ScanNet200 3D Semantic Label Benchmark
This table lists the benchmark results for the ScanNet200 3D semantic label scenario.
Method | Info | avg iou | head iou | common iou | tail iou | alarm clock | armchair | backpack | bag | ball | bar | basket | bathroom cabinet | bathroom counter | bathroom stall | bathroom stall door | bathroom vanity | bathtub | bed | bench | bicycle | bin | blackboard | blanket | blinds | board | book | bookshelf | bottle | bowl | box | broom | bucket | bulletin board | cabinet | calendar | candle | cart | case of water bottles | cd case | ceiling | ceiling light | chair | clock | closet | closet door | closet rod | closet wall | clothes | clothes dryer | coat rack | coffee kettle | coffee maker | coffee table | column | computer tower | container | copier | couch | counter | crate | cup | curtain | cushion | decoration | desk | dining table | dish rack | dishwasher | divider | door | doorframe | dresser | dumbbell | dustpan | end table | fan | file cabinet | fire alarm | fire extinguisher | fireplace | floor | folded chair | furniture | guitar | guitar case | hair dryer | handicap bar | hat | headphones | ironing board | jacket | keyboard | keyboard piano | kitchen cabinet | kitchen counter | ladder | lamp | laptop | laundry basket | laundry detergent | laundry hamper | ledge | light | light switch | luggage | machine | mailbox | mat | mattress | microwave | mini fridge | mirror | monitor | mouse | music stand | nightstand | object | office chair | ottoman | oven | paper | paper bag | paper cutter | paper towel dispenser | paper towel roll | person | piano | picture | pillar | pillow | pipe | plant | plate | plunger | poster | potted plant | power outlet | power strip | printer | projector | projector screen | purse | rack | radiator | rail | range hood | recycling bin | refrigerator | scale | seat | shelf | shoe | shower | shower curtain | shower curtain rod | shower door | shower floor | shower head | shower wall | sign | sink | soap dish | soap dispenser | sofa chair | speaker | stair rail | stairs | stand | stool | storage bin | storage container | storage organizer | stove | structure | stuffed animal | suitcase | table | telephone | tissue box | toaster | toaster oven | toilet | toilet paper | toilet paper dispenser | toilet paper holder | toilet seat cover dispenser | towel | trash bin | trash can | tray | tube | tv | tv stand | vacuum cleaner | vent | wall | wardrobe | washing machine | water bottle | water cooler | water pitcher | whiteboard | window | windowsill |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minkowski 34D | 0.253 15 | 0.463 15 | 0.154 16 | 0.102 15 | 0.381 16 | 0.084 7 | 0.134 14 | 0.000 3 | 0.000 6 | 0.000 1 | 0.386 6 | 0.141 16 | 0.279 16 | 0.737 11 | 0.703 15 | 0.014 16 | 0.164 14 | 0.000 3 | 0.663 9 | 0.092 13 | 0.000 9 | 0.224 14 | 0.291 10 | 0.531 8 | 0.056 16 | 0.000 9 | 0.242 15 | 0.000 1 | 0.000 3 | 0.013 14 | 0.331 15 | 0.000 10 | 0.000 1 | 0.035 16 | 0.001 1 | 0.858 14 | 0.059 12 | 0.650 15 | 0.000 7 | 0.056 13 | 0.353 15 | 0.299 14 | 0.670 12 | 0.000 1 | 0.000 2 | 0.284 15 | 0.484 14 | 0.071 8 | 0.594 15 | 0.720 15 | 0.710 14 | 0.027 11 | 0.068 16 | 0.813 13 | 0.000 1 | 0.005 9 | 0.492 13 | 0.164 1 | 0.274 15 | 0.111 15 | 0.571 15 | 0.307 16 | 0.293 12 | 0.307 16 | 0.150 8 | 0.163 16 | 0.531 15 | 0.002 7 | 0.545 4 | 0.932 14 | 0.093 16 | 0.000 1 | 0.000 12 | 0.002 13 | 0.159 14 | 0.368 16 | 0.581 14 | 0.440 16 | 0.228 16 | 0.406 9 | 0.282 16 | 0.294 15 | 0.000 3 | 0.000 1 | 0.189 15 | 0.060 2 | 0.036 4 | 0.000 11 | 0.000 4 | 0.897 11 | 0.000 16 | 0.525 13 | 0.025 16 | 0.205 16 | 0.771 16 | 0.000 11 | 0.000 1 | 0.593 10 | 0.108 8 | 0.044 6 | 0.000 4 | 0.000 1 | 0.000 10 | 0.282 16 | 0.589 14 | 0.094 15 | 0.169 15 | 0.466 16 | 0.227 15 | 0.419 16 | 0.125 3 | 0.757 13 | 0.002 3 | 0.334 15 | 0.000 1 | 0.000 7 | 0.000 3 | 0.357 14 | 0.000 4 | 0.000 7 | 0.000 1 | 0.582 9 | 0.513 13 | 0.337 10 | 0.612 16 | 0.000 8 | 0.000 1 | 0.250 15 | 0.352 16 | 0.136 16 | 0.724 15 | 0.655 4 | 0.280 8 | 0.000 11 | 0.046 15 | 0.000 1 | 0.606 16 | 0.559 14 | 0.159 7 | 0.102 2 | 0.445 9 | 0.655 9 | 0.000 1 | 0.310 16 | 0.117 5 | 0.000 7 | 0.000 1 | 0.581 14 | 0.026 1 | 0.000 1 | 0.265 16 | 0.483 15 | 0.084 16 | 0.097 16 | 0.044 14 | 0.865 16 | 0.142 16 | 0.588 11 | 0.351 14 | 0.272 2 | 0.596 16 | 0.000 1 | 0.003 10 | 0.622 15 | 0.720 9 | 0.096 16 | 0.000 1 | 0.771 15 | 0.016 14 | 0.772 14 | 0.000 1 | 0.302 14 | 0.194 7 | 0.214 11 | 0.621 15 | 0.197 16 | |||||||||||||||||||||||||||||
