Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail iouwallchairfloortabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OA-CNN-L_ScanNet2000.333 20.558 10.269 20.124 40.821 10.703 10.946 10.569 10.662 10.748 20.487 10.455 10.572 20.000 80.789 20.534 30.736 20.271 10.713 10.949 10.498 70.877 20.860 30.332 20.706 10.474 10.788 30.406 40.637 20.495 30.355 40.805 20.592 60.015 70.396 10.602 40.000 10.799 20.876 10.713 80.276 10.000 50.493 40.080 40.448 60.363 10.661 20.833 20.262 20.125 20.823 40.665 30.076 40.720 10.557 30.637 40.517 40.672 60.227 40.000 30.158 40.496 30.843 50.352 40.835 50.000 10.103 60.711 10.527 10.526 20.320 30.000 10.568 20.625 30.067 10.000 40.000 10.001 20.806 20.836 20.621 30.591 30.373 30.314 20.668 20.398 20.003 20.000 30.000 10.016 80.024 10.043 60.906 20.000 10.052 30.000 70.384 30.330 50.342 50.100 40.223 20.183 40.112 30.476 40.313 20.130 50.196 20.112 30.370 50.000 10.234 30.071 40.160 10.403 20.398 50.492 70.197 10.076 50.272 30.000 10.200 80.560 20.735 30.000 10.000 50.000 30.110 20.002 30.021 20.412 30.000 30.000 20.000 40.000 10.000 10.794 40.000 10.445 10.000 10.022 20.509 30.000 10.517 70.000 10.000 10.001 80.245 20.915 20.024 20.089 10.000 10.262 10.000 10.103 60.524 20.392 40.515 20.013 80.251 30.411 60.662 10.001 50.000 10.473 40.000 10.000 20.150 30.699 30.000 20.000 10.000 10.166 20.000 20.024 10.000 30.000 1
PPT-SpUNet-F.T.0.332 30.556 20.270 10.123 50.816 20.682 20.946 10.549 30.657 30.756 10.459 30.376 40.550 30.001 70.807 10.616 10.727 30.267 20.691 20.942 40.530 40.872 30.874 20.330 30.542 50.374 30.792 20.400 50.673 10.572 20.433 10.793 30.623 20.008 80.351 30.594 50.000 10.783 40.876 10.833 20.213 20.000 50.537 20.091 20.519 10.304 20.620 40.942 10.264 10.124 30.855 10.695 10.086 30.646 30.506 70.658 20.535 20.715 20.314 10.000 30.241 10.608 20.897 10.359 30.858 30.000 10.076 80.611 40.392 30.509 30.378 20.000 10.579 10.565 70.000 40.000 40.000 10.000 30.755 30.806 40.661 10.572 60.350 40.181 40.660 30.300 50.000 30.000 30.000 10.023 50.000 20.042 70.930 10.000 10.000 60.077 40.584 20.392 30.339 60.185 30.171 40.308 10.006 70.563 30.256 30.150 10.000 30.002 70.345 60.000 10.045 50.197 10.063 30.323 50.453 10.600 30.163 50.037 60.349 20.000 10.672 10.679 10.753 10.000 10.000 50.000 30.117 10.000 40.000 30.291 50.000 30.000 20.039 10.000 10.000 10.899 20.000 10.374 50.000 10.000 40.545 20.000 10.634 10.000 10.000 10.074 50.223 30.914 30.000 40.021 20.000 10.000 40.000 10.112 30.498 50.649 10.383 50.095 10.135 70.449 50.432 40.008 30.000 10.518 20.000 10.000 20.000 40.796 10.000 20.000 10.000 10.138 50.000 20.000 20.000 30.000 1
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training.
OctFormer ScanNet200permissive0.326 40.539 40.265 30.131 30.806 30.670 40.943 30.535 40.662 10.705 70.423 40.407 30.505 50.003 60.765 40.582 20.686 60.227 70.680 30.943 30.601 10.854 50.892 10.335 10.417 80.357 40.724 50.453 30.632 30.596 10.432 20.783 40.512 80.021 60.244 60.637 10.000 10.787 30.873 30.743 60.000 80.000 50.534 30.110 10.499 20.289 30.626 30.620 60.168 80.204 10.849 20.679 20.117 10.633 40.684 10.650 30.552 10.684 50.312 20.000 30.175 30.429 40.865 20.413 10.837 40.000 10.145 30.626 30.451 20.487 40.513 10.000 10.529 30.613 40.000 40.033 20.000 10.000 30.828 10.871 10.622 20.587 40.411 20.137 60.645 50.343 30.000 30.000 30.000 10.022 60.000 20.026 80.829 50.000 10.022 40.089 30.842 10.253 70.318 80.296 10.178 30.291 20.224 10.584 20.200 60.132 40.000 30.128 20.227 70.000 10.230 40.047 50.149 20.331 40.412 30.618 20.164 40.102 40.522 10.000 10.655 20.378 40.469 60.000 10.000 50.000 30.105 30.000 40.000 30.483 20.000 30.000 20.028 20.000 10.000 10.906 10.000 10.339 60.000 10.000 40.457 40.000 10.612 30.000 10.000 10.408 10.000 70.900 40.000 40.000 30.000 10.029 30.000 10.074 80.455 60.479 20.427 40.079 60.140 60.496 30.414 50.022 10.000 10.471 50.000 10.000 20.000 40.722 20.000 20.000 10.000 10.138 50.000 20.000 20.000 30.000 1
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CeCo0.340 10.551 30.247 40.181 10.784 40.661 50.939 40.564 20.624 40.721 30.484 20.429 20.575 10.027 40.774 30.503 50.753 10.242 40.656 40.945 20.534 20.865 40.860 30.177 80.616 30.400 20.818 10.579 10.615 40.367 50.408 30.726 60.633 10.162 10.360 20.619 20.000 10.828 10.873 30.924 10.109 50.083 20.564 10.057 80.475 40.266 40.781 10.767 30.257 30.100 50.825 30.663 40.048 80.620 60.551 40.595 60.532 30.692 40.246 30.000 30.213 20.615 10.861 40.376 20.900 10.000 10.102 70.660 20.321 60.547 10.226 40.000 10.311 40.742 10.011 30.006 30.000 10.000 30.546 80.824 30.345 50.665 10.450 10.435 10.683 10.411 10.338 10.000 30.000 10.030 40.000 20.068 40.892 30.000 10.063 20.000 70.257 40.304 60.387 30.079 60.228 10.190 30.000 80.586 10.347 10.133 30.000 30.037 40.377 40.000 10.384 20.006 70.003 50.421 10.410 40.643 10.171 30.121 20.142 70.000 10.510 60.447 30.474 50.000 10.000 50.286 10.083 40.000 40.000 30.603 10.096 10.063 10.000 40.000 10.000 10.898 30.000 10.429 20.000 10.400 10.550 10.000 10.633 20.000 10.000 10.377 20.000 70.916 10.000 40.000 30.000 10.000 40.000 10.102 70.499 40.296 50.463 30.089 40.304 10.740 10.401 70.010 20.000 10.560 10.000 10.000 20.709 10.652 40.000 20.000 10.000 10.143 30.000 20.000 20.609 10.000 1
: Understanding Imbalanced Semantic Segmentation Through Neural Collapse.
