Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail ioualarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefloorfolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwallwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
BFANet ScanNet200permissive0.360 40.553 60.293 40.193 40.483 100.096 50.266 50.000 30.000 60.000 10.298 120.255 110.661 10.810 50.810 30.194 90.785 60.000 30.000 160.161 50.000 90.494 80.382 20.574 40.258 40.000 90.372 80.000 10.000 30.043 130.436 70.000 100.000 10.239 20.000 20.901 30.105 10.689 40.025 40.128 20.614 20.436 10.493 160.000 10.000 20.526 40.546 120.109 40.651 130.953 40.753 60.101 60.143 120.897 40.000 10.431 10.469 140.000 70.522 50.337 50.661 60.459 20.409 60.666 40.102 120.508 50.757 40.000 80.060 130.970 30.497 10.000 10.376 20.511 30.262 40.688 20.921 10.617 90.321 110.590 60.491 80.556 30.000 30.000 10.481 40.093 10.043 20.284 20.000 40.875 140.135 80.669 50.124 120.394 60.849 110.298 20.000 10.476 160.088 110.042 70.000 40.000 10.254 30.653 100.741 60.215 10.573 50.852 50.266 90.654 10.056 100.835 50.000 50.492 10.000 10.000 70.000 30.612 80.000 40.000 70.000 10.616 50.469 160.460 40.698 130.516 20.000 10.378 70.563 40.476 50.863 50.574 90.330 60.000 110.282 40.000 10.760 40.710 40.233 10.000 90.641 30.814 20.000 10.585 90.053 100.000 70.000 10.629 90.000 20.000 10.678 30.528 120.534 40.129 130.596 40.973 30.264 110.772 20.526 90.139 100.707 40.000 10.000 120.764 130.591 150.848 60.000 10.827 40.338 30.806 110.000 10.568 90.151 80.358 20.659 90.510 4
ALS-MinkowskiNetcopyleft0.414 10.610 20.322 30.271 10.542 20.153 20.159 100.000 30.000 60.000 10.404 40.503 30.532 60.672 160.804 50.285 10.888 10.000 30.900 10.226 10.087 20.598 30.342 40.671 10.217 90.087 30.449 30.000 10.000 30.253 20.477 51.000 10.000 10.118 40.000 20.905 10.071 110.710 20.076 10.047 150.665 10.376 80.981 10.000 10.000 20.466 60.632 70.113 30.769 10.956 30.795 10.031 90.314 10.936 10.000 10.390 20.601 10.000 70.458 70.366 20.719 30.440 40.564 10.699 30.314 10.464 60.784 20.200 10.283 50.973 10.142 80.000 10.250 70.285 50.220 50.718 10.752 50.723 20.460 10.248 150.475 90.463 130.000 30.000 10.446 70.021 40.025 90.285 10.000 40.972 10.149 70.769 10.230 20.535 20.879 20.252 60.000 10.693 10.129 20.000 120.000 40.000 10.447 20.958 10.662 90.159 20.598 30.780 110.344 20.646 20.106 40.893 20.135 20.455 30.000 10.194 30.259 10.726 30.475 30.000 70.000 10.741 10.865 10.571 20.817 30.445 30.000 10.506 20.630 20.230 110.916 20.728 10.635 11.000 10.252 50.000 10.804 10.697 50.137 110.043 60.717 10.807 30.000 10.510 130.245 10.000 70.000 10.709 30.000 20.000 10.703 20.572 30.646 10.223 100.531 50.984 10.397 20.813 10.798 10.135 120.800 10.000 10.097 20.832 20.752 80.842 70.000 10.852 10.149 90.846 90.000 10.666 50.359 40.252 70.777 10.690 2
DITR0.409 20.616 10.351 10.215 30.651 10.238 10.400 20.000 30.340 10.000 10.534 20.476 40.585 20.687 150.853 10.143 120.854 20.000 30.865 20.167 40.000 90.175 160.573 10.617 20.372 10.362 10.591 10.000 10.000 30.330 10.494 20.247 90.000 10.385 10.000 20.878 60.037 130.791 10.053 20.118 30.479 110.429 40.940 30.000 10.000 20.461 70.562 100.093 50.628 140.991 10.762 20.135 30.270 30.917 30.000 10.140 40.597 20.000 70.361 110.375 10.730 20.431 50.459 30.410 120.008 150.656 10.814 10.036 60.554 30.947 50.139 100.000 10.263 50.896 10.191 80.615 40.839 30.757 10.399 50.877 10.504 50.524 60.000 30.000 10.587 30.000 100.022 110.077 90.921 10.928 20.132 90.670 40.759 10.652 10.862 70.091 100.000 10.662 30.072 150.000 120.000 40.000 10.496 10.852 20.752 40.152 30.743 10.953 10.301 30.625 30.053 110.913 10.399 10.452 40.000 10.000 70.000 30.742 20.000 40.000 70.000 10.694 20.643 40.444 60.784 70.000 80.000 10.571 10.614 30.491 40.938 10.559 100.357 50.107 70.404 10.000 10.796 20.688 60.148 80.186 10.629 40.827 10.000 10.558 110.198 40.000 70.000 10.723 20.000 20.000 10.833 10.619 10.609 20.478 40.617 10.959 40.370 30.597 80.737 20.191 50.752 20.000 10.118 10.853 10.925 20.670 130.000 10.831 30.000 160.873 30.000 10.699 10.005 110.360 10.723 30.235 12
PTv3 ScanNet2000.393 30.592 30.330 20.216 20.520 30.109 40.108 150.000 30.337 20.000 10.310 110.394 80.494 110.753 80.848 20.256 30.717 70.000 30.842 30.192 30.065 30.449 90.346 30.546 60.190 120.000 90.384 60.000 10.000 30.218 30.505 10.791 20.000 10.136 30.000 20.903 20.073 100.687 60.000 70.168 10.551 40.387 70.941 20.000 10.000 20.397 120.654 30.000 100.714 40.759 140.752 70.118 50.264 40.926 20.000 10.048 50.575 40.000 70.597 10.366 20.755 10.469 10.474 20.798 10.140 90.617 20.692 60.000 80.592 20.971 20.188 30.000 10.133 90.593 20.349 10.650 30.717 70.699 30.455 20.790 20.523 30.636 10.301 10.000 10.622 20.000 100.017 140.259 30.000 40.921 40.337 10.733 20.210 30.514 30.860 80.407 10.000 10.688 20.109 70.000 120.000 40.000 10.151 40.671 80.782 10.115 120.641 20.903 20.349 10.616 40.088 50.832 70.000 50.480 20.000 10.428 10.000 30.497 90.000 40.000 70.000 10.662 40.690 20.612 10.828 10.575 10.000 10.404 60.644 10.325 70.887 40.728 10.009 150.134 60.026 160.000 10.761 30.731 30.172 60.077 30.528 70.727 70.000 10.603 40.220 30.022 30.000 10.740 10.000 20.000 10.661 40.586 20.566 30.436 50.531 50.978 20.457 10.708 30.583 50.141 80.748 30.000 10.026 50.822 30.871 40.879 50.000 10.851 20.405 20.914 10.000 10.682 30.000 140.281 30.738 20.463 6
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