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
IMFSegNet | 0.334 8 | 0.532 12 | 0.251 10 | 0.179 6 | 0.486 9 | 0.041 15 | 0.139 12 | 0.003 1 | 0.283 3 | 0.000 1 | 0.274 14 | 0.191 14 | 0.457 13 | 0.704 13 | 0.795 7 | 0.197 8 | 0.830 5 | 0.000 3 | 0.710 8 | 0.055 15 | 0.064 4 | 0.518 5 | 0.305 9 | 0.458 16 | 0.216 11 | 0.027 5 | 0.284 12 | 0.000 1 | 0.000 3 | 0.044 11 | 0.406 9 | 0.561 5 | 0.000 1 | 0.080 11 | 0.000 2 | 0.873 9 | 0.021 14 | 0.683 8 | 0.000 7 | 0.076 8 | 0.494 9 | 0.363 9 | 0.648 15 | 0.000 1 | 0.000 2 | 0.425 9 | 0.649 4 | 0.000 10 | 0.668 11 | 0.908 6 | 0.740 10 | 0.010 14 | 0.206 7 | 0.862 9 | 0.000 1 | 0.000 10 | 0.560 8 | 0.000 7 | 0.359 12 | 0.237 11 | 0.631 11 | 0.408 11 | 0.411 4 | 0.322 14 | 0.246 4 | 0.439 9 | 0.599 12 | 0.047 4 | 0.213 6 | 0.940 10 | 0.139 10 | 0.000 1 | 0.369 4 | 0.124 9 | 0.188 11 | 0.495 10 | 0.624 10 | 0.626 7 | 0.320 13 | 0.595 4 | 0.495 7 | 0.496 10 | 0.000 3 | 0.000 1 | 0.340 11 | 0.014 5 | 0.032 6 | 0.135 5 | 0.000 4 | 0.903 8 | 0.277 5 | 0.612 8 | 0.196 6 | 0.344 11 | 0.848 13 | 0.260 4 | 0.000 1 | 0.574 12 | 0.073 14 | 0.062 4 | 0.000 4 | 0.000 1 | 0.091 5 | 0.839 3 | 0.776 2 | 0.123 11 | 0.392 8 | 0.756 12 | 0.274 5 | 0.518 11 | 0.029 15 | 0.842 3 | 0.000 5 | 0.357 12 | 0.000 1 | 0.035 6 | 0.000 3 | 0.444 11 | 0.793 1 | 0.245 4 | 0.000 1 | 0.512 15 | 0.512 14 | 0.159 14 | 0.713 12 | 0.000 8 | 0.000 1 | 0.336 12 | 0.484 11 | 0.569 2 | 0.852 8 | 0.615 6 | 0.120 11 | 0.068 10 | 0.228 7 | 0.000 1 | 0.733 9 | 0.773 1 | 0.190 4 | 0.000 9 | 0.608 5 | 0.792 4 | 0.000 1 | 0.597 6 | 0.000 13 | 0.025 2 | 0.000 1 | 0.573 16 | 0.000 2 | 0.000 1 | 0.508 10 | 0.555 7 | 0.363 9 | 0.139 11 | 0.610 2 | 0.947 8 | 0.305 6 | 0.594 9 | 0.527 8 | 0.009 16 | 0.633 12 | 0.000 1 | 0.060 3 | 0.820 5 | 0.604 14 | 0.799 8 | 0.000 1 | 0.799 10 | 0.034 13 | 0.784 12 | 0.000 1 | 0.618 6 | 0.424 1 | 0.134 15 | 0.646 12 | 0.214 14 | |||||||||||||||||||||||||||||
GSTran | 0.334 9 | 0.533 11 | 0.250 11 | 0.179 7 | 0.487 8 | 0.041 15 | 0.139 12 | 0.003 1 | 0.273 4 | 0.000 1 | 0.273 15 | 0.189 15 | 0.465 12 | 0.704 13 | 0.794 8 | 0.198 7 | 0.831 4 | 0.000 3 | 0.712 7 | 0.055 15 | 0.063 5 | 0.518 5 | 0.306 8 | 0.459 15 | 0.217 9 | 0.028 4 | 0.282 13 | 0.000 1 | 0.000 3 | 0.044 11 | 0.405 10 | 0.558 6 | 0.000 1 | 0.080 11 | 0.000 2 | 0.873 9 | 0.020 15 | 0.684 7 | 0.000 7 | 0.075 11 | 0.496 8 | 0.363 9 | 0.651 14 | 0.000 1 | 0.000 2 | 0.425 9 | 0.648 5 | 0.000 10 | 0.669 10 | 0.914 5 | 0.741 9 | 0.009 15 | 0.200 8 | 0.864 8 | 0.000 1 | 0.000 10 | 0.560 8 | 0.000 7 | 0.357 13 | 0.233 12 | 0.633 10 | 0.408 11 | 0.411 4 | 0.320 15 | 0.242 5 | 0.440 8 | 0.598 13 | 0.047 4 | 0.205 7 | 0.940 10 | 0.139 10 | 0.000 1 | 0.372 3 | 0.138 8 | 0.191 8 | 0.495 10 | 0.618 12 | 0.624 8 | 0.321 11 | 0.595 4 | 0.496 6 | 0.499 8 | 0.000 3 | 0.000 1 | 0.340 11 | 0.014 5 | 0.032 6 | 0.136 4 | 0.000 4 | 0.903 8 | 0.279 4 | 0.601 9 | 0.198 4 | 0.345 10 | 0.849 11 | 0.260 4 | 0.000 1 | 0.573 13 | 0.072 15 | 0.060 5 | 0.000 4 | 0.000 1 | 0.089 6 | 0.838 4 | 0.775 3 | 0.125 10 | 0.381 10 | 0.752 13 | 0.274 5 | 0.517 12 | 0.032 14 | 0.841 4 | 0.000 5 | 0.354 13 | 0.000 1 | 0.047 5 | 0.000 3 | 0.439 12 | 0.787 2 | 0.252 3 | 0.000 1 | 0.512 15 | 0.507 15 | 0.158 15 | 0.717 11 | 0.000 8 | 0.000 1 | 0.337 11 | 0.483 12 | 0.570 1 | 0.853 7 | 0.614 7 | 0.121 10 | 0.070 9 | 0.229 6 | 0.000 1 | 0.732 10 | 0.773 1 | 0.193 3 | 0.000 9 | 0.606 6 | 0.791 5 | 0.000 1 | 0.593 8 | 0.000 13 | 0.010 5 | 0.000 1 | 0.574 15 | 0.000 2 | 0.000 1 | 0.507 11 | 0.554 8 | 0.361 10 | 0.136 12 | 0.608 3 | 0.948 7 | 0.304 7 | 0.593 10 | 0.533 7 | 0.011 15 | 0.634 11 | 0.000 1 | 0.060 3 | 0.821 4 | 0.613 12 | 0.797 9 | 0.000 1 | 0.799 10 | 0.036 12 | 0.782 13 | 0.000 1 | 0.609 7 | 0.423 2 | 0.133 16 | 0.647 11 | 0.213 15 | |||||||||||||||||||||||||||||
