000 10.822 260.764 320.616 300.815 320.139 410.694 280.597 280.459 400.566 360.599 270.600 400.516 640.715 220.819 250.635 371.000 10.603 17
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
INS-Conv-instance0.657 351.000 10.760 490.667 440.581 340.863 210.323 240.655 370.477 350.473 380.549 380.432 420.650 241.000 10.655 280.738 420.585 450.944 540.472 44
CSC-Pretrained0.648 361.000 10.810 290.768 300.523 450.813 330.143 400.819 50.389 450.422 490.511 420.443 400.650 241.000 10.624 340.732 430.634 381.000 10.375 53
PE0.645 371.000 10.773 450.798 250.538 400.786 420.088 490.799 100.350 490.435 470.547 390.545 300.646 350.933 430.562 400.761 360.556 540.997 380.501 39
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
RPGN0.643 381.000 10.758 500.582 550.539 390.826 290.046 540.765 120.372 470.436 460.588 300.539 320.650 241.000 10.577 380.750 390.653 350.997 380.495 40
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
Dyco3Dcopyleft0.641 391.000 10.841 230.893 70.531 420.802 370.115 460.588 480.448 390.438 440.537 410.430 440.550 490.857 460.534 440.764 350.657 320.987 500.568 26
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
GICN0.638 401.000 10.895 170.800 240.480 510.676 530.144 390.737 180.354 480.447 410.400 550.365 500.700 151.000 10.569 390.836 160.599 411.000 10.473 43
PointGroup0.636 411.000 10.765 460.624 460.505 490.797 380.116 450.696 270.384 460.441 420.559 370.476 360.596 431.000 10.666 250.756 370.556 530.997 380.513 35
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
DD-UNet+Group0.635 420.667 570.797 390.714 390.562 370.774 430.146 380.810 80.429 410.476 370.546 400.399 460.633 361.000 10.632 330.722 450.609 401.000 10.514 34
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
Mask3D_evaluation0.631 431.000 10.829 250.606 480.646 230.836 270.068 500.511 550.462 380.507 330.619 260.389 480.610 391.000 10.432 520.828 210.673 310.788 660.552 30
DENet0.629 441.000 10.797 380.608 470.589 330.627 570.219 330.882 10.310 510.402 540.383 570.396 470.650 241.000 10.663 270.543 650.691 291.000 10.568 27
3D-MPA0.611 451.000 10.833 240.765 310.526 440.756 460.136 430.588 480.470 360.438 450.432 510.358 520.650 240.857 460.429 530.765 340.557 521.000 10.430 48
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
OSIS0.605 461.000 10.801 360.599 500.535 410.728 500.286 250.436 610.679 190.491 340.433 490.256 540.404 610.857 460.620 350.724 440.510 591.000 10.539 32
AOIA0.601 471.000 10.761 480.687 410.485 500.828 280.008 610.663 350.405 440.405 530.425 520.490 350.596 430.714 570.553 430.779 290.597 420.992 480.424 50
PCJC0.578 481.000 10.810 300.583 540.449 540.813 340.042 550.603 460.341 500.490 350.465 460.410 450.650 240.835 540.264 630.694 520.561 500.889 590.504 38
SSEN0.575 491.000 10.761 470.473 570.477 520.795 390.066 510.529 530.658 230.460 390.461 470.380 490.331 630.859 450.401 560.692 540.653 341.000 10.348 55
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
RWSeg0.567 500.528 670.708 580.626 450.580 350.745 490.063 520.627 420.240 550.400 550.497 430.464 370.515 501.000 10.475 480.745 400.571 471.000 10.429 49
NeuralBF0.555 510.667 570.896 160.843 170.517 460.751 470.029 560.519 540.414 430.439 430.465 450.000 730.484 520.857 460.287 610.693 530.651 361.000 10.485 42
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
MTML0.549 521.000 10.807 330.588 530.327 590.647 550.004 630.815 70.180 580.418 500.364 590.182 570.445 551.000 10.442 510.688 550.571 481.000 10.396 51