PPT-SpUNet-F.T.0.332 110.556 50.270 60.123 130.519 40.091 60.349 30.000 30.000 60.000 10.339 80.383 90.498 100.833 40.807 40.241 40.584 80.000 30.755 60.124 70.000 90.608 20.330 70.530 90.314 20.000 90.374 70.000 10.000 30.197 40.459 60.000 100.000 10.117 50.000 20.876 70.095 20.682 90.000 70.086 70.518 60.433 20.930 40.000 10.000 20.563 30.542 130.077 70.715 30.858 100.756 50.008 160.171 110.874 70.000 10.039 60.550 100.000 70.545 40.256 80.657 80.453 30.351 90.449 90.213 60.392 110.611 100.000 80.037 140.946 60.138 130.000 10.000 120.063 100.308 20.537 70.796 40.673 40.323 100.392 100.400 130.509 70.000 30.000 10.649 10.000 100.023 100.000 110.000 40.914 70.002 150.506 150.163 100.359 80.872 50.000 110.000 10.623 60.112 50.001 110.000 40.000 10.021 80.753 50.565 150.150 40.579 40.806 90.267 80.616 40.042 130.783 120.000 50.374 100.000 10.000 70.000 30.620 70.000 40.000 70.000 10.572 120.634 50.350 90.792 40.000 80.000 10.376 80.535 60.378 60.855 60.672 30.074 120.000 110.185 90.000 10.727 110.660 110.076 160.000 90.432 110.646 100.000 10.594 70.006 120.000 70.000 10.658 60.000 20.000 10.661 40.549 90.300 130.291 90.045 130.942 110.304 70.600 70.572 60.135 120.695 50.000 10.008 90.793 80.942 10.899 20.000 10.816 60.181 70.897 20.000 10.679 40.223 60.264 40.691 50.345 11
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
PonderV2 ScanNet2000.346 50.552 70.270 70.175 80.497 70.070 110.239 60.000 30.000 60.000 10.232 160.412 70.584 30.842 30.804 50.212 60.540 90.000 30.433 150.106 90.000 90.590 40.290 110.548 50.243 60.000 90.356 100.000 10.000 30.062 90.398 120.441 80.000 10.104 90.000 20.888 40.076 90.682 90.030 30.094 60.491 100.351 120.869 90.000 10.063 10.403 110.700 20.000 100.660 120.881 80.761 30.050 80.186 90.852 120.000 10.007 80.570 70.100 20.565 20.326 60.641 90.431 50.290 130.621 50.259 30.408 100.622 90.125 20.082 110.950 40.179 40.000 10.263 50.424 40.193 70.558 60.880 20.545 120.375 60.727 30.445 110.499 80.000 30.000 10.475 60.002 80.034 50.083 80.000 40.924 30.290 30.636 60.115 130.400 50.874 40.186 80.000 10.611 70.128 30.113 20.000 40.000 10.000 100.584 110.636 100.103 130.385 90.843 60.283 40.603 60.080 60.825 90.000 50.377 90.000 10.000 70.000 30.457 100.000 40.000 70.000 10.574 110.608 80.481 30.792 40.394 40.000 10.357 90.503 100.261 100.817 120.504 130.304 70.472 40.115 100.000 10.750 60.677 80.202 20.000 90.509 80.729 60.000 10.519 120.000 130.000 70.000 10.620 110.000 20.000 10.660 60.560 60.486 50.384 70.346 90.952 50.247 130.667 40.436 110.269 30.691 60.000 10.010 70.787 90.889 30.880 40.000 10.810 70.336 40.860 70.000 10.606 80.009 90.248 80.681 60.392 8
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
OctFormer ScanNet200permissive0.326 120.539 90.265 90.131 110.499 60.110 30.522 10.000 30.000 60.000 10.318 100.427 60.455 140.743 100.765 120.175 100.842 30.000 30.828 40.204 20.033 60.429 100.335 50.601 30.312 30.000 90.357 90.000 10.000 30.047 100.423 80.000 100.000 10.105 80.000 20.873 90.079 80.670 120.000 70.117 40.471 130.432 30.829 100.000 10.000 20.584 20.417 160.089 60.684 80.837 110.705 150.021 120.178 100.892 50.000 10.028 70.505 120.000 70.457 80.200 130.662 40.412 90.244 140.496 70.000 160.451 70.626 80.000 80.102 100.943 90.138 130.000 10.000 120.149 70.291 30.534 80.722 60.632 60.331 90.253 140.453 100.487 110.000 30.000 10.479 50.000 100.022 110.000 110.000 40.900 100.128 100.684 30.164 90.413 40.854 100.000 110.000 10.512 150.074 130.003 100.000 40.000 10.000 100.469 140.613 120.132 80.529 70.871 30.227 150.582 70.026 160.787 110.000 50.339 140.000 10.000 70.000 30.626 60.000 40.029 60.000 10.587 80.612 70.411 70.724 90.000 80.000 10.407 50.552 50.513 30.849 90.655 40.408 30.000 110.296 30.000 10.686 140.645 130.145 90.022 70.414 130.633 110.000 10.637 10.224 20.000 70.000 10.650 70.000 20.000 10.622 80.535 110.343 110.483 30.230 120.943 100.289 90.618 60.596 40.140 90.679 70.000 10.022 60.783 100.620 110.906 10.000 10.806 80.137 100.865 40.000 10.378 120.000 140.168 140.680 70.227 13
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
OA-CNN-L_ScanNet2000.333 100.558 40.269 80.124 120.448 140.080 80.272 40.000 30.000 60.000 10.342 70.515 20.524 70.713 120.789 90.158 110.384 110.000 30.806 50.125 60.000 90.496 70.332 60.498 130.227 70.024 60.474 20.000 10.003 20.071 80.487 30.000 100.000 10.110 70.000 20.876 70.013 160.703 30.000 70.076 80.473 120.355 110.906 60.000 10.000 20.476 50.706 10.000 100.672 90.835 120.748 80.015 130.223 60.860 100.000 10.000 100.572 60.000 70.509 60.313 70.662 40.398 130.396 70.411 110.276 20.527 30.711 50.000 80.076 120.946 60.166 50.000 10.022 100.160 60.183 120.493 120.699 80.637 50.403 40.330 120.406 120.526 50.024 20.000 10.392 100.000 100.016 150.000 110.196 30.915 60.112 110.557 100.197 50.352 90.877 30.000 110.000 10.592 110.103 90.000 120.067 10.000 10.089 60.735 70.625 110.130 90.568 60.836 70.271 70.534 80.043 120.799 100.001 40.445 50.000 10.000 70.024 20.661 40.000 40.262 20.000 10.591 70.517 120.373 80.788 60.021 70.000 10.455 30.517 80.320 80.823 110.200 160.001 160.150 50.100 110.000 10.736 80.668 90.103 140.052 50.662 20.720 80.000 10.602 50.112 60.002 60.000 10.637 80.000 20.000 10.621 90.569 40.398 80.412 60.234 110.949 60.363 40.492 140.495 100.251 40.665 80.000 10.001 110.805 70.833 60.794 100.000 10.821 50.314 50.843 100.000 10.560 100.245 50.262 50.713 40.370 10
L3DETR-ScanNet_2000.336 70.533 100.279 50.155 90.508 50.073 100.101 160.000 30.058 50.000 10.294 130.233 130.548 40.927 10.788 100.264 20.463 100.000 30.638 110.098 120.014 70.411 110.226 120.525 100.225 80.010 70.397 50.000 10.000 30.192 50.380 130.598 40.000 10.117 50.000 20.883 50.082 70.689 40.000 70.032 160.549 50.417 50.910 50.000 10.000 20.448 80.613 90.000 100.697 60.960 20.759 40.158 20.293 20.883 60.000 10.312 30.583 30.079 40.422 100.068 160.660 70.418 70.298 110.430 100.114 100.526 40.776 30.051 30.679 10.946 60.152 60.000 10.183 80.000 140.211 60.511 90.409 150.565 110.355 70.448 80.512 40.557 20.000 30.000 10.420 80.000 100.007 160.104 60.000 40.125 160.330 20.514 140.146 110.321 120.860 80.174 90.000 10.629 50.075 120.000 120.000 40.000 10.002 90.671 80.712 70.141 60.339 110.856 40.261 110.529 90.067 80.835 50.000 50.369 110.000 10.259 20.000 30.629 50.000 40.487 10.000 10.579 100.646 30.107 160.720 100.122 60.000 10.333 130.505 90.303 90.908 30.503 140.565 20.074 80.324 20.000 10.740 70.661 100.109 130.000 90.427 120.563 160.000 10.579 100.108 70.000 70.000 10.664 50.000 20.000 10.641 70.539 100.416 60.515 20.256 100.940 120.312 50.209 160.620 30.138 110.636 100.000 10.000 120.775 120.861 50.765 110.000 10.801 90.119 110.860 70.000 10.687 20.001 130.192 130.679 80.699 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