DITR | 0.409 2 | 0.616 1 | 0.351 1 | 0.215 3 | 0.651 1 | 0.238 1 | 0.400 2 | 0.000 3 | 0.340 1 | 0.000 1 | 0.534 2 | 0.476 4 | 0.585 2 | 0.687 15 | 0.853 1 | 0.143 12 | 0.854 2 | 0.000 3 | 0.865 2 | 0.167 4 | 0.000 9 | 0.175 16 | 0.573 1 | 0.617 2 | 0.372 1 | 0.362 1 | 0.591 1 | 0.000 1 | 0.000 3 | 0.330 1 | 0.494 2 | 0.247 9 | 0.000 1 | 0.385 1 | 0.000 2 | 0.878 6 | 0.037 13 | 0.791 1 | 0.053 2 | 0.118 3 | 0.479 11 | 0.429 4 | 0.940 3 | 0.000 1 | 0.000 2 | 0.461 7 | 0.562 10 | 0.093 5 | 0.628 14 | 0.991 1 | 0.762 2 | 0.135 3 | 0.270 3 | 0.917 3 | 0.000 1 | 0.140 4 | 0.597 2 | 0.000 7 | 0.361 11 | 0.375 1 | 0.730 2 | 0.431 5 | 0.459 3 | 0.410 12 | 0.008 15 | 0.656 1 | 0.814 1 | 0.036 6 | 0.554 3 | 0.947 5 | 0.139 10 | 0.000 1 | 0.263 5 | 0.896 1 | 0.191 8 | 0.615 4 | 0.839 3 | 0.757 1 | 0.399 5 | 0.877 1 | 0.504 5 | 0.524 6 | 0.000 3 | 0.000 1 | 0.587 3 | 0.000 10 | 0.022 11 | 0.077 9 | 0.921 1 | 0.928 2 | 0.132 9 | 0.670 4 | 0.759 1 | 0.652 1 | 0.862 7 | 0.091 10 | 0.000 1 | 0.662 3 | 0.072 15 | 0.000 12 | 0.000 4 | 0.000 1 | 0.496 1 | 0.852 2 | 0.752 4 | 0.152 3 | 0.743 1 | 0.953 1 | 0.301 3 | 0.625 3 | 0.053 11 | 0.913 1 | 0.399 1 | 0.452 4 | 0.000 1 | 0.000 7 | 0.000 3 | 0.742 2 | 0.000 4 | 0.000 7 | 0.000 1 | 0.694 2 | 0.643 4 | 0.444 6 | 0.784 7 | 0.000 8 | 0.000 1 | 0.571 1 | 0.614 3 | 0.491 4 | 0.938 1 | 0.559 10 | 0.357 5 | 0.107 7 | 0.404 1 | 0.000 1 | 0.796 2 | 0.688 6 | 0.148 8 | 0.186 1 | 0.629 4 | 0.827 1 | 0.000 1 | 0.558 11 | 0.198 4 | 0.000 7 | 0.000 1 | 0.723 2 | 0.000 2 | 0.000 1 | 0.833 1 | 0.619 1 | 0.609 2 | 0.478 4 | 0.617 1 | 0.959 4 | 0.370 3 | 0.597 8 | 0.737 2 | 0.191 5 | 0.752 2 | 0.000 1 | 0.118 1 | 0.853 1 | 0.925 2 | 0.670 13 | 0.000 1 | 0.831 3 | 0.000 16 | 0.873 3 | 0.000 1 | 0.699 1 | 0.005 11 | 0.360 1 | 0.723 3 | 0.235 12 | |||||||||||||||||||||||||||||
BFANet ScanNet200 | 0.360 4 | 0.553 6 | 0.293 4 | 0.193 4 | 0.483 10 | 0.096 5 | 0.266 5 | 0.000 3 | 0.000 6 | 0.000 1 | 0.298 12 | 0.255 11 | 0.661 1 | 0.810 5 | 0.810 3 | 0.194 9 | 0.785 6 | 0.000 3 | 0.000 16 | 0.161 5 | 0.000 9 | 0.494 8 | 0.382 2 | 0.574 4 | 0.258 4 | 0.000 9 | 0.372 8 | 0.000 1 | 0.000 3 | 0.043 13 | 0.436 7 | 0.000 10 | 0.000 1 | 0.239 2 | 0.000 2 | 0.901 3 | 0.105 1 | 0.689 4 | 0.025 4 | 0.128 2 | 0.614 2 | 0.436 1 | 0.493 16 | 0.000 1 | 0.000 2 | 0.526 4 | 0.546 12 | 0.109 4 | 0.651 13 | 0.953 4 | 0.753 6 | 0.101 6 | 0.143 12 | 0.897 4 | 0.000 1 | 0.431 1 | 0.469 14 | 0.000 7 | 0.522 5 | 0.337 5 | 0.661 6 | 0.459 2 | 0.409 6 | 0.666 4 | 0.102 12 | 0.508 5 | 0.757 4 | 0.000 8 | 0.060 13 | 0.970 3 | 0.497 1 | 0.000 1 | 0.376 2 | 0.511 3 | 0.262 4 | 0.688 2 | 0.921 1 | 0.617 9 | 0.321 11 | 0.590 6 | 0.491 8 | 0.556 3 | 0.000 3 | 0.000 1 | 0.481 4 | 0.093 1 | 0.043 2 | 0.284 2 | 0.000 4 | 0.875 14 | 0.135 8 | 0.669 5 | 0.124 12 | 0.394 6 | 0.849 11 | 0.298 2 | 0.000 1 | 0.476 16 | 0.088 11 | 0.042 7 | 0.000 4 | 0.000 1 | 0.254 3 | 0.653 10 | 0.741 6 | 0.215 1 | 0.573 5 | 0.852 5 | 0.266 9 | 0.654 1 | 0.056 10 | 0.835 5 | 0.000 5 | 0.492 1 | 0.000 1 | 0.000 7 | 0.000 3 | 0.612 8 | 0.000 4 | 0.000 7 | 0.000 1 | 0.616 5 | 0.469 16 | 0.460 4 | 0.698 13 | 0.516 2 | 0.000 1 | 0.378 7 | 0.563 4 | 0.476 5 | 0.863 5 | 0.574 9 | 0.330 6 | 0.000 11 | 0.282 4 | 0.000 1 | 0.760 4 | 0.710 4 | 0.233 1 | 0.000 9 | 0.641 3 | 0.814 2 | 0.000 1 | 0.585 9 | 0.053 10 | 0.000 7 | 0.000 1 | 0.629 9 | 0.000 2 | 0.000 1 | 0.678 3 | 0.528 12 | 0.534 4 | 0.129 13 | 0.596 4 | 0.973 3 | 0.264 11 | 0.772 2 | 0.526 9 | 0.139 10 | 0.707 4 | 0.000 1 | 0.000 12 | 0.764 13 | 0.591 15 | 0.848 6 | 0.000 1 | 0.827 4 | 0.338 3 | 0.806 11 | 0.000 1 | 0.568 9 | 0.151 8 | 0.358 2 | 0.659 9 | 0.510 4 | |||||||||||||||||||||||||||||