AWCS0.305 50.508 50.225 50.142 20.782 50.634 80.937 50.489 60.578 50.721 30.364 60.355 50.515 40.023 50.764 50.523 40.707 50.264 30.633 50.922 50.507 60.886 10.804 60.179 60.436 70.300 50.656 70.529 20.501 60.394 40.296 70.820 10.603 30.131 20.179 80.619 20.000 10.707 70.865 50.773 30.171 30.010 40.484 50.063 60.463 50.254 50.332 70.649 50.220 50.100 50.729 60.613 60.071 60.582 70.628 20.702 10.424 60.749 10.137 60.000 30.142 50.360 50.863 30.305 50.877 20.000 10.173 10.606 50.337 50.478 50.154 60.000 10.253 50.664 20.000 40.000 40.000 10.000 30.626 60.782 50.302 70.602 20.185 70.282 30.651 40.317 40.000 30.000 30.000 10.022 60.000 20.154 10.876 40.000 10.014 50.063 60.029 80.553 10.467 20.084 50.124 50.157 70.049 60.373 50.252 40.097 60.000 30.219 10.542 10.000 10.392 10.172 30.000 70.339 30.417 20.533 60.093 60.115 30.195 50.000 10.516 50.288 70.741 20.000 10.001 40.233 20.056 50.000 40.159 10.334 40.077 20.000 20.000 40.000 10.000 10.749 50.000 10.411 30.000 10.008 30.452 50.000 10.595 40.000 10.000 10.220 40.006 50.894 60.006 30.000 30.000 10.000 40.000 10.112 30.504 30.404 30.551 10.093 30.129 80.484 40.381 80.000 60.000 10.396 60.000 10.000 20.620 20.402 80.000 20.000 10.000 10.142 40.000 20.000 20.512 20.000 1
LGroundpermissive0.272 60.485 60.184 60.106 60.778 60.676 30.932 60.479 80.572 60.718 50.399 50.265 60.453 70.085 20.745 60.446 60.726 40.232 60.622 60.901 60.512 50.826 60.786 70.178 70.549 40.277 60.659 60.381 60.518 50.295 80.323 50.777 50.599 40.028 40.321 40.363 70.000 10.708 60.858 60.746 50.063 60.022 30.457 60.077 50.476 30.243 60.402 50.397 80.233 40.077 80.720 80.610 70.103 20.629 50.437 80.626 50.446 50.702 30.190 50.005 10.058 70.322 60.702 70.244 60.768 60.000 10.134 50.552 60.279 70.395 60.147 70.000 10.207 60.612 50.000 40.000 40.000 10.000 30.658 50.566 60.323 60.525 80.229 60.179 50.467 80.154 70.000 30.002 10.000 10.051 10.000 20.127 20.703 60.000 10.000 60.216 10.112 70.358 40.547 10.187 20.092 70.156 80.055 50.296 60.252 40.143 20.000 30.014 50.398 30.000 10.028 70.173 20.000 70.265 70.348 60.415 80.179 20.019 70.218 40.000 10.597 40.274 80.565 40.000 10.012 30.000 30.039 70.022 20.000 30.117 60.000 30.000 20.000 40.000 10.000 10.324 70.000 10.384 40.000 10.000 40.251 80.000 10.566 50.000 10.000 10.066 60.404 10.886 70.199 10.000 30.000 10.059 20.000 10.136 10.540 10.127 80.295 60.085 50.143 50.514 20.413 60.000 60.000 10.498 30.000 10.000 20.000 40.623 50.000 20.000 10.000 10.132 70.000 20.000 20.000 30.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
Minkowski 34Dpermissive0.253 70.463 70.154 80.102 70.771 70.650 70.932 60.483 70.571 70.710 60.331 70.250 70.492 60.044 30.703 70.419 80.606 80.227 70.621 70.865 80.531 30.771 80.813 50.291 40.484 60.242 70.612 80.282 80.440 80.351 60.299 60.622 70.593 50.027 50.293 50.310 80.000 10.757 50.858 60.737 70.150 40.164 10.368 80.084 30.381 80.142 80.357 60.720 40.214 60.092 70.724 70.596 80.056 70.655 20.525 60.581 80.352 80.594 70.056 80.000 30.014 80.224 70.772 60.205 80.720 70.000 10.159 20.531 70.163 80.294 70.136 80.000 10.169 70.589 60.000 40.000 40.000 10.002 10.663 40.466 80.265 80.582 50.337 50.016 70.559 60.084 80.000 30.000 30.000 10.036 30.000 20.125 30.670 70.000 10.102 10.071 50.164 60.406 20.386 40.046 80.068 80.159 60.117 20.284 70.111 80.094 70.000 30.000 80.197 80.000 10.044 60.013 60.002 60.228 80.307 80.588 40.025 80.545 10.134 80.000 10.655 20.302 60.282 80.000 10.060 10.000 30.035 80.000 40.000 30.097 80.000 30.000 20.005 30.000 10.000 10.096 80.000 10.334 70.000 10.000 40.274 70.000 10.513 80.000 10.000 10.280 30.194 40.897 50.000 40.000 30.000 10.000 40.000 10.108 50.279 80.189 70.141 80.059 70.272 20.307 80.445 20.003 40.000 10.353 70.000 10.026 10.000 40.581 70.001 10.000 10.000 10.093 80.002 10.000 20.000 30.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrainpermissive0.249 80.455 80.171 70.079 80.766 80.659 60.930 80.494 50.542 80.700 80.314 80.215 80.430 80.121 10.697 80.441 70.683 70.235 50.609 80.895 70.476 80.816 70.770 80.186 50.634 20.216 80.734 40.340 70.471 70.307 70.293 80.591 80.542 70.076 30.205 70.464 60.000 10.484 80.832 80.766 40.052 70.000 50.413 70.059 70.418 70.222 70.318 80.609 70.206 70.112 40.743 50.625 50.076 40.579 80.548 50.590 70.371 70.552 80.081 70.003 20.142 50.201 80.638 80.233 70.686 80.000 10.142 40.444 80.375 40.247 80.198 50.000 10.128 80.454 80.019 20.097 10.000 10.000 30.553 70.557 70.373 40.545 70.164 80.014 80.547 70.174 60.000 30.002 10.000 10.037 20.000 20.063 50.664 80.000 10.000 60.130 20.170 50.152 80.335 70.079 60.110 60.175 50.098 40.175 80.166 70.045 80.207 10.014 50.465 20.000 10.001 80.001 80.046 40.299 60.327 70.537 50.033 70.012 80.186 60.000 10.205 70.377 50.463 70.000 10.058 20.000 30.055 60.041 10.000 30.105 70.000 30.000 20.000 40.000 10.000 10.398 60.000 10.308 80.000 10.000 40.319 60.000 10.543 60.000 10.000 10.062 70.004 60.862 80.000 40.000 30.000 10.000 40.000 10.123 20.316 70.225 60.250 70.094 20.180 40.332 70.441 30.000 60.000 10.310 80.000 10.000 20.000 40.592 60.000 20.000 10.000 10.203 10.000 20.000 20.000 30.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavgchairtabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D Scannet2000.388 10.542 10.357 10.237 10.808 20.676 20.741 10.832 40.496 10.151 30.628 20.021 20.955 10.578 10.753 10.612 10.591 10.822 50.609 30.926 10.614 30.291 10.725 40.163 10.890 20.380 50.615 10.517 10.130 30.806 10.857 20.024 20.511 10.412 50.226 10.597 20.756 11.000 10.111 10.792 10.736 10.091 10.610 10.527 20.323 41.000 10.504 10.063 21.000 10.853 10.010 10.974 30.839 10.667 10.301 10.883 10.266 10.039 10.640 10.311 20.739 20.463 11.000 10.000 10.287 20.715 20.313 20.600 11.000 10.027 10.076 40.502 50.500 10.409 10.000 10.194 10.125 20.500 10.491 10.748 10.050 40.042 20.776 20.352 10.008 10.000 10.033 10.254 10.000 10.005 20.552 10.008 20.020 20.750 10.500 10.409 20.065 30.511 10.107 10.178 20.000 11.000 10.400 10.016 10.000 10.400 10.571 10.000 10.060 20.044 20.000 10.514 10.278 11.000 10.258 10.017 30.125 50.000 10.792 30.399 31.000 10.000 10.013 20.265 10.018 20.000 21.000 10.335 10.381 10.500 10.250 10.004 20.000 10.727 10.000 10.497 10.000 10.188 10.677 20.000 10.708 20.000 10.000 10.945 10.391 10.123 40.000 10.028 10.000 11.000 10.000 10.099 10.451 10.400 10.668 10.573 10.606 10.077 50.003 40.004 10.000 10.042 30.000 10.000 11.000 11.000 10.000 10.042 10.000 20.200 20.302 10.000 21.000 10.000 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