AWCS0.305 130.508 130.225 130.142 100.463 130.063 120.195 80.000 30.000 60.000 10.467 30.551 10.504 80.773 60.764 130.142 130.029 160.000 30.626 120.100 100.000 90.360 120.179 140.507 120.137 140.006 80.300 110.000 10.000 30.172 70.364 140.512 70.000 10.056 130.000 20.865 130.093 40.634 160.000 70.071 120.396 140.296 150.876 80.000 10.000 20.373 130.436 150.063 90.749 20.877 90.721 110.131 40.124 130.804 140.000 10.000 100.515 110.010 60.452 90.252 90.578 130.417 80.179 160.484 80.171 70.337 130.606 110.000 80.115 90.937 130.142 80.000 10.008 110.000 140.157 150.484 130.402 160.501 140.339 80.553 70.529 20.478 120.000 30.000 10.404 90.001 90.022 110.077 90.000 40.894 120.219 60.628 70.093 140.305 130.886 10.233 70.000 10.603 80.112 50.023 90.000 40.000 10.000 100.741 60.664 80.097 140.253 130.782 100.264 100.523 100.154 10.707 150.000 50.411 70.000 10.000 70.000 30.332 150.000 40.000 70.000 10.602 60.595 90.185 120.656 150.159 50.000 10.355 100.424 140.154 140.729 140.516 110.220 90.620 30.084 120.000 10.707 130.651 120.173 50.014 80.381 160.582 140.000 10.619 20.049 110.000 70.000 10.702 40.000 20.000 10.302 150.489 140.317 120.334 80.392 70.922 130.254 120.533 130.394 120.129 140.613 140.000 10.000 120.820 50.649 100.749 120.000 10.782 130.282 60.863 50.000 10.288 150.006 100.220 100.633 130.542 3
IMFSegNet0.334 80.532 120.251 100.179 60.486 90.041 150.139 120.003 10.283 30.000 10.274 140.191 140.457 130.704 130.795 70.197 80.830 50.000 30.710 80.055 150.064 40.518 50.305 90.458 160.216 110.027 50.284 120.000 10.000 30.044 110.406 90.561 50.000 10.080 110.000 20.873 90.021 140.683 80.000 70.076 80.494 90.363 90.648 150.000 10.000 20.425 90.649 40.000 100.668 110.908 60.740 100.010 140.206 70.862 90.000 10.000 100.560 80.000 70.359 120.237 110.631 110.408 110.411 40.322 140.246 40.439 90.599 120.047 40.213 60.940 100.139 100.000 10.369 40.124 90.188 110.495 100.624 100.626 70.320 130.595 40.495 70.496 100.000 30.000 10.340 110.014 50.032 60.135 50.000 40.903 80.277 50.612 80.196 60.344 110.848 130.260 40.000 10.574 120.073 140.062 40.000 40.000 10.091 50.839 30.776 20.123 110.392 80.756 120.274 50.518 110.029 150.842 30.000 50.357 120.000 10.035 60.000 30.444 110.793 10.245 40.000 10.512 150.512 140.159 140.713 120.000 80.000 10.336 120.484 110.569 20.852 80.615 60.120 110.068 100.228 70.000 10.733 90.773 10.190 40.000 90.608 50.792 40.000 10.597 60.000 130.025 20.000 10.573 160.000 20.000 10.508 100.555 70.363 90.139 110.610 20.947 80.305 60.594 90.527 80.009 160.633 120.000 10.060 30.820 50.604 140.799 80.000 10.799 100.034 130.784 120.000 10.618 60.424 10.134 150.646 120.214 14
GSTran0.334 90.533 110.250 110.179 70.487 80.041 150.139 120.003 10.273 40.000 10.273 150.189 150.465 120.704 130.794 80.198 70.831 40.000 30.712 70.055 150.063 50.518 50.306 80.459 150.217 90.028 40.282 130.000 10.000 30.044 110.405 100.558 60.000 10.080 110.000 20.873 90.020 150.684 70.000 70.075 110.496 80.363 90.651 140.000 10.000 20.425 90.648 50.000 100.669 100.914 50.741 90.009 150.200 80.864 80.000 10.000 100.560 80.000 70.357 130.233 120.633 100.408 110.411 40.320 150.242 50.440 80.598 130.047 40.205 70.940 100.139 100.000 10.372 30.138 80.191 80.495 100.618 120.624 80.321 110.595 40.496 60.499 80.000 30.000 10.340 110.014 50.032 60.136 40.000 40.903 80.279 40.601 90.198 40.345 100.849 110.260 40.000 10.573 130.072 150.060 50.000 40.000 10.089 60.838 40.775 30.125 100.381 100.752 130.274 50.517 120.032 140.841 40.000 50.354 130.000 10.047 50.000 30.439 120.787 20.252 30.000 10.512 150.507 150.158 150.717 110.000 80.000 10.337 110.483 120.570 10.853 70.614 70.121 100.070 90.229 60.000 10.732 100.773 10.193 30.000 90.606 60.791 50.000 10.593 80.000 130.010 50.000 10.574 150.000 20.000 10.507 110.554 80.361 100.136 120.608 30.948 70.304 70.593 100.533 70.011 150.634 110.000 10.060 30.821 40.613 120.797 90.000 10.799 100.036 120.782 130.000 10.609 70.423 20.133 160.647 110.213 15
CeCo0.340 60.551 80.247 120.181 50.475 120.057 140.142 110.000 30.000 60.000 10.387 50.463 50.499 90.924 20.774 110.213 50.257 120.000 30.546 140.100 100.006 80.615 10.177 160.534 70.246 50.000 90.400 40.000 10.338 10.006 150.484 40.609 30.000 10.083 100.000 20.873 90.089 50.661 130.000 70.048 140.560 30.408 60.892 70.000 10.000 20.586 10.616 80.000 100.692 70.900 70.721 110.162 10.228 50.860 100.000 10.000 100.575 40.083 30.550 30.347 40.624 120.410 100.360 80.740 20.109 110.321 140.660 70.000 80.121 80.939 120.143 70.000 10.400 10.003 120.190 100.564 50.652 90.615 100.421 30.304 130.579 10.547 40.000 30.000 10.296 130.000 100.030 80.096 70.000 40.916 50.037 120.551 110.171 80.376 70.865 60.286 30.000 10.633 40.102 100.027 80.011 30.000 10.000 100.474 130.742 50.133 70.311 120.824 80.242 120.503 130.068 70.828 80.000 50.429 60.000 10.063 40.000 30.781 10.000 40.000 70.000 10.665 30.633 60.450 50.818 20.000 80.000 10.429 40.532 70.226 120.825 100.510 120.377 40.709 20.079 130.000 10.753 50.683 70.102 150.063 40.401 150.620 130.000 10.619 20.000 130.000 70.000 10.595 120.000 20.000 10.345 130.564 50.411 70.603 10.384 80.945 90.266 100.643 50.367 130.304 10.663 90.000 10.010 70.726 140.767 70.898 30.000 10.784 120.435 10.861 60.000 10.447 110.000 140.257 60.656 100.377 9
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