ALS-MinkowskiNet | 0.414 1 | 0.610 2 | 0.322 3 | 0.271 1 | 0.542 2 | 0.153 2 | 0.159 10 | 0.000 3 | 0.000 6 | 0.000 1 | 0.404 4 | 0.503 3 | 0.532 6 | 0.672 16 | 0.804 5 | 0.285 1 | 0.888 1 | 0.000 3 | 0.900 1 | 0.226 1 | 0.087 2 | 0.598 3 | 0.342 4 | 0.671 1 | 0.217 9 | 0.087 3 | 0.449 3 | 0.000 1 | 0.000 3 | 0.253 2 | 0.477 5 | 1.000 1 | 0.000 1 | 0.118 4 | 0.000 2 | 0.905 1 | 0.071 11 | 0.710 2 | 0.076 1 | 0.047 15 | 0.665 1 | 0.376 8 | 0.981 1 | 0.000 1 | 0.000 2 | 0.466 6 | 0.632 7 | 0.113 3 | 0.769 1 | 0.956 3 | 0.795 1 | 0.031 9 | 0.314 1 | 0.936 1 | 0.000 1 | 0.390 2 | 0.601 1 | 0.000 7 | 0.458 7 | 0.366 2 | 0.719 3 | 0.440 4 | 0.564 1 | 0.699 3 | 0.314 1 | 0.464 6 | 0.784 2 | 0.200 1 | 0.283 5 | 0.973 1 | 0.142 8 | 0.000 1 | 0.250 7 | 0.285 5 | 0.220 5 | 0.718 1 | 0.752 5 | 0.723 2 | 0.460 1 | 0.248 15 | 0.475 9 | 0.463 13 | 0.000 3 | 0.000 1 | 0.446 7 | 0.021 4 | 0.025 9 | 0.285 1 | 0.000 4 | 0.972 1 | 0.149 7 | 0.769 1 | 0.230 2 | 0.535 2 | 0.879 2 | 0.252 6 | 0.000 1 | 0.693 1 | 0.129 2 | 0.000 12 | 0.000 4 | 0.000 1 | 0.447 2 | 0.958 1 | 0.662 9 | 0.159 2 | 0.598 3 | 0.780 11 | 0.344 2 | 0.646 2 | 0.106 4 | 0.893 2 | 0.135 2 | 0.455 3 | 0.000 1 | 0.194 3 | 0.259 1 | 0.726 3 | 0.475 3 | 0.000 7 | 0.000 1 | 0.741 1 | 0.865 1 | 0.571 2 | 0.817 3 | 0.445 3 | 0.000 1 | 0.506 2 | 0.630 2 | 0.230 11 | 0.916 2 | 0.728 1 | 0.635 1 | 1.000 1 | 0.252 5 | 0.000 1 | 0.804 1 | 0.697 5 | 0.137 11 | 0.043 6 | 0.717 1 | 0.807 3 | 0.000 1 | 0.510 13 | 0.245 1 | 0.000 7 | 0.000 1 | 0.709 3 | 0.000 2 | 0.000 1 | 0.703 2 | 0.572 3 | 0.646 1 | 0.223 10 | 0.531 5 | 0.984 1 | 0.397 2 | 0.813 1 | 0.798 1 | 0.135 12 | 0.800 1 | 0.000 1 | 0.097 2 | 0.832 2 | 0.752 8 | 0.842 7 | 0.000 1 | 0.852 1 | 0.149 9 | 0.846 9 | 0.000 1 | 0.666 5 | 0.359 4 | 0.252 7 | 0.777 1 | 0.690 2 | |||||||||||||||||||||||||||||
PonderV2 ScanNet200 | 0.346 5 | 0.552 7 | 0.270 7 | 0.175 8 | 0.497 7 | 0.070 11 | 0.239 6 | 0.000 3 | 0.000 6 | 0.000 1 | 0.232 16 | 0.412 7 | 0.584 3 | 0.842 3 | 0.804 5 | 0.212 6 | 0.540 9 | 0.000 3 | 0.433 15 | 0.106 9 | 0.000 9 | 0.590 4 | 0.290 11 | 0.548 5 | 0.243 6 | 0.000 9 | 0.356 10 | 0.000 1 | 0.000 3 | 0.062 9 | 0.398 12 | 0.441 8 | 0.000 1 | 0.104 9 | 0.000 2 | 0.888 4 | 0.076 9 | 0.682 9 | 0.030 3 | 0.094 6 | 0.491 10 | 0.351 12 | 0.869 9 | 0.000 1 | 0.063 1 | 0.403 11 | 0.700 2 | 0.000 10 | 0.660 12 | 0.881 8 | 0.761 3 | 0.050 8 | 0.186 9 | 0.852 12 | 0.000 1 | 0.007 8 | 0.570 7 | 0.100 2 | 0.565 2 | 0.326 6 | 0.641 9 | 0.431 5 | 0.290 13 | 0.621 5 | 0.259 3 | 0.408 10 | 0.622 9 | 0.125 2 | 0.082 11 | 0.950 4 | 0.179 4 | 0.000 1 | 0.263 5 | 0.424 4 | 0.193 7 | 0.558 6 | 0.880 2 | 0.545 12 | 0.375 6 | 0.727 3 | 0.445 11 | 0.499 8 | 0.000 3 | 0.000 1 | 0.475 6 | 0.002 8 | 0.034 5 | 0.083 8 | 0.000 4 | 0.924 3 | 0.290 3 | 0.636 6 | 0.115 13 | 0.400 5 | 0.874 4 | 0.186 8 | 0.000 1 | 0.611 7 | 0.128 3 | 0.113 2 | 0.000 4 | 0.000 1 | 0.000 10 | 0.584 11 | 0.636 10 | 0.103 13 | 0.385 9 | 0.843 6 | 0.283 4 | 0.603 6 | 0.080 6 | 0.825 9 | 0.000 5 | 0.377 9 | 0.000 1 | 0.000 7 | 0.000 3 | 0.457 10 | 0.000 4 | 0.000 7 | 0.000 1 | 0.574 11 | 0.608 8 | 0.481 3 | 0.792 4 | 0.394 4 | 0.000 1 | 0.357 9 | 0.503 10 | 0.261 10 | 0.817 12 | 0.504 13 | 0.304 7 | 0.472 4 | 0.115 10 | 0.000 1 | 0.750 6 | 0.677 8 | 0.202 2 | 0.000 9 | 0.509 8 | 0.729 6 | 0.000 1 | 0.519 12 | 0.000 13 | 0.000 7 | 0.000 1 | 0.620 11 | 0.000 2 | 0.000 1 | 0.660 6 | 0.560 6 | 0.486 5 | 0.384 7 | 0.346 9 | 0.952 5 | 0.247 13 | 0.667 4 | 0.436 11 | 0.269 3 | 0.691 6 | 0.000 1 | 0.010 7 | 0.787 9 | 0.889 3 | 0.880 4 | 0.000 1 | 0.810 7 | 0.336 4 | 0.860 7 | 0.000 1 | 0.606 8 | 0.009 9 | 0.248 8 | 0.681 6 | 0.392 8 | |||||||||||||||||||||||||||||
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PTv3 ScanNet200 | 0.393 3 | 0.592 3 | 0.330 2 | 0.216 2 | 0.520 3 | 0.109 4 | 0.108 15 | 0.000 3 | 0.337 2 | 0.000 1 | 0.310 11 | 0.394 8 | 0.494 11 | 0.753 8 | 0.848 2 | 0.256 3 | 0.717 7 | 0.000 3 | 0.842 3 | 0.192 3 | 0.065 3 | 0.449 9 | 0.346 3 | 0.546 6 | 0.190 12 | 0.000 9 | 0.384 6 | 0.000 1 | 0.000 3 | 0.218 3 | 0.505 1 | 0.791 2 | 0.000 1 | 0.136 3 | 0.000 2 | 0.903 2 | 0.073 10 | 0.687 6 | 0.000 7 | 0.168 1 | 0.551 4 | 0.387 7 | 0.941 2 | 0.000 1 | 0.000 2 | 0.397 12 | 0.654 3 | 0.000 10 | 0.714 4 | 0.759 14 | 0.752 7 | 0.118 5 | 0.264 4 | 0.926 2 | 0.000 1 | 0.048 5 | 0.575 4 | 0.000 7 | 0.597 1 | 0.366 2 | 0.755 1 | 0.469 1 | 0.474 2 | 0.798 1 | 0.140 9 | 0.617 2 | 0.692 6 | 0.000 8 | 0.592 2 | 0.971 2 | 0.188 3 | 0.000 1 | 0.133 9 | 0.593 