TD3D Scannet2000.320 20.501 20.264 20.164 20.841 10.679 10.716 20.879 20.280 30.192 10.634 10.231 10.733 30.459 20.565 30.498 50.560 21.000 10.686 10.890 20.708 10.123 40.820 10.152 20.967 10.456 10.458 20.387 20.194 10.435 50.906 10.077 10.396 20.509 10.217 20.715 10.619 21.000 10.099 20.792 10.513 20.062 20.506 30.549 10.605 11.000 10.123 40.106 11.000 10.744 40.000 21.000 10.504 50.525 20.185 20.790 40.101 20.008 20.587 20.356 10.817 10.083 51.000 10.000 10.621 10.842 10.415 10.268 40.083 40.000 20.098 30.881 10.125 20.000 20.000 10.000 20.000 30.125 40.332 30.448 50.202 20.196 10.798 10.264 20.000 20.000 10.017 20.233 20.000 10.063 10.333 20.038 10.111 10.250 30.000 20.516 10.208 10.470 20.094 30.218 10.000 10.667 20.033 50.000 20.000 10.400 10.156 20.000 10.267 10.226 10.000 10.104 20.159 20.299 50.095 30.458 10.500 10.000 11.000 10.472 10.792 30.000 10.022 10.061 20.250 10.008 10.250 20.333 20.143 20.396 20.049 20.012 10.000 10.283 40.000 10.241 40.000 10.101 20.331 40.000 10.629 30.000 10.000 10.857 20.222 30.677 10.000 10.003 20.000 10.000 20.000 10.076 20.252 30.400 10.431 20.061 30.328 30.331 40.500 10.000 20.000 10.167 10.000 10.000 10.000 20.500 20.000 10.000 21.000 10.542 10.000 20.063 10.000 20.000 1
LGround Inst.permissive0.246 30.413 30.170 30.130 30.754 30.541 30.682 40.903 10.264 40.164 20.234 30.000 30.681 40.452 30.464 50.541 40.399 31.000 10.637 20.772 30.588 40.190 20.589 50.081 30.857 30.426 30.373 30.318 30.135 20.690 20.653 40.000 30.159 40.500 20.000 30.581 30.387 41.000 10.046 30.000 30.402 30.003 50.455 50.196 40.571 21.000 10.270 30.003 50.530 50.748 30.000 20.744 40.575 30.511 30.112 30.815 20.067 30.000 30.400 30.167 30.667 30.241 21.000 10.000 10.208 40.660 30.125 40.317 20.000 50.000 20.100 20.561 40.000 30.000 20.000 10.000 21.000 10.500 10.344 20.568 40.167 30.000 30.706 30.068 30.000 20.000 10.000 30.063 30.000 10.000 30.056 40.000 30.000 30.500 20.000 20.143 50.017 40.125 30.097 20.164 30.000 10.582 40.400 10.000 20.000 10.000 40.083 40.000 10.000 30.000 30.000 10.025 30.156 30.533 30.250 20.200 20.500 10.000 11.000 10.333 41.000 10.000 10.000 30.000 30.000 30.000 20.000 30.333 20.000 30.000 30.000 30.000 30.000 10.400 30.000 10.364 20.000 10.000 30.500 30.000 10.511 40.000 10.000 10.286 30.333 20.000 50.000 10.000 30.000 10.000 20.000 10.034 30.111 50.000 30.333 40.031 50.000 40.750 10.125 20.000 20.000 10.151 20.000 10.000 10.000 20.500 20.000 10.000 20.000 20.000 50.000 20.000 20.000 20.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.
Minkowski 34D Inst.permissive0.203 50.369 40.134 50.078 50.706 40.382 40.693 30.845 30.221 50.150 40.158 40.000 30.746 20.369 40.545 40.595 20.387 40.997 30.413 50.720 50.636 20.165 30.732 30.070 40.851 40.402 40.251 40.313 40.123 40.583 40.696 30.000 30.051 50.500 20.000 30.500 40.372 50.667 40.009 40.000 30.307 50.003 40.479 40.107 50.226 50.903 40.109 50.031 30.981 30.726 50.000 20.522 50.669 20.282 50.052 50.778 50.000 40.000 30.400 30.074 40.333 40.218 41.000 10.000 10.250 30.406 50.118 50.317 20.100 30.000 20.191 10.596 20.000 30.000 20.000 10.000 20.000 30.500 10.178 50.701 20.000 50.000 30.522 50.018 50.000 20.000 10.000 30.060 40.000 10.000 30.033 50.000 30.000 30.000 40.000 20.281 30.100 20.000 50.090 40.133 40.000 10.422 50.050 40.000 20.000 10.200 30.000 50.000 10.000 30.000 30.000 10.000 40.123 40.677 20.021 40.000 40.500 10.000 10.500 40.442 20.125 50.000 10.000 30.000 30.000 30.000 20.000 30.056 40.000 30.000 30.000 30.000 30.000 10.200 50.000 10.143 50.000 10.000 30.250 50.000 10.511 40.000 10.000 10.286 30.083 40.396 20.000 10.000 30.000 10.000 20.000 10.025 40.300 20.000 30.371 30.070 20.000 40.385 30.000 50.000 20.000 10.000 50.000 10.000 10.000 20.500 20.000 10.000 20.000 20.200 20.000 20.000 20.000 20.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrain Inst.permissive0.209 40.361 50.157 40.085 40.700 50.248 50.634 50.776 50.322 20.135 50.103 50.000 30.524 50.364 50.618 20.592 30.381 50.997 30.589 40.747 40.340 50.109 50.768 20.059 50.702 50.448 20.188 50.149 50.091 50.636 30.573 50.000 30.246 30.500 20.000 30.450 50.405 30.667 40.006 50.000 30.356 40.007 30.506 20.420 30.340 30.667 50.294 20.004 40.571 40.748 20.000 21.000 10.573 40.502 40.094 40.807 30.000 40.000 30.400 30.000 50.278 50.228 31.000 10.000 10.115 50.432 40.198 30.050 50.125 20.000 20.000 50.573 30.000 30.000 20.000 10.000 20.000 30.125 40.312 40.610 30.221 10.000 30.667 40.050 40.000 20.000 10.000 30.032 50.000 10.000 30.083 30.000 30.000 30.000 40.000 20.220 40.000 50.125 30.000 50.111 50.000 10.667 20.200 30.000 20.000 10.000 40.110 30.000 10.000 30.000 30.000 10.000 40.053 50.500 40.000 50.000 40.500 10.000 10.500 40.333 40.500 40.000 10.000 30.000 30.000 30.000 20.000 30.000 50.000 30.000 30.000 30.000 30.000 10.600 20.000 10.364 20.000 10.000 30.750 10.000 10.833 10.000 10.000 10.143 50.000 50.396 20.000 10.000 30.000 10.000 20.000 10.021 50.221 40.000 30.093 50.055 40.451 20.677 20.125 20.000 20.000 10.028 40.000 10.000 10.000 20.500 20.000 10.000 20.000 20.050 40.000 20.000 20.000 20.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Retro-FPN0.744 170.842 220.800 200.767 470.740 190.836 270.541 130.914 10.672 130.626 250.958 140.552 210.272 390.777 50.886 150.696 360.801 160.674 170.941 70.858 200.717 20
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
MSP0.748 130.623 850.804 180.859 30.745 180.824 380.501 290.912 20.690 70.685 50.956 190.567 140.320 170.768 90.918 40.720 250.802 130.676 150.921 210.881 60.779 3
Swin3Dpermissive0.779 20.861 160.818 100.836 160.790 10.875 20.576 30.905 30.704 30.739 10.969 60.611 10.349 60.756 160.958 10.702 350.805 120.708 60.916 240.898 10.801 1
PPT-SpUNet-Joint0.766 30.932 20.794 250.829 190.751 150.854 110.540 140.903 40.630 260.672 90.963 90.565 150.357 40.788 20.900 80.737 190.802 130.685 120.950 20.887 20.780 2
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training.