LGroundpermissive0.272 140.485 140.184 140.106 140.476 110.077 90.218 70.000 30.000 60.000 10.547 10.295 100.540 50.746 90.745 140.058 150.112 150.005 10.658 100.077 140.000 90.322 130.178 150.512 110.190 120.199 20.277 140.000 10.000 30.173 60.399 110.000 100.000 10.039 150.000 20.858 140.085 60.676 110.002 50.103 50.498 70.323 130.703 110.000 10.000 20.296 140.549 110.216 10.702 50.768 130.718 130.028 100.092 150.786 150.000 10.000 100.453 150.022 50.251 160.252 90.572 140.348 140.321 100.514 60.063 130.279 150.552 140.000 80.019 150.932 140.132 150.000 10.000 120.000 140.156 160.457 140.623 110.518 130.265 150.358 110.381 140.395 140.000 30.000 10.127 160.012 70.051 10.000 110.000 40.886 130.014 130.437 160.179 70.244 140.826 140.000 110.000 10.599 90.136 10.085 30.000 40.000 10.000 100.565 120.612 130.143 50.207 140.566 140.232 140.446 140.127 20.708 140.000 50.384 80.000 10.000 70.000 30.402 130.000 40.059 50.000 10.525 140.566 100.229 110.659 140.000 80.000 10.265 140.446 130.147 150.720 160.597 80.066 130.000 110.187 80.000 10.726 120.467 160.134 120.000 90.413 140.629 120.000 10.363 150.055 90.022 30.000 10.626 100.000 20.000 10.323 140.479 160.154 150.117 140.028 150.901 140.243 140.415 150.295 160.143 70.610 150.000 10.000 120.777 110.397 160.324 150.000 10.778 140.179 80.702 150.000 10.274 160.404 30.233 90.622 140.398 7
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
CSC-Pretrainpermissive0.249 160.455 160.171 150.079 160.418 150.059 130.186 90.000 30.000 60.000 10.335 90.250 120.316 150.766 70.697 160.142 130.170 130.003 20.553 130.112 80.097 10.201 150.186 130.476 140.081 150.000 90.216 160.000 10.000 30.001 160.314 160.000 100.000 10.055 140.000 20.832 160.094 30.659 140.002 50.076 80.310 160.293 160.664 130.000 10.000 20.175 160.634 60.130 20.552 160.686 160.700 160.076 70.110 140.770 160.000 10.000 100.430 160.000 70.319 140.166 140.542 160.327 150.205 150.332 130.052 140.375 120.444 160.000 80.012 160.930 160.203 20.000 10.000 120.046 110.175 130.413 150.592 130.471 150.299 140.152 160.340 150.247 160.000 30.000 10.225 140.058 30.037 30.000 110.207 20.862 150.014 130.548 120.033 150.233 150.816 150.000 110.000 10.542 140.123 40.121 10.019 20.000 10.000 100.463 150.454 160.045 160.128 160.557 150.235 130.441 150.063 90.484 160.000 50.308 160.000 10.000 70.000 30.318 160.000 40.000 70.000 10.545 130.543 110.164 130.734 80.000 80.000 10.215 160.371 150.198 130.743 130.205 150.062 140.000 110.079 130.000 10.683 150.547 150.142 100.000 90.441 100.579 150.000 10.464 140.098 80.041 10.000 10.590 130.000 20.000 10.373 120.494 130.174 140.105 150.001 160.895 150.222 150.537 120.307 150.180 60.625 130.000 10.000 120.591 160.609 130.398 140.000 10.766 160.014 150.638 160.000 10.377 130.004 120.206 120.609 160.465 5
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
Minkowski 34Dpermissive0.253 150.463 150.154 160.102 150.381 160.084 70.134 140.000 30.000 60.000 10.386 60.141 160.279 160.737 110.703 150.014 160.164 140.000 30.663 90.092 130.000 90.224 140.291 100.531 80.056 160.000 90.242 150.000 10.000 30.013 140.331 150.000 100.000 10.035 160.001 10.858 140.059 120.650 150.000 70.056 130.353 150.299 140.670 120.000 10.000 20.284 150.484 140.071 80.594 150.720 150.710 140.027 110.068 160.813 130.000 10.005 90.492 130.164 10.274 150.111 150.571 150.307 160.293 120.307 160.150 80.163 160.531 150.002 70.545 40.932 140.093 160.000 10.000 120.002 130.159 140.368 160.581 140.440 160.228 160.406 90.282 160.294 150.000 30.000 10.189 150.060 20.036 40.000 110.000 40.897 110.000 160.525 130.025 160.205 160.771 160.000 110.000 10.593 100.108 80.044 60.000 40.000 10.000 100.282 160.589 140.094 150.169 150.466 160.227 150.419 160.125 30.757 130.002 30.334 150.000 10.000 70.000 30.357 140.000 40.000 70.000 10.582 90.513 130.337 100.612 160.000 80.000 10.250 150.352 160.136 160.724 150.655 40.280 80.000 110.046 150.000 10.606 160.559 140.159 70.102 20.445 90.655 90.000 10.310 160.117 50.000 70.000 10.581 140.026 10.000 10.265 160.483 150.084 160.097 160.044 140.865 160.142 160.588 110.351 140.272 20.596 160.000 10.003 100.622 150.720 90.096 160.000 10.771 150.016 140.772 140.000 10.302 140.194 70.214 110.621 150.197 16
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg ap 50%head ap 50%common ap 50%tail ap 50%alarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D Scannet2000.388 10.542 10.357 10.237 10.610 10.091 10.125 50.000 10.000 10.000 10.065 30.668 10.451 11.000 10.955 10.640 10.500 10.039 10.125 20.063 20.409 10.311 20.291 10.609 30.266 10.000 10.163 10.000 10.008 10.044 20.496 11.000 10.000 10.018 20.000 10.756 10.573 10.808 20.000 10.010 10.042 30.130 30.552 10.042 10.000 11.000 10.725 40.750 10.883 11.000 10.832 40.024 20.107 10.614 30.226 10.250 10.628 20.792 10.677 20.400 10.741 10.278 10.511 10.077 50.111 10.313 20.715 20.302 10.017 30.200 20.000 10.188 10.000 10.178 20.736 11.000 10.615 10.514 10.409 20.380 50.600 10.000 10.000 10.400 10.013 20.254 10.381 10.000 10.123 40.400 10.839 10.258 10.463 10.926 10.265 10.000 10.857 20.099 10.021 20.500 10.027 10.028 11.000 10.502 50.016 10.076 40.500 10.612 10.578 10.005 20.597 20.194 10.497 10.000 10.500 10.000 20.323 40.000 11.000 10.000 10.748 10.708 20.050 40.890 21.000 10.008 20.151 30.301 11.000 11.000 10.792 30.945 11.000 10.511 10.004 20.753 10.776 20.287 20.020 20.003 40.974 30.033 10.412 50.000 10.000 20.000 20.667 10.000 10.000 10.491 10.676 20.352 10.335 10.060 20.822 50.527 21.000 10.517 10.606 10.853 10.000 10.004 10.806 11.000 10.727 10.000 10.042 20.739 20.000 10.399 30.391 10.504 10.591 10.571 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