2 | 0.349 1 | 0.650 3 | 0.717 7 | 0.699 3 | 0.455 2 | 0.790 2 | 0.523 3 | 0.636 1 | 0.301 1 | 0.000 1 | 0.622 2 | 0.000 10 | 0.017 14 | 0.259 3 | 0.000 4 | 0.921 4 | 0.337 1 | 0.733 2 | 0.210 3 | 0.514 3 | 0.860 8 | 0.407 1 | 0.000 1 | 0.688 2 | 0.109 7 | 0.000 12 | 0.000 4 | 0.000 1 | 0.151 4 | 0.671 8 | 0.782 1 | 0.115 12 | 0.641 2 | 0.903 2 | 0.349 1 | 0.616 4 | 0.088 5 | 0.832 7 | 0.000 5 | 0.480 2 | 0.000 1 | 0.428 1 | 0.000 3 | 0.497 9 | 0.000 4 | 0.000 7 | 0.000 1 | 0.662 4 | 0.690 2 | 0.612 1 | 0.828 1 | 0.575 1 | 0.000 1 | 0.404 6 | 0.644 1 | 0.325 7 | 0.887 4 | 0.728 1 | 0.009 15 | 0.134 6 | 0.026 16 | 0.000 1 | 0.761 3 | 0.731 3 | 0.172 6 | 0.077 3 | 0.528 7 | 0.727 7 | 0.000 1 | 0.603 4 | 0.220 3 | 0.022 3 | 0.000 1 | 0.740 1 | 0.000 2 | 0.000 1 | 0.661 4 | 0.586 2 | 0.566 3 | 0.436 5 | 0.531 5 | 0.978 2 | 0.457 1 | 0.708 3 | 0.583 5 | 0.141 8 | 0.748 3 | 0.000 1 | 0.026 5 | 0.822 3 | 0.871 4 | 0.879 5 | 0.000 1 | 0.851 2 | 0.405 2 | 0.914 1 | 0.000 1 | 0.682 3 | 0.000 14 | 0.281 3 | 0.738 2 | 0.463 6 | |||||||||||||||||||||||||||||
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
L3DETR-ScanNet_200 | 0.336 7 | 0.533 10 | 0.279 5 | 0.155 9 | 0.508 5 | 0.073 10 | 0.101 16 | 0.000 3 | 0.058 5 | 0.000 1 | 0.294 13 | 0.233 13 | 0.548 4 | 0.927 1 | 0.788 10 | 0.264 2 | 0.463 10 | 0.000 3 | 0.638 11 | 0.098 12 | 0.014 7 | 0.411 11 | 0.226 12 | 0.525 10 | 0.225 8 | 0.010 7 | 0.397 5 | 0.000 1 | 0.000 3 | 0.192 5 | 0.380 13 | 0.598 4 | 0.000 1 | 0.117 5 | 0.000 2 | 0.883 5 | 0.082 7 | 0.689 4 | 0.000 7 | 0.032 16 | 0.549 5 | 0.417 5 | 0.910 5 | 0.000 1 | 0.000 2 | 0.448 8 | 0.613 9 | 0.000 10 | 0.697 6 | 0.960 2 | 0.759 4 | 0.158 2 | 0.293 2 | 0.883 6 | 0.000 1 | 0.312 3 | 0.583 3 | 0.079 4 | 0.422 10 | 0.068 16 | 0.660 7 | 0.418 7 | 0.298 11 | 0.430 10 | 0.114 10 | 0.526 4 | 0.776 3 | 0.051 3 | 0.679 1 | 0.946 6 | 0.152 6 | 0.000 1 | 0.183 8 | 0.000 14 | 0.211 6 | 0.511 9 | 0.409 15 | 0.565 11 | 0.355 7 | 0.448 8 | 0.512 4 | 0.557 2 | 0.000 3 | 0.000 1 | 0.420 8 | 0.000 10 | 0.007 16 | 0.104 6 | 0.000 4 | 0.125 16 | 0.330 2 | 0.514 14 | 0.146 11 | 0.321 12 | 0.860 8 | 0.174 9 | 0.000 1 | 0.629 5 | 0.075 12 | 0.000 12 | 0.000 4 | 0.000 1 | 0.002 9 | 0.671 8 | 0.712 7 | 0.141 6 | 0.339 11 | 0.856 4 | 0.261 11 | 0.529 9 | 0.067 8 | 0.835 5 | 0.000 5 | 0.369 11 | 0.000 1 | 0.259 2 | 0.000 3 | 0.629 5 | 0.000 4 | 0.487 1 | 0.000 1 | 0.579 10 | 0.646 3 | 0.107 16 | 0.720 10 | 0.122 6 | 0.000 1 | 0.333 13 | 0.505 9 | 0.303 9 | 0.908 3 | 0.503 14 | 0.565 2 | 0.074 8 | 0.324 2 | 0.000 1 | 0.740 7 | 0.661 10 | 0.109 13 | 0.000 9 | 0.427 12 | 0.563 16 | 0.000 1 | 0.579 10 | 0.108 7 | 0.000 7 | 0.000 1 | 0.664 5 | 0.000 2 | 0.000 1 | 0.641 7 | 0.539 10 | 0.416 6 | 0.515 2 | 0.256 10 | 0.940 12 | 0.312 5 | 0.209 16 | 0.620 3 | 0.138 11 | 0.636 10 | 0.000 1 | 0.000 12 | 0.775 12 | 0.861 5 | 0.765 11 | 0.000 1 | 0.801 9 | 0.119 11 | 0.860 7 | 0.000 1 | 0.687 2 | 0.001 13 | 0.192 13 | 0.679 8 | 0.699 1 | |||||||||||||||||||||||||||||
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OA-CNN-L_ScanNet200 | 0.333 10 | 0.558 4 | 0.269 8 | 0.124 12 | 0.448 14 | 0.080 8 | 0.272 4 | 0.000 3 | 0.000 6 | 0.000 1 | 0.342 7 | 0.515 2 | 0.524 7 | 0.713 12 | 0.789 9 | 0.158 11 | 0.384 11 | 0.000 3 | 0.806 5 | 0.125 6 | 0.000 9 | 0.496 7 | 0.332 6 | 0.498 13 | 0.227 7 | 0.024 6 | 0.474 2 | 0.000 1 | 0.003 2 | 0.071 8 | 0.487 3 | 0.000 10 | 0.000 1 | 0.110 7 | 0.000 2 | 0.876 7 | 0.013 16 | 0.703 3 | 0.000 7 | 0.076 8 | 0.473 12 | 0.355 11 | 0.906 6 | 0.000 1 | 0.000 2 | 0.476 5 | 0.706 1 | 0.000 10 | 0.672 9 | 0.835 12 | 0.748 8 | 0.015 13 | 0.223 6 | 0.860 10 | 0.000 1 | 0.000 10 | 0.572 6 | 0.000 7 | 0.509 6 | 0.313 7 | 0.662 4 | 0.398 13 | 0.396 7 | 0.411 11 | 0.276 2 | 0.527 3 | 0.711 5 | 0.000 8 | 0.076 12 | 0.946 6 | 0.166 5 | 0.000 1 | 0.022 10 | 0.160 6 | 0.183 12 | 0.493 12 | 0.699 8 | 0.637 5 | 0.403 4 | 0.330 12 | 0.406 12 | 0.526 5 | 0.024 2 | 0.000 1 | 0.392 10 | 0.000 10 | 0.016 15 | 0.000 11 | 0.196 3 | 0.915 6 | 0.112 11 | 0.557 10 | 0.197 5 | 0.352 9 | 0.877 3 | 0.000 11 | 0.000 1 | 0.592 11 | 0.103 9 | 0.000 12 | 0.067 1 | 0.000 1 | 