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
ClickSeg_Instance0.539 531.000 10.621 620.300 600.530 430.698 510.127 440.533 520.222 560.430 480.400 540.365 500.574 470.938 420.472 490.659 570.543 550.944 540.347 56
One_Thing_One_Clickpermissive0.529 540.667 570.718 540.777 280.399 550.683 520.000 660.669 330.138 610.391 560.374 580.539 310.360 620.641 610.556 420.774 320.593 430.997 380.251 61
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Sparse R-CNN0.515 551.000 10.538 670.282 610.468 530.790 400.173 350.345 630.429 400.413 520.484 440.176 580.595 450.591 620.522 450.668 560.476 600.986 520.327 57
Occipital-SCS0.512 561.000 10.716 550.509 560.506 480.611 580.092 480.602 470.177 590.346 590.383 560.165 590.442 560.850 530.386 580.618 610.543 560.889 590.389 52
3D-BoNet0.488 571.000 10.672 610.590 520.301 610.484 680.098 470.620 440.306 520.341 600.259 630.125 610.434 580.796 560.402 550.499 670.513 580.909 580.439 47
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
PanopticFusion-inst0.478 580.667 570.712 570.595 510.259 640.550 640.000 660.613 450.175 600.250 650.434 480.437 410.411 600.857 460.485 470.591 640.267 700.944 540.359 54
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
SPG_WSIS0.470 590.667 570.685 600.677 430.372 570.562 620.000 660.482 580.244 540.316 620.298 600.052 680.442 570.857 460.267 620.702 490.559 511.000 10.287 59
SALoss-ResNet0.459 601.000 10.737 530.159 710.259 630.587 600.138 420.475 590.217 570.416 510.408 530.128 600.315 640.714 570.411 540.536 660.590 440.873 630.304 58
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MASCpermissive0.447 610.528 670.555 650.381 580.382 560.633 560.002 640.509 560.260 530.361 580.432 500.327 530.451 540.571 630.367 590.639 590.386 610.980 530.276 60
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
SegGroup_inspermissive0.445 620.667 570.773 440.185 680.317 600.656 540.000 660.407 620.134 620.381 570.267 620.217 560.476 530.714 570.452 500.629 600.514 571.000 10.222 64
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
3D-SISpermissive0.382 631.000 10.432 700.245 630.190 650.577 610.013 600.263 650.033 680.320 610.240 640.075 640.422 590.857 460.117 680.699 500.271 690.883 610.235 63
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
Hier3Dcopyleft0.323 640.667 570.542 660.264 620.157 680.550 630.000 660.205 680.009 700.270 640.218 650.075 640.500 510.688 600.007 740.698 510.301 660.459 710.200 65
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
UNet-backbone0.319 650.667 570.715 560.233 640.189 660.479 690.008 610.218 660.067 670.201 670.173 660.107 620.123 690.438 650.150 650.615 620.355 620.916 570.093 73
R-PointNet0.306 660.500 690.405 710.311 590.348 580.589 590.054 530.068 710.126 630.283 630.290 610.028 690.219 670.214 680.331 600.396 710.275 670.821 650.245 62
Region-18class0.284 670.250 730.751 520.228 660.270 620.521 650.000 660.468 600.008 720.205 660.127 670.000 730.068 710.070 720.262 640.652 580.323 640.740 670.173 66
SemRegionNet-20cls0.250 680.333 700.613 630.229 650.163 670.493 660.000 660.304 640.107 640.147 700.100 690.052 670.231 650.119 700.039 700.445 690.325 630.654 680.141 69
3D-BEVIS0.248 690.667 570.566 640.076 720.035 740.394 720.027 580.035 730.098 650.099 720.030 730.025 700.098 700.375 670.126 670.604 630.181 720.854 640.171 67
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
tmp0.248 690.667 570.437 690.188 670.153 690.491 670.000 660.208 670.094 660.153 690.099 700.057 660.217 680.119 700.039 700.466 680.302 650.640 690.140 70