TD3D Scannet200permissive0.320 20.501 20.264 20.164 20.506 30.062 20.500 10.000 10.000 10.000 10.208 10.431 20.252 31.000 10.733 30.587 20.000 20.008 20.000 30.106 10.000 20.356 10.123 40.686 10.101 20.000 10.152 20.000 10.000 20.226 10.280 30.000 20.000 10.250 10.000 10.619 20.061 30.841 10.000 10.000 20.167 10.194 10.333 20.000 20.000 10.667 20.820 10.250 30.790 41.000 10.879 20.077 10.094 30.708 10.217 20.049 20.634 10.792 10.331 40.033 50.716 20.159 20.396 20.331 40.099 20.415 10.842 10.000 20.458 10.542 10.000 10.101 20.000 10.218 10.513 20.500 20.458 20.104 20.516 10.456 10.268 40.000 10.000 10.400 10.022 10.233 20.143 20.000 10.677 10.400 10.504 50.095 30.083 50.890 20.061 20.000 10.906 10.076 20.231 10.125 20.000 20.003 20.792 30.881 10.000 20.098 30.125 40.498 50.459 20.063 10.715 10.000 20.241 40.000 10.396 20.063 10.605 10.000 10.000 20.000 10.448 50.629 30.202 20.967 10.250 20.038 10.192 10.185 20.083 41.000 11.000 10.857 20.000 20.470 20.012 10.565 30.798 10.621 10.111 10.500 11.000 10.017 20.509 10.000 10.008 11.000 10.525 20.000 10.000 10.332 30.679 10.264 20.333 20.267 11.000 10.549 10.299 50.387 20.328 30.744 40.000 10.000 20.435 51.000 10.283 40.000 10.196 10.817 10.000 10.472 10.222 30.123 40.560 20.156 2
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
LGround Inst.permissive0.246 30.413 30.170 30.130 30.455 50.003 50.500 10.000 10.000 10.000 10.017 40.333 40.111 51.000 10.681 40.400 30.000 20.000 31.000 10.003 50.000 20.167 30.190 20.637 20.067 30.000 10.081 30.000 10.000 20.000 30.264 40.000 20.000 10.000 30.000 10.387 40.031 50.754 30.000 10.000 20.151 20.135 20.056 40.000 20.000 10.582 40.589 50.500 20.815 21.000 10.903 10.000 30.097 20.588 40.000 30.000 30.234 30.000 30.500 30.400 10.682 40.156 30.159 40.750 10.046 30.125 40.660 30.000 20.200 20.000 50.000 10.000 30.000 10.164 30.402 30.500 20.373 30.025 30.143 50.426 30.317 20.000 10.000 10.000 30.000 30.063 30.000 30.000 10.000 50.000 40.575 30.250 20.241 20.772 30.000 30.000 10.653 40.034 30.000 30.000 30.000 20.000 31.000 10.561 40.000 20.100 20.500 10.541 40.452 30.000 30.581 30.000 20.364 20.000 10.000 30.000 20.571 20.000 10.000 20.000 10.568 40.511 40.167 30.857 30.000 30.000 30.164 20.112 30.000 50.530 51.000 10.286 30.000 20.125 30.000 30.464 50.706 30.208 40.000 30.125 20.744 40.000 30.500 20.000 10.000 20.000 20.511 30.000 10.000 10.344 20.541 30.068 30.333 20.000 31.000 10.196 40.533 30.318 30.000 40.748 30.000 10.000 20.690 21.000 10.400 30.000 10.000 30.667 30.000 10.333 40.333 20.270 30.399 30.083 4
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.
Minkowski 34D Inst.permissive0.203 50.369 40.134 50.078 50.479 40.003 40.500 10.000 10.000 10.000 10.100 20.371 30.300 20.667 40.746 20.400 30.000 20.000 30.000 30.031 30.000 20.074 40.165 30.413 50.000 40.000 10.070 40.000 10.000 20.000 30.221 50.000 20.000 10.000 30.000 10.372 50.070 20.706 40.000 10.000 20.000 50.123 40.033 50.000 20.000 10.422 50.732 30.000 40.778 51.000 10.845 30.000 30.090 40.636 20.000 30.000 30.158 40.000 30.250 50.050 40.693 30.123 40.051 50.385 30.009 40.118 50.406 50.000 20.000 40.200 20.000 10.000 30.000 10.133 40.307 50.500 20.251 40.000 40.281 30.402 40.317 20.000 10.000 10.000 30.000 30.060 40.000 30.000 10.396 20.200 30.669 20.021 40.218 40.720 50.000 30.000 10.696 30.025 40.000 30.000 30.000 20.000 30.125 50.596 20.000 20.191 10.500 10.595 20.369 40.000 30.500 40.000 20.143 50.000 10.000 30.000 20.226 50.000 10.000 20.000 10.701 20.511 40.000 50.851 40.000 30.000 30.150 40.052 50.100 30.981 30.500 40.286 30.000 20.000 50.000 30.545 40.522 50.250 30.000 30.000 50.522 50.000 30.500 20.000 10.000 20.000 20.282 50.000 10.000 10.178 50.382 40.018 50.056 40.000 30.997 30.107 50.677 20.313 40.000 40.726 50.000 10.000 20.583 40.903 40.200 50.000 10.000 30.333 40.000 10.442 20.083 40.109 50.387 40.000 5
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrain Inst.permissive0.209 40.361 50.157 40.085 40.506 20.007 30.500 10.000 10.000 10.000 10.000 50.093 50.221 40.667 40.524 50.400 30.000 20.000 30.000 30.004 40.000 20.000 50.109 50.589 40.000 40.000 10.059 50.000 10.000 20.000 30.322 20.000 20.000 10.000 30.000 10.405 30.055 40.700 50.000 10.000 20.028 40.091 50.083 30.000 20.000 10.667 20.768 20.000 40.807 31.000 10.776 50.000 30.000 50.340 50.000 30.000 30.103 50.000 30.750 10.200 30.634 50.053 50.246 30.677 20.006 50.198 30.432 40.000 20.000 40.050 40.000 10.000 30.000 10.111 50.356 40.500 20.188 50.000 40.220 40.448 20.050 50.000 10.000 10.000 30.000 30.032 50.000 30.000 10.396 20.000 40.573 40.000 50.228 30.747 40.000 30.000 10.573 50.021 50.000 30.000 30.000 20.000 30.500 40.573 30.000 20.000 50.125 40.592 30.364 50.000 30.450 50.000 20.364 20.000 10.000 30.000 20.340 30.000 10.000 20.000 10.610 30.833 10.221 10.702 50.000 30.000 30.135 50.094 40.125 20.571 40.500 40.143 50.000 20.125 30.000 30.618 20.667 40.115 50.000 30.125 21.000 10.000 30.500 20.000 10.000 20.000 20.502 40.000 10.000 10.312 40.248 50.050 40.000 50.000 30.997 30.420 30.500 40.149 50.451 20.748 20.000 10.000 20.636 30.667 50.600 20.000 10.000 30.278 50.000 10.333 40.000 50.294 20.381 50.110 3
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 100.812 210.854 70.770 130.856 150.555 150.943 10.660 250.735 20.979 10.606 70.492 10.792 40.934 30.841 20.819 50.716 80.947 100.906 10.822 1
PTv3 ScanNet0.794 20.941 30.813 200.851 100.782 60.890 30.597 10.916 50.696 90.713 50.979 10.635 20.384 30.793 30.907 100.821 50.790 340.696 140.967 30.903 20.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
DITR ScanNet0.793 30.811 400.852 20.889 10.774 100.907 10.592 20.927 30.719 10.718 30.961 170.652 10.348 120.817 10.927 50.795 100.824 20.749 10.948 90.887 70.771 11
PonderV20.785 40.978 10.800 300.833 270.788 40.853 200.545 190.910 80.713 20.705 60.979 10.596 90.390 20.769 160.832 440.821 50.792 330.730 20.975 10.897 50.785 6
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 10.843 190.781 70.858 130.575 70.831 370.685 150.714 40.979 10.594 100.310 300.801 20.892 180.841 20.819 50.723 50.940 150.887 70.725 28