0.089 6 | 0.735 7 | 0.625 11 | 0.130 9 | 0.568 6 | 0.836 7 | 0.271 7 | 0.534 8 | 0.043 12 | 0.799 10 | 0.001 4 | 0.445 5 | 0.000 1 | 0.000 7 | 0.024 2 | 0.661 4 | 0.000 4 | 0.262 2 | 0.000 1 | 0.591 7 | 0.517 12 | 0.373 8 | 0.788 6 | 0.021 7 | 0.000 1 | 0.455 3 | 0.517 8 | 0.320 8 | 0.823 11 | 0.200 16 | 0.001 16 | 0.150 5 | 0.100 11 | 0.000 1 | 0.736 8 | 0.668 9 | 0.103 14 | 0.052 5 | 0.662 2 | 0.720 8 | 0.000 1 | 0.602 5 | 0.112 6 | 0.002 6 | 0.000 1 | 0.637 8 | 0.000 2 | 0.000 1 | 0.621 9 | 0.569 4 | 0.398 8 | 0.412 6 | 0.234 11 | 0.949 6 | 0.363 4 | 0.492 14 | 0.495 10 | 0.251 4 | 0.665 8 | 0.000 1 | 0.001 11 | 0.805 7 | 0.833 6 | 0.794 10 | 0.000 1 | 0.821 5 | 0.314 5 | 0.843 10 | 0.000 1 | 0.560 10 | 0.245 5 | 0.262 5 | 0.713 4 | 0.370 10 | |||||||||||||||||||||||||||||
PPT-SpUNet-F.T. | 0.332 11 | 0.556 5 | 0.270 6 | 0.123 13 | 0.519 4 | 0.091 6 | 0.349 3 | 0.000 3 | 0.000 6 | 0.000 1 | 0.339 8 | 0.383 9 | 0.498 10 | 0.833 4 | 0.807 4 | 0.241 4 | 0.584 8 | 0.000 3 | 0.755 6 | 0.124 7 | 0.000 9 | 0.608 2 | 0.330 7 | 0.530 9 | 0.314 2 | 0.000 9 | 0.374 7 | 0.000 1 | 0.000 3 | 0.197 4 | 0.459 6 | 0.000 10 | 0.000 1 | 0.117 5 | 0.000 2 | 0.876 7 | 0.095 2 | 0.682 9 | 0.000 7 | 0.086 7 | 0.518 6 | 0.433 2 | 0.930 4 | 0.000 1 | 0.000 2 | 0.563 3 | 0.542 13 | 0.077 7 | 0.715 3 | 0.858 10 | 0.756 5 | 0.008 16 | 0.171 11 | 0.874 7 | 0.000 1 | 0.039 6 | 0.550 10 | 0.000 7 | 0.545 4 | 0.256 8 | 0.657 8 | 0.453 3 | 0.351 9 | 0.449 9 | 0.213 6 | 0.392 11 | 0.611 10 | 0.000 8 | 0.037 14 | 0.946 6 | 0.138 13 | 0.000 1 | 0.000 12 | 0.063 10 | 0.308 2 | 0.537 7 | 0.796 4 | 0.673 4 | 0.323 10 | 0.392 10 | 0.400 13 | 0.509 7 | 0.000 3 | 0.000 1 | 0.649 1 | 0.000 10 | 0.023 10 | 0.000 11 | 0.000 4 | 0.914 7 | 0.002 15 | 0.506 15 | 0.163 10 | 0.359 8 | 0.872 5 | 0.000 11 | 0.000 1 | 0.623 6 | 0.112 5 | 0.001 11 | 0.000 4 | 0.000 1 | 0.021 8 | 0.753 5 | 0.565 15 | 0.150 4 | 0.579 4 | 0.806 9 | 0.267 8 | 0.616 4 | 0.042 13 | 0.783 12 | 0.000 5 | 0.374 10 | 0.000 1 | 0.000 7 | 0.000 3 | 0.620 7 | 0.000 4 | 0.000 7 | 0.000 1 | 0.572 12 | 0.634 5 | 0.350 9 | 0.792 4 | 0.000 8 | 0.000 1 | 0.376 8 | 0.535 6 | 0.378 6 | 0.855 6 | 0.672 3 | 0.074 12 | 0.000 11 | 0.185 9 | 0.000 1 | 0.727 11 | 0.660 11 | 0.076 16 | 0.000 9 | 0.432 11 | 0.646 10 | 0.000 1 | 0.594 7 | 0.006 12 | 0.000 7 | 0.000 1 | 0.658 6 | 0.000 2 | 0.000 1 | 0.661 4 | 0.549 9 | 0.300 13 | 0.291 9 | 0.045 13 | 0.942 11 | 0.304 7 | 0.600 7 | 0.572 6 | 0.135 12 | 0.695 5 | 0.000 1 | 0.008 9 | 0.793 8 | 0.942 1 | 0.899 2 | 0.000 1 | 0.816 6 | 0.181 7 | 0.897 2 | 0.000 1 | 0.679 4 | 0.223 6 | 0.264 4 | 0.691 5 | 0.345 11 | |||||||||||||||||||||||||||||
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OctFormer ScanNet200 | 0.326 12 | 0.539 9 | 0.265 9 | 0.131 11 | 0.499 6 | 0.110 3 | 0.522 1 | 0.000 3 | 0.000 6 | 0.000 1 | 0.318 10 | 0.427 6 | 0.455 14 | 0.743 10 | 0.765 12 | 0.175 10 | 0.842 3 | 0.000 3 | 0.828 4 | 0.204 2 | 0.033 6 | 0.429 10 | 0.335 5 | 0.601 3 | 0.312 3 | 0.000 9 | 0.357 9 | 0.000 1 | 0.000 3 | 0.047 10 | 0.423 8 | 0.000 10 | 0.000 1 | 0.105 8 | 0.000 2 | 0.873 9 | 0.079 8 | 0.670 12 | 0.000 7 | 0.117 4 | 0.471 13 | 0.432 3 | 0.829 10 | 0.000 1 | 0.000 2 | 0.584 2 | 0.417 16 | 0.089 6 | 0.684 8 | 0.837 11 | 0.705 15 | 0.021 12 | 0.178 10 | 0.892 5 | 0.000 1 | 0.028 7 | 0.505 12 | 0.000 7 | 0.457 8 | 0.200 13 | 0.662 4 | 0.412 9 | 0.244 14 | 0.496 7 | 0.000 16 | 0.451 7 | 0.626 8 | 0.000 8 | 0.102 10 | 0.943 9 | 0.138 13 | 0.000 1 | 0.000 12 | 0.149 7 | 0.291 3 | 0.534 8 | 0.722 6 | 0.632 6 | 0.331 9 | 0.253 14 | 0.453 10 | 0.487 11 | 0.000 3 | 0.000 1 | 0.479 5 | 0.000 10 | 0.022 11 | 0.000 11 | 0.000 4 | 0.900 10 | 0.128 10 | 0.684 3 | 0.164 9 | 0.413 4 | 0.854 10 | 0.000 11 | 0.000 1 | 0.512 15 | 0.074 13 | 0.003 10 | 0.000 4 | 0.000 1 | 0.000 10 | 0.469 14 | 0.613 12 | 0.132 8 | 0.529 7 | 0.871 3 | 0.227 15 | 0.582 7 | 0.026 16 | 0.787 11 | 0.000 5 | 0.339 14 | 0.000 1 | 0.000 7 | 0.000 3 | 0.626 6 | 0.000 4 | 0.029 6 | 0.000 1 | 0.587 8 | 0.612 7 | 0.411 7 | 0.724 9 | 0.000 8 | 0.000 1 | 0.407 5 | 0.552 5 | 0.513 3 | 0.849 9 | 0.655 4 | 0.408 3 | 0.000 11 | 0.296 3 | 0.000 1 | 0.686 14 | 0.645 13 | 0.145 9 | 0.022 7 | 0.414 13 | 0.633 11 | 0.000 1 | 0.637 1 | 0.224 2 | 0.000 7 | 0.000 1 | 0.650 7 | 0.000 2 | 0.000 1 | 0.622 8 | 0.535 11 | 0.343 11 | 0.483 3 | 0.230 12 | 0.943 10 | 0.289 9 | 0.618 6 | 0.596 4 | 0.140 9 | 0.679 7 | 0.000 1 | 0.022 6 | 0.783 10 | 0.620 11 | 0.906 1 | 0.000 1 | 0.806 8 | 0.137 10 | 0.865 4 | 0.000 1 | 0.378 12 | 0.000 14 | 0.168 14 | 0.680 7 | 0.227 13 | |||||||||||||||||||||||||||||