Sem_Recon_ins0.227 710.764 560.486 680.069 730.098 710.426 710.017 590.067 720.015 690.172 680.100 680.096 630.054 730.183 690.135 660.366 720.260 710.614 700.168 68
ASIS0.199 720.333 700.253 730.167 700.140 700.438 700.000 660.177 690.008 710.121 710.069 710.004 720.231 660.429 660.036 720.445 700.273 680.333 730.119 72
Sgpn_scannet0.143 730.208 740.390 720.169 690.065 720.275 730.029 570.069 700.000 730.087 730.043 720.014 710.027 740.000 730.112 690.351 730.168 730.438 720.138 71
MaskRCNN 2d->3d Proj0.058 740.333 700.002 740.000 740.053 730.002 740.002 650.021 740.000 730.045 740.024 740.238 550.065 720.000 730.014 730.107 740.020 740.110 740.006 74


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 20.512 10.422 170.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 30.481 20.451 130.769 40.656 30.567 40.931 30.395 60.390 50.700 40.534 40.689 100.770 20.574 30.865 90.831 30.675 5
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MVF-GNN(2D)0.636 30.606 140.794 40.434 160.688 10.337 80.464 120.798 30.632 50.589 30.908 80.420 20.329 120.743 20.594 20.738 20.676 50.527 40.906 20.818 60.715 3
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 230.648 40.463 30.549 20.742 70.676 20.628 20.961 10.420 20.379 60.684 80.381 180.732 30.723 30.599 20.827 160.851 20.634 7
CMX0.613 50.681 80.725 120.502 120.634 60.297 180.478 100.830 20.651 40.537 70.924 40.375 70.315 140.686 70.451 140.714 50.543 210.504 60.894 70.823 50.688 4
DMMF_3d0.605 60.651 90.744 100.782 30.637 50.387 40.536 30.732 80.590 70.540 60.856 210.359 110.306 150.596 140.539 30.627 200.706 40.497 80.785 210.757 190.476 22
EMSANet0.600 70.716 40.746 90.395 180.614 90.382 50.523 40.713 110.571 110.503 100.922 60.404 50.397 40.655 90.400 160.626 210.663 60.469 130.900 40.827 40.577 14
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
MCA-Net0.595 80.533 200.756 80.746 40.590 100.334 100.506 70.670 150.587 80.500 120.905 100.366 100.352 90.601 130.506 80.669 160.648 90.501 70.839 150.769 150.516 21
RFBNet0.592 90.616 110.758 70.659 50.581 110.330 110.469 110.655 180.543 140.524 80.924 40.355 130.336 110.572 170.479 100.671 140.648 90.480 100.814 190.814 70.614 10
FAN_NV_RVC0.586 100.510 210.764 60.079 260.620 80.330 110.494 80.753 50.573 90.556 50.884 160.405 40.303 160.718 30.452 130.672 130.658 70.509 50.898 50.813 80.727 2
DCRedNet0.583 110.682 70.723 130.542 110.510 200.310 150.451 130.668 160.549 130.520 90.920 70.375 70.446 20.528 200.417 150.670 150.577 180.478 110.862 100.806 90.628 9
MIX6D_RVC0.582 120.695 50.687 170.225 210.632 70.328 130.550 10.748 60.623 60.494 150.890 140.350 150.254 230.688 60.454 120.716 40.597 170.489 90.881 80.768 160.575 15
SSMAcopyleft0.577 130.695 50.716 150.439 140.563 140.314 140.444 150.719 90.551 120.503 100.887 150.346 160.348 100.603 120.353 200.709 60.600 150.457 140.901 30.786 110.599 13
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
DMMF0.567 140.623 100.767 50.238 200.571 130.347 60.413 190.719 90.472 200.418 220.895 130.357 120.260 220.696 50.523 70.666 170.642 110.437 180.895 60.793 100.603 12
UNIV_CNP_RVC_UE0.566 150.569 190.686 190.435 150.524 170.294 190.421 180.712 120.543 140.463 170.872 170.320 170.363 80.611 110.477 110.686 110.627 120.443 170.862 100.775 140.639 6
EMSAFormer0.564 160.581 160.736 110.564 100.546 160.219 230.517 50.675 140.486 190.427 210.904 110.352 140.320 130.589 150.528 50.708 70.464 240.413 220.847 140.786 110.611 11