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 220.818 150.836 240.790 30.875 50.576 60.905 90.704 60.739 10.969 110.611 30.349 110.756 260.958 10.702 500.805 170.708 90.916 370.898 40.801 3
TTT-KD0.773 70.646 960.818 150.809 390.774 100.878 40.581 30.943 10.687 130.704 70.978 50.607 60.336 180.775 120.912 80.838 40.823 30.694 150.967 30.899 30.794 5
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 70.771 120.840 350.564 110.900 110.686 140.677 140.961 170.537 350.348 120.769 160.903 120.785 140.815 80.676 260.939 160.880 130.772 10
OctFormerpermissive0.766 90.925 70.808 260.849 120.786 50.846 300.566 100.876 190.690 110.674 160.960 190.576 210.226 710.753 280.904 110.777 160.815 80.722 60.923 320.877 160.776 9
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
PPT-SpUNet-Joint0.766 90.932 50.794 360.829 290.751 260.854 180.540 230.903 100.630 380.672 180.963 150.565 250.357 90.788 50.900 140.737 300.802 180.685 200.950 70.887 70.780 7
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OccuSeg+Semantic0.764 110.758 610.796 340.839 220.746 300.907 10.562 120.850 290.680 170.672 180.978 50.610 40.335 200.777 100.819 480.847 10.830 10.691 170.972 20.885 100.727 26
CU-Hybrid Net0.764 110.924 80.819 130.840 210.757 210.853 200.580 40.848 300.709 40.643 280.958 230.587 150.295 380.753 280.884 220.758 230.815 80.725 40.927 280.867 260.743 19
O-CNNpermissive0.762 130.924 80.823 80.844 180.770 130.852 220.577 50.847 320.711 30.640 320.958 230.592 110.217 770.762 210.888 190.758 230.813 120.726 30.932 260.868 250.744 18
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 780.789 410.843 190.762 170.856 150.562 120.920 40.657 280.658 220.958 230.589 130.337 170.782 60.879 230.787 120.779 400.678 220.926 300.880 130.799 4
DTC0.757 150.843 280.820 110.847 150.791 20.862 110.511 370.870 220.707 50.652 240.954 390.604 80.279 480.760 220.942 20.734 310.766 490.701 130.884 590.874 220.736 20
OA-CNN-L_ScanNet200.756 160.783 470.826 60.858 50.776 80.837 380.548 180.896 150.649 300.675 150.962 160.586 160.335 200.771 150.802 530.770 190.787 360.691 170.936 200.880 130.761 13
PNE0.755 170.786 450.835 50.834 260.758 190.849 250.570 90.836 360.648 310.668 200.978 50.581 200.367 70.683 390.856 320.804 70.801 220.678 220.961 50.889 60.716 34
P. Hermosilla: Point Neighborhood Embeddings.
ConDaFormer0.755 170.927 60.822 90.836 240.801 10.849 250.516 340.864 260.651 290.680 130.958 230.584 180.282 450.759 240.855 340.728 330.802 180.678 220.880 640.873 230.756 15
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
DMF-Net0.752 190.906 130.793 380.802 450.689 440.825 510.556 140.867 230.681 160.602 490.960 190.555 310.365 80.779 90.859 290.747 260.795 300.717 70.917 360.856 350.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PointTransformerV20.752 190.742 680.809 250.872 20.758 190.860 120.552 160.891 170.610 450.687 80.960 190.559 290.304 330.766 190.926 60.767 200.797 260.644 370.942 130.876 190.722 30
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
BPNetcopyleft0.749 210.909 110.818 150.811 370.752 240.839 370.485 520.842 330.673 200.644 270.957 280.528 410.305 320.773 130.859 290.788 110.818 70.693 160.916 370.856 350.723 29
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
PointConvFormer0.749 210.793 430.790 390.807 410.750 280.856 150.524 300.881 180.588 570.642 310.977 90.591 120.274 510.781 80.929 40.804 70.796 270.642 380.947 100.885 100.715 35
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
MSP0.748 230.623 990.804 280.859 40.745 310.824 530.501 410.912 70.690 110.685 100.956 300.567 240.320 270.768 180.918 70.720 380.802 180.676 260.921 340.881 120.779 8
StratifiedFormerpermissive0.747 240.901 140.803 290.845 170.757 210.846 300.512 360.825 400.696 90.645 260.956 300.576 210.262 620.744 340.861 280.742 280.770 470.705 110.899 490.860 320.734 21
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
Virtual MVFusion0.746 250.771 550.819 130.848 140.702 420.865 100.397 890.899 120.699 70.664 210.948 600.588 140.330 220.746 330.851 380.764 210.796 270.704 120.935 210.866 270.728 24
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
VMNetpermissive0.746 250.870 200.838 30.858 50.729 360.850 240.501 410.874 200.587 580.658 220.956 300.564 260.299 350.765 200.900 140.716 410.812 130.631 430.939 160.858 330.709 36
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
DiffSeg3D20.745 270.725 780.814 190.837 230.751 260.831 450.514 350.896 150.674 190.684 110.960 190.564 260.303 340.773 130.820 470.713 440.798 250.690 190.923 320.875 200.757 14
Retro-FPN0.744 280.842 290.800 300.767 590.740 320.836 400.541 210.914 60.672 210.626 370.958 230.552 320.272 530.777 100.886 210.696 510.801 220.674 290.941 140.858 330.717 32
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 290.620 1000.799 330.849 120.730 350.822 550.493 490.897 130.664 220.681 120.955 330.562 280.378 40.760 220.903 120.738 290.801 220.673 300.907 410.877 160.745 16
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
MVF-GNN0.743 290.731 730.810 240.726 660.775 90.843 330.528 290.897 130.679 180.674 160.954 390.583 190.322 260.782 60.720 680.802 90.785 370.707 100.935 210.863 290.745 16
SAT0.742 310.860 230.765 540.819 320.769 150.848 270.533 250.829 380.663 230.631 360.955 330.586 160.274 510.753 280.896 160.729 320.760 550.666 320.921 340.855 370.733 22
LRPNet0.742 310.816 370.806 270.807 410.752 240.828 490.575 70.839 350.699 70.637 340.954 390.520 440.320 270.755 270.834 420.760 220.772 440.676 260.915 390.862 300.717 32
LargeKernel3D0.739 330.909 110.820 110.806 430.740 320.852 220.545 190.826 390.594 560.643 280.955 330.541 340.263 610.723 370.858 310.775 180.767 480.678 220.933 240.848 420.694 41
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