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CeCo | 0.340 6 | 0.551 8 | 0.247 12 | 0.181 5 | 0.475 12 | 0.057 14 | 0.142 11 | 0.000 3 | 0.000 6 | 0.000 1 | 0.387 5 | 0.463 5 | 0.499 9 | 0.924 2 | 0.774 11 | 0.213 5 | 0.257 12 | 0.000 3 | 0.546 14 | 0.100 10 | 0.006 8 | 0.615 1 | 0.177 16 | 0.534 7 | 0.246 5 | 0.000 9 | 0.400 4 | 0.000 1 | 0.338 1 | 0.006 15 | 0.484 4 | 0.609 3 | 0.000 1 | 0.083 10 | 0.000 2 | 0.873 9 | 0.089 5 | 0.661 13 | 0.000 7 | 0.048 14 | 0.560 3 | 0.408 6 | 0.892 7 | 0.000 1 | 0.000 2 | 0.586 1 | 0.616 8 | 0.000 10 | 0.692 7 | 0.900 7 | 0.721 11 | 0.162 1 | 0.228 5 | 0.860 10 | 0.000 1 | 0.000 10 | 0.575 4 | 0.083 3 | 0.550 3 | 0.347 4 | 0.624 12 | 0.410 10 | 0.360 8 | 0.740 2 | 0.109 11 | 0.321 14 | 0.660 7 | 0.000 8 | 0.121 8 | 0.939 12 | 0.143 7 | 0.000 1 | 0.400 1 | 0.003 12 | 0.190 10 | 0.564 5 | 0.652 9 | 0.615 10 | 0.421 3 | 0.304 13 | 0.579 1 | 0.547 4 | 0.000 3 | 0.000 1 | 0.296 13 | 0.000 10 | 0.030 8 | 0.096 7 | 0.000 4 | 0.916 5 | 0.037 12 | 0.551 11 | 0.171 8 | 0.376 7 | 0.865 6 | 0.286 3 | 0.000 1 | 0.633 4 | 0.102 10 | 0.027 8 | 0.011 3 | 0.000 1 | 0.000 10 | 0.474 13 | 0.742 5 | 0.133 7 | 0.311 12 | 0.824 8 | 0.242 12 | 0.503 13 | 0.068 7 | 0.828 8 | 0.000 5 | 0.429 6 | 0.000 1 | 0.063 4 | 0.000 3 | 0.781 1 | 0.000 4 | 0.000 7 | 0.000 1 | 0.665 3 | 0.633 6 | 0.450 5 | 0.818 2 | 0.000 8 | 0.000 1 | 0.429 4 | 0.532 7 | 0.226 12 | 0.825 10 | 0.510 12 | 0.377 4 | 0.709 2 | 0.079 13 | 0.000 1 | 0.753 5 | 0.683 7 | 0.102 15 | 0.063 4 | 0.401 15 | 0.620 13 | 0.000 1 | 0.619 2 | 0.000 13 | 0.000 7 | 0.000 1 | 0.595 12 | 0.000 2 | 0.000 1 | 0.345 13 | 0.564 5 | 0.411 7 | 0.603 1 | 0.384 8 | 0.945 9 | 0.266 10 | 0.643 5 | 0.367 13 | 0.304 1 | 0.663 9 | 0.000 1 | 0.010 7 | 0.726 14 | 0.767 7 | 0.898 3 | 0.000 1 | 0.784 12 | 0.435 1 | 0.861 6 | 0.000 1 | 0.447 11 | 0.000 14 | 0.257 6 | 0.656 10 | 0.377 9 | |||||||||||||||||||||||||||||
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AWCS | 0.305 13 | 0.508 13 | 0.225 13 | 0.142 10 | 0.463 13 | 0.063 12 | 0.195 8 | 0.000 3 | 0.000 6 | 0.000 1 | 0.467 3 | 0.551 1 | 0.504 8 | 0.773 6 | 0.764 13 | 0.142 13 | 0.029 16 | 0.000 3 | 0.626 12 | 0.100 10 | 0.000 9 | 0.360 12 | 0.179 14 | 0.507 12 | 0.137 14 | 0.006 8 | 0.300 11 | 0.000 1 | 0.000 3 | 0.172 7 | 0.364 14 | 0.512 7 | 0.000 1 | 0.056 13 | 0.000 2 | 0.865 13 | 0.093 4 | 0.634 16 | 0.000 7 | 0.071 12 | 0.396 14 | 0.296 15 | 0.876 8 | 0.000 1 | 0.000 2 | 0.373 13 | 0.436 15 | 0.063 9 | 0.749 2 | 0.877 9 | 0.721 11 | 0.131 4 | 0.124 13 | 0.804 14 | 0.000 1 | 0.000 10 | 0.515 11 | 0.010 6 | 0.452 9 | 0.252 9 | 0.578 13 | 0.417 8 | 0.179 16 | 0.484 8 | 0.171 7 | 0.337 13 | 0.606 11 | 0.000 8 | 0.115 9 | 0.937 13 | 0.142 8 | 0.000 1 | 0.008 11 | 0.000 14 | 0.157 15 | 0.484 13 | 0.402 16 | 0.501 14 | 0.339 8 | 0.553 7 | 0.529 2 | 0.478 12 | 0.000 3 | 0.000 1 | 0.404 9 | 0.001 9 | 0.022 11 | 0.077 9 | 0.000 4 | 0.894 12 | 0.219 6 | 0.628 7 | 0.093 14 | 0.305 13 | 0.886 1 | 0.233 7 | 0.000 1 | 0.603 8 | 0.112 5 | 0.023 9 | 0.000 4 | 0.000 1 | 0.000 10 | 0.741 6 | 0.664 8 | 0.097 14 | 0.253 13 | 0.782 10 | 0.264 10 | 0.523 10 | 0.154 1 | 0.707 15 | 0.000 5 | 0.411 7 | 0.000 1 | 0.000 7 | 0.000 3 | 0.332 15 | 0.000 4 | 0.000 7 | 0.000 1 | 0.602 6 | 0.595 9 | 0.185 12 | 0.656 15 | 0.159 5 | 0.000 1 | 0.355 10 | 0.424 14 | 0.154 14 | 0.729 14 | 0.516 11 | 0.220 9 | 0.620 3 | 0.084 12 | 0.000 1 | 0.707 13 | 0.651 12 | 0.173 5 | 0.014 8 | 0.381 16 | 0.582 14 | 0.000 1 | 0.619 2 | 0.049 11 | 0.000 7 | 0.000 1 | 0.702 4 | 0.000 2 | 0.000 1 | 0.302 15 | 0.489 14 | 0.317 12 | 0.334 8 | 0.392 7 | 0.922 13 | 0.254 12 | 0.533 13 | 0.394 12 | 0.129 14 | 0.613 14 | 0.000 1 | 0.000 12 | 0.820 5 | 0.649 10 | 0.749 12 | 0.000 1 | 0.782 13 | 0.282 6 | 0.863 5 | 0.000 1 | 0.288 15 | 0.006 10 | 0.220 10 | 0.633 13 | 0.542 3 | |||||||||||||||||||||||||||||