Virtual MVFusion0.746 150.771 460.819 80.848 90.702 290.865 70.397 760.899 50.699 40.664 110.948 470.588 70.330 130.746 220.851 290.764 110.796 190.704 80.935 120.866 150.728 13
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
EQ-Net0.743 180.620 860.799 220.849 70.730 220.822 410.493 360.897 60.664 140.681 60.955 220.562 170.378 10.760 140.903 70.738 180.801 160.673 180.907 290.877 80.745 7
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
OA-CNN-L_ScanNet200.756 80.783 380.826 40.858 40.776 40.837 250.548 110.896 70.649 190.675 70.962 100.586 90.335 110.771 80.802 410.770 90.787 270.691 100.936 110.880 70.761 6
PointTransformerV20.752 90.742 590.809 150.872 10.758 90.860 80.552 90.891 80.610 340.687 30.960 110.559 180.304 230.766 100.926 30.767 100.797 180.644 250.942 60.876 110.722 19
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
PointConvFormer0.749 110.793 350.790 280.807 300.750 160.856 100.524 200.881 90.588 460.642 190.977 40.591 60.274 370.781 30.929 20.804 30.796 190.642 260.947 40.885 40.715 22
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
OctFormerpermissive0.766 30.925 30.808 160.849 70.786 20.846 190.566 60.876 100.690 70.674 80.960 110.576 110.226 580.753 180.904 60.777 70.815 50.722 40.923 200.877 80.776 4
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
VMNetpermissive0.746 150.870 140.838 20.858 40.729 230.850 160.501 290.874 110.587 470.658 120.956 190.564 160.299 240.765 110.900 80.716 280.812 90.631 310.939 90.858 200.709 23
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
DMF-Net0.752 90.906 80.793 270.802 340.689 320.825 360.556 80.867 120.681 100.602 360.960 110.555 200.365 30.779 40.859 220.747 160.795 220.717 50.917 230.856 220.764 5
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
RPN0.736 220.776 420.790 280.851 60.754 120.854 110.491 380.866 130.596 440.686 40.955 220.536 240.342 80.624 420.869 180.787 50.802 130.628 320.927 180.875 120.704 26
PointMetaBase0.714 300.835 240.785 310.821 200.684 340.846 190.531 180.865 140.614 310.596 400.953 310.500 360.246 540.674 280.888 130.692 370.764 390.624 340.849 720.844 350.675 34
PNE0.721 280.840 230.789 300.833 170.690 300.823 400.509 250.864 150.618 300.629 240.957 170.500 360.266 460.763 120.797 430.674 480.791 250.621 370.892 420.855 240.708 25
MatchingNet0.724 270.812 320.812 130.810 280.735 210.834 290.495 350.860 160.572 530.602 360.954 280.512 330.280 340.757 150.845 310.725 220.780 290.606 430.937 100.851 290.700 28
MinkowskiNetpermissive0.736 220.859 180.818 100.832 180.709 270.840 230.521 220.853 170.660 170.643 160.951 370.544 220.286 310.731 240.893 110.675 440.772 330.683 130.874 570.852 280.727 15
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
OccuSeg+Semantic0.764 50.758 520.796 230.839 150.746 170.907 10.562 70.850 180.680 110.672 90.978 20.610 20.335 110.777 50.819 370.847 10.830 10.691 100.972 10.885 40.727 15
PicassoNet-IIpermissive0.692 370.732 630.772 370.786 390.677 360.866 60.517 230.848 190.509 700.626 250.952 350.536 240.225 600.545 660.704 580.689 410.810 100.564 610.903 330.854 270.729 12
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
CU-Hybrid Net0.764 50.924 40.819 80.840 140.757 100.853 130.580 10.848 190.709 20.643 160.958 140.587 80.295 260.753 180.884 160.758 130.815 50.725 20.927 180.867 140.743 9
O-CNNpermissive0.762 70.924 40.823 50.844 120.770 50.852 140.577 20.847 210.711 10.640 200.958 140.592 50.217 640.762 130.888 130.758 130.813 80.726 10.932 160.868 130.744 8
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
BPNetcopyleft0.749 110.909 60.818 100.811 270.752 130.839 240.485 390.842 220.673 120.644 150.957 170.528 290.305 220.773 70.859 220.788 40.818 40.693 90.916 240.856 220.723 18
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
INS-Conv-semantic0.717 290.751 550.759 440.812 260.704 280.868 50.537 150.842 220.609 360.608 320.953 310.534 260.293 270.616 450.864 200.719 270.793 230.640 270.933 140.845 340.663 37
LRPNet0.742 190.816 300.806 170.807 300.752 130.828 340.575 40.839 240.699 40.637 210.954 280.520 310.320 170.755 170.834 330.760 120.772 330.676 150.915 260.862 170.717 20
Mix3Dpermissive0.781 10.964 10.855 10.843 130.781 30.858 90.575 40.831 250.685 90.714 20.979 10.594 40.310 200.801 10.892 120.841 20.819 30.723 30.940 80.887 20.725 17
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
SAT0.742 190.860 170.765 410.819 220.769 60.848 170.533 160.829 260.663 150.631 230.955 220.586 90.274 370.753 180.896 100.729 200.760 430.666 200.921 210.855 240.733 11
LargeKernel3D0.739 210.909 60.820 70.806 320.740 190.852 140.545 120.826 270.594 450.643 160.955 220.541 230.263 480.723 260.858 240.775 80.767 370.678 140.933 140.848 300.694 29
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
StratifiedFormerpermissive0.747 140.901 90.803 190.845 110.757 100.846 190.512 240.825 280.696 60.645 140.956 190.576 110.262 490.744 230.861 210.742 170.770 360.705 70.899 370.860 190.734 10
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
IPCA0.731 240.890 100.837 30.864 20.726 240.873 30.530 190.824 290.489 780.647 130.978 20.609 30.336 100.624 420.733 510.758 130.776 310.570 570.949 30.877 80.728 13
DGNet0.684 410.712 710.784 320.782 430.658 390.835 280.499 330.823 300.641 210.597 390.950 410.487 410.281 330.575 540.619 700.647 580.764 390.620 380.871 630.846 330.688 31
VACNN++0.684 410.728 660.757 470.776 440.690 300.804 580.464 470.816 310.577 520.587 430.945 550.508 350.276 360.671 290.710 560.663 500.750 490.589 520.881 500.832 380.653 40
One Thing One Click0.701 340.825 280.796 230.723 540.716 260.832 300.433 660.816 310.634 240.609 310.969 60.418 730.344 70.559 600.833 340.715 290.808 110.560 620.902 340.847 310.680 33
RFCR0.702 330.889 110.745 530.813 250.672 370.818 480.493 360.815 330.623 270.610 300.947 490.470 480.249 530.594 480.848 300.705 330.779 300.646 240.892 420.823 420.611 51
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
PointTransformer++0.725 250.727 670.811 140.819 220.765 70.841 220.502 280.814 340.621 290.623 270.955 220.556 190.284 320.620 440.866 190.781 60.757 460.648 230.932 160.862 170.709 23
contrastBoundarypermissive0.705 310.769 490.775 360.809 290.687 330.820 440.439 640.812 350.661 160.591 420.945 550.515 320.171 820.633 390.856 250.720 250.796 190.668 190.889 450.847 310.689 30
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
Superpoint Network0.683 440.851 200.728 610.800 360.653 420.806 560.468 440.804 360.572 530.602 360.946 520.453 570.239 570.519 710.822 350.689 410.762 420.595 490.895 400.827 400.630 48
joint point-basedpermissive0.634 640.614 870.778 350.667 750.633 510.825 360.420 690.804 360.467 830.561 460.951 370.494 380.291 280.566 570.458 840.579 810.764 390.559 640.838 740.814 470.598 60
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
Feature_GeometricNetpermissive0.690 380.884 120.754 480.795 370.647 440.818 480.422 680.802 380.612 330.604 340.945 550.462 510.189 770.563 590.853 270.726 210.765 380.632 300.904 310.821 450.606 55
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
Feature-Geometry Netpermissive0.685 400.866 150.748 500.819 220.645 460.794 640.450 530.802 380.587 470.604 340.945 550.464 500.201 720.554 620.840 320.723 240.732 550.602 450.907 290.822 440.603 58
ClickSeg_Semantic0.703 320.774 440.800 200.793 380.760 80.847 180.471 420.802 380.463 850.634 220.968 80.491 400.271 410.726 250.910 50.706 320.815 50.551 680.878 520.833 360.570 68
JSENetpermissive0.699 350.881 130.762 420.821 200.667 380.800 610.522 210.792 410.613 320.607 330.935 750.492 390.205 690.576 530.853 270.691 380.758 450.652 220.872 600.828 390.649 41