RPN0.736 340.776 510.790 390.851 100.754 230.854 180.491 510.866 240.596 550.686 90.955 330.536 360.342 150.624 540.869 250.787 120.802 180.628 440.927 280.875 200.704 38
MinkowskiNetpermissive0.736 340.859 240.818 150.832 280.709 400.840 350.521 320.853 280.660 250.643 280.951 500.544 330.286 430.731 350.893 170.675 590.772 440.683 210.874 700.852 400.727 26
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
IPCA0.731 360.890 160.837 40.864 30.726 370.873 60.530 280.824 410.489 910.647 250.978 50.609 50.336 180.624 540.733 620.758 230.776 420.570 690.949 80.877 160.728 24
online3d0.727 370.715 830.777 470.854 70.748 290.858 130.497 460.872 210.572 640.639 330.957 280.523 420.297 370.750 310.803 520.744 270.810 140.587 650.938 180.871 240.719 31
SparseConvNet0.725 380.647 950.821 100.846 160.721 380.869 70.533 250.754 620.603 510.614 410.955 330.572 230.325 240.710 380.870 240.724 360.823 30.628 440.934 230.865 280.683 44
PointTransformer++0.725 380.727 770.811 230.819 320.765 160.841 340.502 400.814 460.621 410.623 390.955 330.556 300.284 440.620 560.866 260.781 150.757 590.648 350.932 260.862 300.709 36
MatchingNet0.724 400.812 390.812 210.810 380.735 340.834 420.495 480.860 270.572 640.602 490.954 390.512 460.280 470.757 250.845 400.725 350.780 390.606 540.937 190.851 410.700 40
INS-Conv-semantic0.717 410.751 640.759 580.812 360.704 410.868 80.537 240.842 330.609 470.608 450.953 440.534 380.293 390.616 570.864 270.719 400.793 310.640 390.933 240.845 460.663 49
PointMetaBase0.714 420.835 300.785 420.821 300.684 460.846 300.531 270.865 250.614 420.596 530.953 440.500 490.246 670.674 400.888 190.692 520.764 510.624 460.849 860.844 470.675 46
contrastBoundarypermissive0.705 430.769 580.775 480.809 390.687 450.820 580.439 770.812 470.661 240.591 550.945 680.515 450.171 960.633 510.856 320.720 380.796 270.668 310.889 560.847 430.689 42
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 440.774 530.800 300.793 500.760 180.847 290.471 560.802 500.463 980.634 350.968 130.491 520.271 550.726 360.910 90.706 460.815 80.551 810.878 650.833 480.570 81
RFCR0.702 450.889 170.745 680.813 350.672 490.818 630.493 490.815 450.623 390.610 430.947 620.470 610.249 660.594 600.848 390.705 470.779 400.646 360.892 540.823 540.611 64
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 460.825 340.796 340.723 670.716 390.832 440.433 790.816 430.634 360.609 440.969 110.418 870.344 140.559 720.833 430.715 420.808 160.560 750.902 460.847 430.680 45
JSENetpermissive0.699 470.881 190.762 550.821 300.667 500.800 750.522 310.792 530.613 430.607 460.935 880.492 510.205 820.576 650.853 360.691 530.758 570.652 340.872 730.828 510.649 53
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 480.743 670.794 360.655 900.684 460.822 550.497 460.719 720.622 400.617 400.977 90.447 740.339 160.750 310.664 800.703 490.790 340.596 580.946 120.855 370.647 54
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 490.732 720.772 490.786 510.677 480.866 90.517 330.848 300.509 840.626 370.952 480.536 360.225 730.545 780.704 710.689 560.810 140.564 740.903 450.854 390.729 23
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 500.884 180.754 620.795 480.647 570.818 630.422 810.802 500.612 440.604 470.945 680.462 640.189 900.563 710.853 360.726 340.765 500.632 420.904 430.821 570.606 68
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 510.704 850.741 720.754 630.656 520.829 470.501 410.741 670.609 470.548 620.950 540.522 430.371 50.633 510.756 570.715 420.771 460.623 470.861 810.814 600.658 50
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 520.866 210.748 650.819 320.645 590.794 780.450 670.802 500.587 580.604 470.945 680.464 630.201 850.554 740.840 410.723 370.732 700.602 560.907 410.822 560.603 71
DGNet0.684 530.712 840.784 430.782 550.658 510.835 410.499 450.823 420.641 330.597 520.950 540.487 540.281 460.575 660.619 840.647 720.764 510.620 490.871 760.846 450.688 43
VACNN++0.684 530.728 760.757 610.776 560.690 430.804 730.464 610.816 430.577 630.587 560.945 680.508 480.276 500.671 410.710 690.663 640.750 630.589 630.881 620.832 500.653 52
KP-FCNN0.684 530.847 270.758 600.784 530.647 570.814 660.473 550.772 560.605 490.594 540.935 880.450 720.181 930.587 610.805 510.690 540.785 370.614 500.882 610.819 580.632 60
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
Superpoint Network0.683 560.851 260.728 760.800 470.653 540.806 710.468 580.804 480.572 640.602 490.946 650.453 710.239 700.519 840.822 450.689 560.762 540.595 600.895 520.827 520.630 61
PointContrast_LA_SEM0.683 560.757 620.784 430.786 510.639 610.824 530.408 840.775 550.604 500.541 640.934 920.532 390.269 570.552 750.777 550.645 750.793 310.640 390.913 400.824 530.671 47
VI-PointConv0.676 580.770 570.754 620.783 540.621 650.814 660.552 160.758 600.571 670.557 600.954 390.529 400.268 590.530 810.682 750.675 590.719 730.603 550.888 570.833 480.665 48
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 590.789 440.748 650.763 610.635 630.814 660.407 860.747 640.581 620.573 570.950 540.484 550.271 550.607 580.754 580.649 690.774 430.596 580.883 600.823 540.606 68
SALANet0.670 600.816 370.770 520.768 580.652 550.807 700.451 640.747 640.659 270.545 630.924 990.473 600.149 1060.571 680.811 500.635 780.746 640.623 470.892 540.794 720.570 81
O3DSeg0.668 610.822 350.771 510.496 1100.651 560.833 430.541 210.761 590.555 730.611 420.966 140.489 530.370 60.388 1030.580 870.776 170.751 610.570 690.956 60.817 590.646 55
PointConvpermissive0.666 620.781 480.759 580.699 750.644 600.822 550.475 540.779 540.564 700.504 810.953 440.428 810.203 840.586 630.754 580.661 650.753 600.588 640.902 460.813 620.642 56
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 620.703 860.781 450.751 650.655 530.830 460.471 560.769 570.474 940.537 660.951 500.475 590.279 480.635 490.698 740.675 590.751 610.553 800.816 930.806 640.703 39