LGround | 0.272 14 | 0.485 14 | 0.184 14 | 0.106 14 | 0.476 11 | 0.077 9 | 0.218 7 | 0.000 3 | 0.000 6 | 0.000 1 | 0.547 1 | 0.295 10 | 0.540 5 | 0.746 9 | 0.745 14 | 0.058 15 | 0.112 15 | 0.005 1 | 0.658 10 | 0.077 14 | 0.000 9 | 0.322 13 | 0.178 15 | 0.512 11 | 0.190 12 | 0.199 2 | 0.277 14 | 0.000 1 | 0.000 3 | 0.173 6 | 0.399 11 | 0.000 10 | 0.000 1 | 0.039 15 | 0.000 2 | 0.858 14 | 0.085 6 | 0.676 11 | 0.002 5 | 0.103 5 | 0.498 7 | 0.323 13 | 0.703 11 | 0.000 1 | 0.000 2 | 0.296 14 | 0.549 11 | 0.216 1 | 0.702 5 | 0.768 13 | 0.718 13 | 0.028 10 | 0.092 15 | 0.786 15 | 0.000 1 | 0.000 10 | 0.453 15 | 0.022 5 | 0.251 16 | 0.252 9 | 0.572 14 | 0.348 14 | 0.321 10 | 0.514 6 | 0.063 13 | 0.279 15 | 0.552 14 | 0.000 8 | 0.019 15 | 0.932 14 | 0.132 15 | 0.000 1 | 0.000 12 | 0.000 14 | 0.156 16 | 0.457 14 | 0.623 11 | 0.518 13 | 0.265 15 | 0.358 11 | 0.381 14 | 0.395 14 | 0.000 3 | 0.000 1 | 0.127 16 | 0.012 7 | 0.051 1 | 0.000 11 | 0.000 4 | 0.886 13 | 0.014 13 | 0.437 16 | 0.179 7 | 0.244 14 | 0.826 14 | 0.000 11 | 0.000 1 | 0.599 9 | 0.136 1 | 0.085 3 | 0.000 4 | 0.000 1 | 0.000 10 | 0.565 12 | 0.612 13 | 0.143 5 | 0.207 14 | 0.566 14 | 0.232 14 | 0.446 14 | 0.127 2 | 0.708 14 | 0.000 5 | 0.384 8 | 0.000 1 | 0.000 7 | 0.000 3 | 0.402 13 | 0.000 4 | 0.059 5 | 0.000 1 | 0.525 14 | 0.566 10 | 0.229 11 | 0.659 14 | 0.000 8 | 0.000 1 | 0.265 14 | 0.446 13 | 0.147 15 | 0.720 16 | 0.597 8 | 0.066 13 | 0.000 11 | 0.187 8 | 0.000 1 | 0.726 12 | 0.467 16 | 0.134 12 | 0.000 9 | 0.413 14 | 0.629 12 | 0.000 1 | 0.363 15 | 0.055 9 | 0.022 3 | 0.000 1 | 0.626 10 | 0.000 2 | 0.000 1 | 0.323 14 | 0.479 16 | 0.154 15 | 0.117 14 | 0.028 15 | 0.901 14 | 0.243 14 | 0.415 15 | 0.295 16 | 0.143 7 | 0.610 15 | 0.000 1 | 0.000 12 | 0.777 11 | 0.397 16 | 0.324 15 | 0.000 1 | 0.778 14 | 0.179 8 | 0.702 15 | 0.000 1 | 0.274 16 | 0.404 3 | 0.233 9 | 0.622 14 | 0.398 7 | |||||||||||||||||||||||||||||
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CSC-Pretrain | 0.249 16 | 0.455 16 | 0.171 15 | 0.079 16 | 0.418 15 | 0.059 13 | 0.186 9 | 0.000 3 | 0.000 6 | 0.000 1 | 0.335 9 | 0.250 12 | 0.316 15 | 0.766 7 | 0.697 16 | 0.142 13 | 0.170 13 | 0.003 2 | 0.553 13 | 0.112 8 | 0.097 1 | 0.201 15 | 0.186 13 | 0.476 14 | 0.081 15 | 0.000 9 | 0.216 16 | 0.000 1 | 0.000 3 | 0.001 16 | 0.314 16 | 0.000 10 | 0.000 1 | 0.055 14 | 0.000 2 | 0.832 16 | 0.094 3 | 0.659 14 | 0.002 5 | 0.076 8 | 0.310 16 | 0.293 16 | 0.664 13 | 0.000 1 | 0.000 2 | 0.175 16 | 0.634 6 | 0.130 2 | 0.552 16 | 0.686 16 | 0.700 16 | 0.076 7 | 0.110 14 | 0.770 16 | 0.000 1 | 0.000 10 | 0.430 16 | 0.000 7 | 0.319 14 | 0.166 14 | 0.542 16 | 0.327 15 | 0.205 15 | 0.332 13 | 0.052 14 | 0.375 12 | 0.444 16 | 0.000 8 | 0.012 16 | 0.930 16 | 0.203 2 | 0.000 1 | 0.000 12 | 0.046 11 | 0.175 13 | 0.413 15 | 0.592 13 | 0.471 15 | 0.299 14 | 0.152 16 | 0.340 15 | 0.247 16 | 0.000 3 | 0.000 1 | 0.225 14 | 0.058 3 | 0.037 3 | 0.000 11 | 0.207 2 | 0.862 15 | 0.014 13 | 0.548 12 | 0.033 15 | 0.233 15 | 0.816 15 | 0.000 11 | 0.000 1 | 0.542 14 | 0.123 4 | 0.121 1 | 0.019 2 | 0.000 1 | 0.000 10 | 0.463 15 | 0.454 16 | 0.045 16 | 0.128 16 | 0.557 15 | 0.235 13 | 0.441 15 | 0.063 9 | 0.484 16 | 0.000 5 | 0.308 16 | 0.000 1 | 0.000 7 | 0.000 3 | 0.318 16 | 0.000 4 | 0.000 7 | 0.000 1 | 0.545 13 | 0.543 11 | 0.164 13 | 0.734 8 | 0.000 8 | 0.000 1 | 0.215 16 | 0.371 15 | 0.198 13 | 0.743 13 | 0.205 15 | 0.062 14 | 0.000 11 | 0.079 13 | 0.000 1 | 0.683 15 | 0.547 15 | 0.142 10 | 0.000 9 | 0.441 10 | 0.579 15 | 0.000 1 | 0.464 14 | 0.098 8 | 0.041 1 | 0.000 1 | 0.590 13 | 0.000 2 | 0.000 1 | 0.373 12 | 0.494 13 | 0.174 14 | 0.105 15 | 0.001 16 | 0.895 15 | 0.222 15 | 0.537 12 | 0.307 15 | 0.180 6 | 0.625 13 | 0.000 1 | 0.000 12 | 0.591 16 | 0.609 13 | 0.398 14 | 0.000 1 | 0.766 16 | 0.014 15 | 0.638 16 | 0.000 1 | 0.377 13 | 0.004 12 | 0.206 12 | 0.609 16 | 0.465 5 | |||||||||||||||||||||||||||||
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021 |