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
PointConvpermissive0.666 490.781 390.759 440.699 630.644 470.822 410.475 400.779 420.564 580.504 670.953 310.428 670.203 710.586 510.754 470.661 510.753 470.588 530.902 340.813 490.642 43
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointContrast_LA_SEM0.683 440.757 530.784 320.786 390.639 480.824 380.408 710.775 430.604 390.541 510.934 790.532 270.269 430.552 630.777 440.645 610.793 230.640 270.913 270.824 410.671 35
KP-FCNN0.684 410.847 210.758 460.784 410.647 440.814 510.473 410.772 440.605 380.594 410.935 750.450 580.181 800.587 490.805 400.690 390.785 280.614 390.882 490.819 460.632 47
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
PointASNLpermissive0.666 490.703 730.781 340.751 530.655 410.830 310.471 420.769 450.474 810.537 530.951 370.475 460.279 350.635 370.698 610.675 440.751 480.553 670.816 790.806 510.703 27
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
Supervoxel-CNN0.635 630.656 800.711 640.719 570.613 540.757 810.444 600.765 460.534 630.566 450.928 830.478 450.272 390.636 360.531 780.664 490.645 840.508 820.864 670.792 640.611 51
HPGCNN0.656 530.698 740.743 550.650 790.564 700.820 440.505 270.758 470.631 250.479 720.945 550.480 440.226 580.572 550.774 450.690 390.735 530.614 390.853 710.776 740.597 61
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
VI-PointConv0.676 460.770 480.754 480.783 420.621 520.814 510.552 90.758 470.571 550.557 470.954 280.529 280.268 450.530 690.682 620.675 440.719 580.603 440.888 460.833 360.665 36
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
SAFNet-segpermissive0.654 540.752 540.734 590.664 760.583 650.815 500.399 750.754 490.639 220.535 550.942 640.470 480.309 210.665 300.539 760.650 540.708 630.635 290.857 700.793 610.642 43
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
SparseConvNet0.725 250.647 820.821 60.846 100.721 250.869 40.533 160.754 490.603 400.614 290.955 220.572 130.325 150.710 270.870 170.724 230.823 20.628 320.934 130.865 160.683 32
ROSMRF3D0.673 470.789 360.748 500.763 490.635 500.814 510.407 730.747 510.581 510.573 440.950 410.484 420.271 410.607 460.754 470.649 550.774 320.596 470.883 480.823 420.606 55
SALANet0.670 480.816 300.770 390.768 460.652 430.807 550.451 500.747 510.659 180.545 500.924 850.473 470.149 920.571 560.811 390.635 640.746 500.623 350.892 420.794 590.570 68
PointSPNet0.637 610.734 620.692 760.714 600.576 670.797 630.446 550.743 530.598 430.437 820.942 640.403 770.150 910.626 410.800 420.649 550.697 680.557 650.846 730.777 730.563 72
FusionNet0.688 390.704 720.741 570.754 510.656 400.829 320.501 290.741 540.609 360.548 490.950 410.522 300.371 20.633 390.756 460.715 290.771 350.623 350.861 680.814 470.658 38
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
RandLA-Netpermissive0.645 550.778 400.731 600.699 630.577 660.829 320.446 550.736 550.477 800.523 610.945 550.454 550.269 430.484 800.749 500.618 670.738 510.599 460.827 760.792 640.621 50
FusionAwareConv0.630 690.604 890.741 570.766 480.590 610.747 830.501 290.734 560.503 720.527 570.919 890.454 550.323 160.550 650.420 880.678 430.688 720.544 710.896 390.795 580.627 49
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
LAP-D0.594 780.720 680.692 760.637 850.456 880.773 750.391 800.730 570.587 470.445 810.940 690.381 820.288 290.434 850.453 860.591 770.649 820.581 550.777 830.749 830.610 53
3DSM_DMMF0.631 660.626 840.745 530.801 350.607 550.751 820.506 260.729 580.565 570.491 700.866 990.434 620.197 750.595 470.630 690.709 310.705 650.560 620.875 550.740 840.491 88
One-Thing-One-Click0.693 360.743 580.794 250.655 780.684 340.822 410.497 340.719 590.622 280.617 280.977 40.447 600.339 90.750 210.664 670.703 340.790 260.596 470.946 50.855 240.647 42
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PointMRNet0.640 580.717 700.701 690.692 660.576 670.801 600.467 460.716 600.563 590.459 770.953 310.429 660.169 840.581 520.854 260.605 700.710 600.550 690.894 410.793 610.575 66
SConv0.636 620.830 260.697 720.752 520.572 690.780 720.445 570.716 600.529 640.530 560.951 370.446 610.170 830.507 750.666 660.636 630.682 740.541 740.886 470.799 540.594 62
SD-DETR0.576 820.746 560.609 950.445 1000.517 800.643 960.366 840.714 620.456 860.468 750.870 980.432 630.264 470.558 610.674 630.586 800.688 720.482 880.739 880.733 860.537 80
DPC0.592 790.720 680.700 700.602 890.480 840.762 800.380 830.713 630.585 500.437 820.940 690.369 840.288 290.434 850.509 820.590 790.639 870.567 600.772 840.755 810.592 63
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
3DWSSS0.425 1000.525 950.647 870.522 940.324 1000.488 1040.077 1050.712 640.353 980.401 860.636 1050.281 960.176 810.340 920.565 740.175 1050.551 950.398 1000.370 1050.602 1000.361 98
PointNet2-SFPN0.631 660.771 460.692 760.672 710.524 780.837 250.440 630.706 650.538 620.446 790.944 610.421 720.219 630.552 630.751 490.591 770.737 520.543 730.901 360.768 760.557 75
PanopticFusion-label0.529 880.491 980.688 790.604 880.386 930.632 970.225 1020.705 660.434 910.293 970.815 1000.348 880.241 560.499 760.669 640.507 870.649 820.442 960.796 810.602 1000.561 73
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
DCM-Net0.658 520.778 400.702 680.806 320.619 530.813 540.468 440.693 670.494 730.524 590.941 660.449 590.298 250.510 730.821 360.675 440.727 570.568 590.826 770.803 530.637 45
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPEIN0.618 730.729 650.668 820.647 810.597 590.766 770.414 700.680 680.520 660.525 580.946 520.432 630.215 650.493 780.599 720.638 620.617 890.570 570.897 380.806 510.605 57
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
MVPNetpermissive0.641 560.831 250.715 630.671 730.590 610.781 700.394 770.679 690.642 200.553 480.937 720.462 510.256 500.649 330.406 890.626 650.691 710.666 200.877 530.792 640.608 54
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
TextureNetpermissive0.566 840.672 790.664 840.671 730.494 820.719 860.445 570.678 700.411 940.396 870.935 750.356 860.225 600.412 880.535 770.565 830.636 880.464 900.794 820.680 940.568 70
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
PointConv-SFPN0.641 560.776 420.703 670.721 560.557 730.826 350.451 500.672 710.563 590.483 710.943 630.425 700.162 870.644 350.726 520.659 520.709 620.572 560.875 550.786 690.559 74
APCF-Net0.631 660.742 590.687 810.672 710.557 730.792 670.408 710.665 720.545 610.508 640.952 350.428 670.186 780.634 380.702 590.620 660.706 640.555 660.873 580.798 560.581 64
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
DVVNet0.562 850.648 810.700 700.770 450.586 640.687 900.333 890.650 730.514 690.475 740.906 930.359 850.223 620.340 920.442 870.422 960.668 790.501 830.708 910.779 710.534 81
AttAN0.609 750.760 510.667 830.649 800.521 790.793 650.457 490.648 740.528 650.434 840.947 490.401 780.153 900.454 820.721 550.648 570.717 590.536 760.904 310.765 770.485 89
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
dtc_net0.596 770.683 750.725 620.715 590.549 750.803 590.444 600.647 750.493 740.495 680.941 660.409 750.000 1050.424 870.544 750.598 740.703 670.522 790.912 280.792 640.520 84
SIConv0.625 720.830 260.694 740.757 500.563 710.772 760.448 540.647 750.520 660.509 630.949 450.431 650.191 760.496 770.614 710.647 580.672 780.535 770.876 540.783 700.571 67
SPH3D-GCNpermissive0.610 740.858 190.772 370.489 960.532 770.792 670.404 740.643 770.570 560.507 660.935 750.414 740.046 1010.510 730.702 590.602 720.705 650.549 700.859 690.773 750.534 81