SN_RN152pyrx8_RVCcopyleft0.546 170.572 170.663 210.638 70.518 180.298 170.366 240.633 210.510 170.446 190.864 190.296 200.267 190.542 190.346 210.704 80.575 190.431 190.853 130.766 170.630 8
UDSSEG_RVC0.545 180.610 130.661 220.588 80.556 150.268 210.482 90.642 200.572 100.475 160.836 230.312 180.367 70.630 100.189 230.639 190.495 230.452 150.826 170.756 200.541 17
segfomer with 6d0.542 190.594 150.687 170.146 240.579 120.308 160.515 60.703 130.472 200.498 130.868 180.369 90.282 170.589 150.390 170.701 90.556 200.416 210.860 120.759 180.539 19
FuseNetpermissive0.535 200.570 180.681 200.182 220.512 190.290 200.431 160.659 170.504 180.495 140.903 120.308 190.428 30.523 210.365 190.676 120.621 140.470 120.762 220.779 130.541 17
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 210.613 120.722 140.418 170.358 260.337 80.370 230.479 240.443 220.368 240.907 90.207 230.213 250.464 240.525 60.618 220.657 80.450 160.788 200.721 230.408 25
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 220.481 240.612 230.579 90.456 220.343 70.384 210.623 220.525 160.381 230.845 220.254 220.264 210.557 180.182 240.581 240.598 160.429 200.760 230.661 250.446 24
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 230.505 220.709 160.092 250.427 230.241 220.411 200.654 190.385 260.457 180.861 200.053 260.279 180.503 220.481 90.645 180.626 130.365 240.748 240.725 220.529 20
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 240.490 230.581 240.289 190.507 210.067 260.379 220.610 230.417 240.435 200.822 250.278 210.267 190.503 220.228 220.616 230.533 220.375 230.820 180.729 210.560 16
Enet (reimpl)0.376 250.264 260.452 260.452 130.365 240.181 240.143 260.456 250.409 250.346 250.769 260.164 240.218 240.359 250.123 260.403 260.381 260.313 260.571 250.685 240.472 23
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 260.293 250.521 250.657 60.361 250.161 250.250 250.004 260.440 230.183 260.836 230.125 250.060 260.319 260.132 250.417 250.412 250.344 250.541 260.427 260.109 26
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EMSANet (Instance)0.241 10.401 10.439 10.085 10.242 10.220 10.081 10.289 20.117 20.121 10.182 10.126 10.346 10.181 20.181 20.358 10.156 10.675 20.131 1
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
UniDet_RVC0.205 20.381 20.323 30.037 30.226 30.177 30.063 20.277 30.120 10.067 30.131 30.074 30.317 20.080 30.235 10.289 30.141 30.678 10.080 3
FKNet0.204 30.334 30.358 20.038 20.234 20.184 20.025 30.318 10.042 40.088 20.141 20.053 40.300 30.207 10.171 30.292 20.149 20.636 30.109 2
MaskRCNN_ScanNetpermissive0.119 40.129 40.212 40.002 40.112 40.148 40.014 40.205 40.044 30.066 40.078 40.095 20.142 40.030 40.128 40.139 40.080 40.459 40.057 4
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg iouapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LAST-PCL-type0.738 10.250 31.000 10.895 11.000 11.000 11.000 10.500 11.000 10.500 20.842 10.000 20.941 10.667 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12
multi-taskpermissive0.646 20.500 11.000 10.789 20.333 30.667 31.000 10.500 11.000 11.000 10.778 20.000 20.833 20.000 3
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.556 30.500 10.938 30.778 30.667 21.000 10.250 30.500 10.750 30.333 30.500 40.000 20.812 30.200 2
SE-ResNeXt-SSMA0.355 40.000 50.684 40.696 40.200 50.500 40.200 40.500 10.429 40.200 40.545 30.111 10.556 40.000 3
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.231 50.200 40.481 50.346 50.250 40.250 50.000 50.500 10.333 50.000 50.357 50.000 20.286 50.000 3