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
SegGroup_sempermissive0.627 710.818 290.747 520.701 620.602 570.764 780.385 820.629 780.490 760.508 640.931 820.409 750.201 720.564 580.725 530.618 670.692 700.539 750.873 580.794 590.548 78
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
Online SegFusion0.515 900.607 880.644 890.579 910.434 900.630 980.353 860.628 790.440 890.410 850.762 1030.307 920.167 850.520 700.403 900.516 860.565 920.447 940.678 940.701 910.514 86
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
CCRFNet0.589 800.766 500.659 860.683 680.470 870.740 850.387 810.620 800.490 760.476 730.922 870.355 870.245 550.511 720.511 810.571 820.643 850.493 860.872 600.762 780.600 59
DenSeR0.628 700.800 330.625 910.719 570.545 760.806 560.445 570.597 810.448 880.519 620.938 710.481 430.328 140.489 790.499 830.657 530.759 440.592 500.881 500.797 570.634 46
subcloud_weak0.516 890.676 770.591 980.609 860.442 890.774 740.335 880.597 810.422 930.357 920.932 810.341 890.094 970.298 940.528 800.473 920.676 760.495 850.602 990.721 890.349 100
3DMV, FTSDF0.501 910.558 930.608 960.424 1020.478 850.690 890.246 980.586 830.468 820.450 780.911 910.394 790.160 880.438 830.212 990.432 950.541 970.475 890.742 870.727 870.477 91
wsss-transformer0.600 760.634 830.743 550.697 650.601 580.781 700.437 650.585 840.493 740.446 790.933 800.394 790.011 1030.654 320.661 680.603 710.733 540.526 780.832 750.761 790.480 90
3DMV0.484 930.484 990.538 1000.643 830.424 910.606 1010.310 900.574 850.433 920.378 880.796 1010.301 930.214 660.537 680.208 1000.472 930.507 1010.413 990.693 920.602 1000.539 79
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PPCNN++permissive0.663 510.746 560.708 650.722 550.638 490.820 440.451 500.566 860.599 420.541 510.950 410.510 340.313 190.648 340.819 370.616 690.682 740.590 510.869 640.810 500.656 39
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
PointMTL0.632 650.731 640.688 790.675 700.591 600.784 690.444 600.565 870.610 340.492 690.949 450.456 540.254 510.587 490.706 570.599 730.665 800.612 420.868 650.791 680.579 65
SQN_0.1%0.569 830.676 770.696 730.657 770.497 810.779 730.424 670.548 880.515 680.376 890.902 960.422 710.357 40.379 900.456 850.596 760.659 810.544 710.685 930.665 970.556 76
Pointnet++ & Featurepermissive0.557 860.735 610.661 850.686 670.491 830.744 840.392 780.539 890.451 870.375 900.946 520.376 830.205 690.403 890.356 920.553 840.643 850.497 840.824 780.756 800.515 85
PD-Net0.638 600.797 340.769 400.641 840.590 610.820 440.461 480.537 900.637 230.536 540.947 490.388 810.206 680.656 310.668 650.647 580.732 550.585 540.868 650.793 610.473 93
FPConvpermissive0.639 590.785 370.760 430.713 610.603 560.798 620.392 780.534 910.603 400.524 590.948 470.457 530.250 520.538 670.723 540.598 740.696 690.614 390.872 600.799 540.567 71
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
ROSMRF0.580 810.772 450.707 660.681 690.563 710.764 780.362 850.515 920.465 840.465 760.936 740.427 690.207 670.438 830.577 730.536 850.675 770.486 870.723 900.779 710.524 83
GMLPs0.538 870.495 970.693 750.647 810.471 860.793 650.300 920.477 930.505 710.358 910.903 950.327 900.081 980.472 810.529 790.448 940.710 600.509 800.746 860.737 850.554 77
PCNN0.498 920.559 920.644 890.560 930.420 920.711 880.229 1000.414 940.436 900.352 930.941 660.324 910.155 890.238 990.387 910.493 880.529 980.509 800.813 800.751 820.504 87
SPLAT Netcopyleft0.393 1010.472 1010.511 1010.606 870.311 1020.656 920.245 990.405 950.328 1010.197 1030.927 840.227 1020.000 1050.001 1060.249 960.271 1040.510 990.383 1020.593 1000.699 920.267 102
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
SurfaceConvPF0.442 970.505 960.622 930.380 1030.342 990.654 930.227 1010.397 960.367 970.276 990.924 850.240 1000.198 740.359 910.262 950.366 980.581 900.435 970.640 960.668 950.398 95
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
DGCNN_reproducecopyleft0.446 960.474 1000.623 920.463 980.366 960.651 940.310 900.389 970.349 990.330 940.937 720.271 970.126 940.285 950.224 980.350 1010.577 910.445 950.625 970.723 880.394 96
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PointCNN with RGBpermissive0.458 940.577 910.611 940.356 1040.321 1010.715 870.299 940.376 980.328 1010.319 950.944 610.285 950.164 860.216 1020.229 970.484 900.545 960.456 920.755 850.709 900.475 92
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
PNET20.442 970.548 940.548 990.597 900.363 970.628 990.300 920.292 990.374 960.307 960.881 970.268 980.186 780.238 990.204 1010.407 970.506 1020.449 930.667 950.620 990.462 94
SSC-UNetpermissive0.308 1040.353 1030.290 1050.278 1050.166 1050.553 1020.169 1040.286 1000.147 1050.148 1050.908 920.182 1040.064 1000.023 1050.018 1060.354 1000.363 1030.345 1030.546 1030.685 930.278 101
Tangent Convolutionspermissive0.438 990.437 1020.646 880.474 970.369 950.645 950.353 860.258 1010.282 1030.279 980.918 900.298 940.147 930.283 960.294 940.487 890.562 930.427 980.619 980.633 980.352 99
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
PointNet++permissive0.339 1030.584 900.478 1030.458 990.256 1040.360 1050.250 970.247 1020.278 1040.261 1010.677 1040.183 1030.117 950.212 1030.145 1040.364 990.346 1050.232 1050.548 1010.523 1040.252 103
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
ScanNet+FTSDF0.383 1020.297 1040.491 1020.432 1010.358 980.612 1000.274 960.116 1030.411 940.265 1000.904 940.229 1010.079 990.250 970.185 1020.320 1020.510 990.385 1010.548 1010.597 1030.394 96
FCPNpermissive0.447 950.679 760.604 970.578 920.380 940.682 910.291 950.106 1040.483 790.258 1020.920 880.258 990.025 1020.231 1010.325 930.480 910.560 940.463 910.725 890.666 960.231 104
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
ERROR0.054 1060.000 1060.041 1060.172 1060.030 1060.062 1060.001 1060.035 1050.004 1060.051 1060.143 1060.019 1060.003 1040.041 1040.050 1050.003 1060.054 1060.018 1060.005 1060.264 1060.082 106
ScanNetpermissive0.306 1050.203 1050.366 1040.501 950.311 1020.524 1030.211 1030.002 1060.342 1000.189 1040.786 1020.145 1050.102 960.245 980.152 1030.318 1030.348 1040.300 1040.460 1040.437 1050.182 105
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DENet0.629 301.000 10.797 240.608 340.589 190.627 430.219 200.882 10.310 370.402 400.383 430.396 340.650 141.000 10.663 140.543 510.691 171.000 10.568 15
SoftGroup++0.769 51.000 10.803 210.937 10.684 70.865 80.213 210.870 20.664 100.571 110.758 10.702 50.807 41.000 10.653 170.902 10.792 31.000 10.626 2
SSEC0.707 141.000 10.850 80.924 30.648 110.747 340.162 230.862 30.572 180.520 170.624 130.549 170.649 221.000 10.560 280.706 340.768 91.000 10.591 11
SoftGrouppermissive0.761 71.000 10.808 180.845 80.716 20.862 100.243 180.824 40.655 120.620 70.734 20.699 60.791 60.981 260.716 80.844 60.769 81.000 10.594 10
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
CSC-Pretrained0.648 231.000 10.810 160.768 200.523 310.813 200.143 270.819 50.389 310.422 350.511 280.443 270.650 141.000 10.624 210.732 300.634 251.000 10.375 39
SPFormerpermissive0.770 40.903 410.903 20.806 140.609 180.886 40.568 10.815 60.705 80.711 20.655 70.652 110.685 121.000 10.789 40.809 150.776 71.000 10.583 12
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
MTML0.549 381.000 10.807 190.588 390.327 450.647 410.004 480.815 70.180 440.418 360.364 450.182 430.445 411.000 10.442 380.688 410.571 341.000 10.396 37
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
DD-UNet+Group0.635 290.667 420.797 250.714 270.562 230.774 300.146 250.810 80.429 270.476 230.546 260.399 330.633 241.000 10.632 200.722 320.609 261.000 10.514 21
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
DualGroup0.694 171.000 10.799 230.811 120.622 130.817 170.376 100.805 90.590 170.487 220.568 210.525 210.650 140.835 400.600 240.829 100.655 201.000 10.526 20
PE0.645 241.000 10.773 310.798 160.538 260.786 290.088 360.799 100.350 350.435 330.547 250.545 180.646 230.933 300.562 270.761 230.556 400.997 310.501 26
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
GraphCut0.732 101.000 10.788 260.724 240.642 120.859 110.248 170.787 110.618 150.596 100.653 90.722 30.583 321.000 10.766 60.861 30.825 11.000 10.504 24
RPGN0.643 251.000 10.758 360.582 410.539 250.826 160.046 400.765 120.372 330.436 320.588 160.539 200.650 141.000 10.577 250.750 250.653 220.997 310.495 27
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
IPCA-Inst0.731 111.000 10.788 270.884 60.698 40.788 280.252 160.760 130.646 130.511 190.637 110.665 90.804 51.000 10.644 180.778 180.747 131.000 10.561 16
HAISpermissive0.699 151.000 10.849 90.820 110.675 80.808 220.279 130.757 140.465 240.517 180.596 150.559 160.600 261.000 10.654 160.767 200.676 180.994 360.560 17
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
DKNet0.718 131.000 10.814 150.782 170.619 150.872 70.224 190.751 150.569 190.677 30.585 170.724 20.633 240.981 260.515 330.819 130.736 141.000 10.617 4
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
GICN0.638 271.000 10.895 40.800 150.480 370.676 390.144 260.737 160.354 340.447 270.400 410.365 360.700 81.000 10.569 260.836 80.599 271.000 10.473 30
TopoSeg0.725 121.000 10.806 200.933 20.668 90.758 310.272 150.734 170.630 140.549 150.654 80.606 140.697 100.966 280.612 230.839 70.754 121.000 10.573 13
Mask3D0.780 31.000 10.786 280.716 260.696 50.885 60.500 40.714 180.810 20.672 40.715 40.679 80.809 21.000 10.831 20.833 90.787 41.000 10.602 7
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
TD3D0.751 81.000 10.774 290.867 70.621 140.934 10.404 80.706 190.812 10.605 90.633 120.626 130.690 111.000 10.640 190.820 120.777 51.000 10.612 5
PointGroup0.636 281.000 10.765 320.624 330.505 350.797 250.116 320.696 200.384 320.441 280.559 230.476 230.596 291.000 10.666 120.756 240.556 390.997 310.513 22
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
Mask-Group0.664 211.000 10.822 130.764 220.616 170.815 190.139 280.694 210.597 160.459 260.566 220.599 150.600 260.516 500.715 90.819 140.635 241.000 10.603 6
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
MAFT0.786 21.000 10.894 50.807 130.694 60.893 30.486 50.674 220.740 50.786 10.704 50.727 10.739 71.000 10.707 100.849 50.756 111.000 10.685 1
One_Thing_One_Clickpermissive0.529 400.667 420.718 400.777 180.399 410.683 380.000 510.669 230.138 470.391 420.374 440.539 190.360 480.641 470.556 290.774 190.593 290.997 310.251 47
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
ISBNetpermissive0.763 61.000 10.873 60.717 250.666 100.858 120.508 30.667 240.764 40.643 60.676 60.688 70.825 11.000 10.773 50.741 280.777 61.000 10.556 18
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
AOIA0.601 331.000 10.761 340.687 280.485 360.828 150.008 460.663 250.405 300.405 390.425 380.490 220.596 290.714 430.553 300.779 170.597 280.992 370.424 36
Queryformer0.787 11.000 10.933 10.601 350.754 10.886 50.558 20.661 260.767 30.665 50.716 30.639 120.808 31.000 10.844 10.897 20.804 21.000 10.624 3
INS-Conv-instance0.657 221.000 10.760 350.667 310.581 200.863 90.323 110.655 270.477 220.473 240.549 240.432 290.650 141.000 10.655 150.738 290.585 310.944 420.472 31
SphereSeg0.680 181.000 10.856 70.744 230.618 160.893 20.151 240.651 280.713 60.537 160.579 200.430 300.651 131.000 10.389 430.744 270.697 150.991 380.601 8
PBNetpermissive0.747 91.000 10.818 140.837 100.713 30.844 130.457 70.647 290.711 70.614 80.617 140.657 100.650 141.000 10.692 110.822 110.765 101.000 10.595 9
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
RWSeg0.567 360.528 520.708 440.626 320.580 210.745 350.063 380.627 300.240 410.400 410.497 290.464 240.515 361.000 10.475 350.745 260.571 331.000 10.429 35
SSTNetpermissive0.698 161.000 10.697 450.888 50.556 240.803 230.387 90.626 310.417 280.556 140.585 180.702 40.600 261.000 10.824 30.720 330.692 161.000 10.509 23
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
3D-BoNet0.488 431.000 10.672 470.590 380.301 470.484 540.098 340.620 320.306 380.341 460.259 490.125 470.434 440.796 420.402 410.499 530.513 440.909 460.439 33
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
PanopticFusion-inst0.478 440.667 420.712 430.595 370.259 500.550 500.000 510.613 330.175 460.250 510.434 340.437 280.411 460.857 320.485 340.591 500.267 560.944 420.359 40
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
PCJC0.578 341.000 10.810 170.583 400.449 400.813 210.042 410.603 340.341 360.490 210.465 320.410 320.650 140.835 400.264 490.694 380.561 360.889 470.504 25
Occipital-SCS0.512 421.000 10.716 410.509 420.506 340.611 440.092 350.602 350.177 450.346 450.383 420.165 450.442 420.850 390.386 440.618 470.543 420.889 470.389 38
Dyco3Dcopyleft0.641 261.000 10.841 110.893 40.531 280.802 240.115 330.588 360.448 250.438 300.537 270.430 310.550 350.857 320.534 310.764 220.657 190.987 390.568 14
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
3D-MPA0.611 311.000 10.833 120.765 210.526 300.756 320.136 300.588 360.470 230.438 310.432 370.358 380.650 140.857 320.429 390.765 210.557 381.000 10.430 34
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
Box2Mask0.677 191.000 10.847 100.771 190.509 330.816 180.277 140.558 380.482 210.562 130.640 100.448 260.700 81.000 10.666 120.852 40.578 320.997 310.488 28
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
ClickSeg_Instance0.539 391.000 10.621 480.300 460.530 290.698 370.127 310.533 390.222 420.430 340.400 400.365 360.574 330.938 290.472 360.659 430.543 410.944 420.347 42
SSEN0.575 351.000 10.761 330.473 430.477 380.795 260.066 370.529 400.658 110.460 250.461 330.380 350.331 490.859 310.401 420.692 400.653 211.000 10.348 41
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
NeuralBF0.555 370.667 420.896 30.843 90.517 320.751 330.029 420.519 410.414 290.439 290.465 310.000 580.484 380.857 320.287 470.693 390.651 231.000 10.485 29
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
MASCpermissive0.447 470.528 520.555 510.381 440.382 420.633 420.002 490.509 420.260 390.361 440.432 360.327 390.451 400.571 490.367 450.639 450.386 470.980 410.276 46
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
OccuSeg+instance0.672 201.000 10.758 370.682 290.576 220.842 140.477 60.504 430.524 200.567 120.585 190.451 250.557 341.000 10.751 70.797 160.563 351.000 10.467 32
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
SPG_WSIS0.470 450.667 420.685 460.677 300.372 430.562 480.000 510.482 440.244 400.316 480.298 460.052 530.442 430.857 320.267 480.702 350.559 371.000 10.287 45
SALoss-ResNet0.459 461.000 10.737 390.159 570.259 490.587 460.138 290.475 450.217 430.416 370.408 390.128 460.315 500.714 430.411 400.536 520.590 300.873 500.304 44
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
Region-18class0.284 530.250 580.751 380.228 520.270 480.521 510.000 510.468 460.008 570.205 520.127 530.000 580.068 570.070 570.262 500.652 440.323 500.740 530.173 52
OSIS0.605 321.000 10.801 220.599 360.535 270.728 360.286 120.436 470.679 90.491 200.433 350.256 400.404 470.857 320.620 220.724 310.510 451.000 10.539 19
SegGroup_inspermissive0.445 480.667 420.773 300.185 540.317 460.656 400.000 510.407 480.134 480.381 430.267 480.217 420.476 390.714 430.452 370.629 460.514 431.000 10.222 50
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
Sparse R-CNN0.515 411.000 10.538 530.282 470.468 390.790 270.173 220.345 490.429 260.413 380.484 300.176 440.595 310.591 480.522 320.668 420.476 460.986 400.327 43
SemRegionNet-20cls0.250 540.333 550.613 490.229 510.163 530.493 520.000 510.304 500.107 500.147 550.100 540.052 520.231 510.119 550.039 550.445 550.325 490.654 540.141 54
3D-SISpermissive0.382 491.000 10.432 550.245 490.190 510.577 470.013 450.263 510.033 540.320 470.240 500.075 490.422 450.857 320.117 530.699 360.271 550.883 490.235 49
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
UNet-backbone0.319 510.667 420.715 420.233 500.189 520.479 550.008 460.218 520.067 530.201 530.173 520.107 480.123 550.438 510.150 510.615 480.355 480.916 450.093 58
tmp0.248 550.667 420.437 540.188 530.153 550.491 530.000 510.208 530.094 520.153 540.099 550.057 510.217 540.119 550.039 550.466 540.302 510.640 550.140 55
Hier3Dcopyleft0.323 500.667 420.542 520.264 480.157 540.550 490.000 510.205 540.009 550.270 500.218 510.075 490.500 370.688 460.007 590.698 370.301 520.459 560.200 51
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
ASIS0.199 570.333 550.253 580.167 560.140 560.438 560.000 510.177 550.008 560.121 560.069 560.004 570.231 520.429 520.036 570.445 560.273 540.333 580.119 57
Sgpn_scannet0.143 580.208 590.390 570.169 550.065 570.275 580.029 430.069 560.000 580.087 580.043 570.014 560.027 590.000 580.112 540.351 580.168 580.438 570.138 56
R-PointNet0.306 520.500 540.405 560.311 450.348 440.589 450.054 390.068 570.126 490.283 490.290 470.028 540.219 530.214 540.331 460.396 570.275 530.821 520.245 48
3D-BEVIS0.248 550.667 420.566 500.076 580.035 590.394 570.027 440.035 580.098 510.099 570.030 580.025 550.098 560.375 530.126 520.604 490.181 570.854 510.171 53
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
MaskRCNN 2d->3d Proj0.058 590.333 550.002 590.000 590.053 580.002 590.002 500.021 590.000 580.045 590.024 590.238 410.065 580.000 580.014 580.107 590.020 590.110 590.006 59


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 10.512 10.422 150.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
CMX0.613 40.681 70.725 90.502 120.634 50.297 150.478 90.830 20.651 40.537 60.924 40.375 50.315 120.686 50.451 120.714 40.543 180.504 50.894 40.823 40.688 3
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 20.481 20.451 110.769 30.656 30.567 30.931 30.395 40.390 40.700 30.534 30.689 90.770 20.574 30.865 60.831 30.675 4
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
FAN_NV_RVC0.586 80.510 180.764 40.079 230.620 70.330 80.494 70.753 40.573 80.556 40.884 130.405 30.303 140.718 20.452 110.672 120.658 50.509 40.898 30.813 60.727 2
MIX6D_RVC0.582 100.695 40.687 140.225 180.632 60.328 100.550 10.748 50.623 50.494 130.890 110.350 120.254 200.688 40.454 100.716 30.597 140.489 80.881 50.768 130.575 12
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 200.648 30.463 30.549 20.742 60.676 20.628 20.961 10.420 20.379 50.684 60.381 150.732 20.723 30.599 20.827 130.851 20.634 6
DMMF_3d0.605 50.651 80.744 70.782 30.637 40.387 40.536 30.732 70.590 60.540 50.856 180.359 90.306 130.596 110.539 20.627 180.706 40.497 70.785 180.757 160.476 19
SSMAcopyleft0.577 110.695 40.716 120.439 140.563 110.314 110.444 130.719 80.551 100.503 90.887 120.346 130.348 90.603 90.353 170.709 50.600 120.457 120.901 20.786 80.599 11
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
UNIV_CNP_RVC_UE0.566 120.569 160.686 160.435 150.524 140.294 160.421 160.712 90.543 120.463 150.872 140.320 140.363 70.611 80.477 90.686 100.627 90.443 150.862 70.775 110.639 5
segfomer with 6d0.542 160.594 120.687 140.146 210.579 100.308 130.515 50.703 100.472 180.498 110.868 150.369 70.282 150.589 120.390 140.701 80.556 170.416 180.860 90.759 150.539 16
EMSAFormer0.564 130.581 130.736 80.564 100.546 130.219 200.517 40.675 110.486 170.427 190.904 90.352 110.320 110.589 120.528 40.708 60.464 210.413 190.847 110.786 80.611 10
MCA-Net0.595 60.533 170.756 60.746 40.590 80.334 70.506 60.670 120.587 70.500 100.905 80.366 80.352 80.601 100.506 60.669 150.648 70.501 60.839 120.769 120.516 18
DCRedNet0.583 90.682 60.723 100.542 110.510 170.310 120.451 110.668 130.549 110.520 80.920 60.375 50.446 20.528 170.417 130.670 140.577 150.478 100.862 70.806 70.628 8
FuseNetpermissive0.535 170.570 150.681 170.182 190.512 160.290 170.431 140.659 140.504 160.495 120.903 100.308 160.428 30.523 180.365 160.676 110.621 110.470 110.762 190.779 100.541 14
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
RFBNet0.592 70.616 90.758 50.659 50.581 90.330 80.469 100.655 150.543 120.524 70.924 40.355 100.336 100.572 140.479 80.671 130.648 70.480 90.814 160.814 50.614 9
MSeg1080_RVCpermissive0.485 200.505 190.709 130.092 220.427 200.241 190.411 170.654 160.385 230.457 160.861 170.053 230.279 160.503 190.481 70.645 160.626 100.365 210.748 210.725 190.529 17
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
UDSSEG_RVC0.545 150.610 110.661 190.588 80.556 120.268 180.482 80.642 170.572 90.475 140.836 200.312 150.367 60.630 70.189 200.639 170.495 200.452 130.826 140.756 170.541 14
SN_RN152pyrx8_RVCcopyleft0.546 140.572 140.663 180.638 70.518 150.298 140.366 210.633 180.510 150.446 170.864 160.296 170.267 170.542 160.346 180.704 70.575 160.431 160.853 100.766 140.630 7
3DMV (2d proj)0.498 190.481 210.612 200.579 90.456 190.343 50.384 180.623 190.525 140.381 200.845 190.254 190.264 190.557 150.182 210.581 210.598 130.429 170.760 200.661 220.446 21
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
ILC-PSPNet0.475 210.490 200.581 210.289 170.507 180.067 230.379 190.610 200.417 210.435 180.822 220.278 180.267 170.503 190.228 190.616 200.533 190.375 200.820 150.729 180.560 13
AdapNet++copyleft0.503 180.613 100.722 110.418 160.358 230.337 60.370 200.479 210.443 190.368 210.907 70.207 200.213 220.464 210.525 50.618 190.657 60.450 140.788 170.721 200.408 22
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
Enet (reimpl)0.376 220.264 230.452 230.452 130.365 210.181 210.143 230.456 220.409 220.346 220.769 230.164 210.218 210.359 220.123 230.403 230.381 230.313 230.571 220.685 210.472 20
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 230.293 220.521 220.657 60.361 220.161 220.250 220.004 230.440 200.183 230.836 200.125 220.060 230.319 230.132 220.417 220.412 220.344 220.541 230.427 230.109 23
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
DMMF0.003 240.000 240.005 240.000 240.000 240.037 240.001 240.000 240.001 240.005 240.003 240.000 240.000 240.000 240.000 240.000 240.002 240.001 240.000 240.006 240.000 24


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
UniDet_RVC0.205 10.381 10.323 10.037 10.226 10.177 10.063 10.277 10.120 10.067 10.131 10.074 20.317 10.080 10.235 10.289 10.141 10.678 10.080 1
MaskRCNN_ScanNetpermissive0.119 20.129 20.212 20.002 20.112 20.148 20.014 20.205 20.044 20.066 20.078 20.095 10.142 20.030 20.128 20.139 20.080 20.459 20.057 2
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
multi-taskpermissive0.700 10.500 11.000 10.882 20.500 21.000 11.000 10.500 21.000 11.000 10.778 10.000 20.938 10.000 2
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
SE-ResNeXt-SSMA0.498 30.000 40.812 30.941 10.500 20.500 30.500 20.500 20.429 40.500 20.667 20.500 10.625 30.000 2
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
3DASPP-SCE0.691 20.500 10.938 20.824 31.000 11.000 10.500 21.000 10.857 20.500 20.556 30.000 20.812 20.500 1
resnet50_scannet0.353 40.250 30.812 30.529 40.500 20.500 30.000 40.500 20.571 30.000 40.556 30.000 20.375 40.000 2