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 640.746 650.708 790.722 680.638 620.820 580.451 640.566 1000.599 530.541 640.950 540.510 470.313 290.648 460.819 480.616 830.682 880.590 620.869 770.810 630.656 51
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
DCM-Net0.658 650.778 490.702 820.806 430.619 660.813 690.468 580.693 800.494 870.524 730.941 800.449 730.298 360.510 860.821 460.675 590.727 720.568 720.826 910.803 660.637 58
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 660.698 880.743 700.650 910.564 830.820 580.505 390.758 600.631 370.479 850.945 680.480 570.226 710.572 670.774 560.690 540.735 680.614 500.853 850.776 870.597 74
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 670.752 630.734 740.664 880.583 780.815 650.399 880.754 620.639 340.535 680.942 780.470 610.309 310.665 420.539 900.650 680.708 780.635 410.857 840.793 740.642 56
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 680.778 490.731 750.699 750.577 790.829 470.446 690.736 680.477 930.523 750.945 680.454 680.269 570.484 930.749 610.618 810.738 650.599 570.827 900.792 770.621 63
PointConv-SFPN0.641 690.776 510.703 810.721 690.557 860.826 500.451 640.672 860.563 710.483 840.943 770.425 840.162 1010.644 470.726 630.659 660.709 770.572 680.875 680.786 820.559 87
MVPNetpermissive0.641 690.831 310.715 770.671 850.590 740.781 840.394 900.679 830.642 320.553 610.937 850.462 640.256 630.649 450.406 1030.626 790.691 850.666 320.877 660.792 770.608 67
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 710.717 820.701 830.692 780.576 800.801 740.467 600.716 730.563 710.459 910.953 440.429 800.169 980.581 640.854 350.605 840.710 750.550 820.894 530.793 740.575 79
FPConvpermissive0.639 720.785 460.760 570.713 730.603 690.798 760.392 910.534 1050.603 510.524 730.948 600.457 660.250 650.538 790.723 660.598 880.696 830.614 500.872 730.799 670.567 84
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 730.797 420.769 530.641 960.590 740.820 580.461 620.537 1040.637 350.536 670.947 620.388 940.206 810.656 430.668 780.647 720.732 700.585 660.868 780.793 740.473 107
PointSPNet0.637 740.734 710.692 900.714 720.576 800.797 770.446 690.743 660.598 540.437 960.942 780.403 900.150 1050.626 530.800 540.649 690.697 820.557 780.846 870.777 860.563 85
SConv0.636 750.830 320.697 860.752 640.572 820.780 860.445 710.716 730.529 770.530 690.951 500.446 750.170 970.507 880.666 790.636 770.682 880.541 880.886 580.799 670.594 75
Supervoxel-CNN0.635 760.656 930.711 780.719 700.613 670.757 950.444 740.765 580.534 760.566 580.928 970.478 580.272 530.636 480.531 920.664 630.645 980.508 960.864 800.792 770.611 64
joint point-basedpermissive0.634 770.614 1010.778 460.667 870.633 640.825 510.420 820.804 480.467 960.561 590.951 500.494 500.291 400.566 690.458 980.579 950.764 510.559 770.838 880.814 600.598 73
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 780.731 730.688 930.675 820.591 730.784 830.444 740.565 1010.610 450.492 820.949 580.456 670.254 640.587 610.706 700.599 870.665 940.612 530.868 780.791 800.579 78
APCF-Net0.631 790.742 680.687 950.672 830.557 860.792 810.408 840.665 870.545 740.508 780.952 480.428 810.186 910.634 500.702 720.620 800.706 790.555 790.873 710.798 690.581 77
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
3DSM_DMMF0.631 790.626 980.745 680.801 460.607 680.751 960.506 380.729 710.565 690.491 830.866 1130.434 760.197 880.595 590.630 830.709 450.705 800.560 750.875 680.740 980.491 102
PointNet2-SFPN0.631 790.771 550.692 900.672 830.524 910.837 380.440 760.706 780.538 750.446 930.944 740.421 860.219 760.552 750.751 600.591 910.737 660.543 870.901 480.768 900.557 88
FusionAwareConv0.630 820.604 1030.741 720.766 600.590 740.747 970.501 410.734 690.503 860.527 710.919 1030.454 680.323 250.550 770.420 1020.678 580.688 860.544 850.896 510.795 710.627 62
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 830.800 410.625 1050.719 700.545 880.806 710.445 710.597 950.448 1010.519 760.938 840.481 560.328 230.489 920.499 970.657 670.759 560.592 610.881 620.797 700.634 59
SegGroup_sempermissive0.627 840.818 360.747 670.701 740.602 700.764 920.385 950.629 920.490 890.508 780.931 960.409 890.201 850.564 700.725 640.618 810.692 840.539 890.873 710.794 720.548 91
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 850.830 320.694 880.757 620.563 840.772 900.448 680.647 900.520 800.509 770.949 580.431 790.191 890.496 900.614 850.647 720.672 920.535 910.876 670.783 830.571 80
dtc_net0.625 850.703 860.751 640.794 490.535 890.848 270.480 530.676 850.528 780.469 880.944 740.454 680.004 1180.464 950.636 820.704 480.758 570.548 840.924 310.787 810.492 101
HPEIN0.618 870.729 750.668 960.647 930.597 720.766 910.414 830.680 820.520 800.525 720.946 650.432 770.215 780.493 910.599 860.638 760.617 1030.570 690.897 500.806 640.605 70
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 880.858 250.772 490.489 1110.532 900.792 810.404 870.643 910.570 680.507 800.935 880.414 880.046 1150.510 860.702 720.602 860.705 800.549 830.859 820.773 880.534 94
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 890.760 600.667 970.649 920.521 920.793 790.457 630.648 890.528 780.434 980.947 620.401 910.153 1040.454 960.721 670.648 710.717 740.536 900.904 430.765 910.485 103
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
Weakly-Openseg v30.604 900.901 140.762 550.627 980.478 980.820 580.346 1010.689 810.353 1110.528 700.933 930.217 1160.172 950.530 810.725 640.593 900.737 660.515 930.858 830.772 890.515 97
wsss-transformer0.600 910.634 970.743 700.697 770.601 710.781 840.437 780.585 980.493 880.446 930.933 930.394 920.011 1170.654 440.661 810.603 850.733 690.526 920.832 890.761 930.480 104
LAP-D0.594 920.720 800.692 900.637 970.456 1020.773 890.391 930.730 700.587 580.445 950.940 820.381 950.288 410.434 990.453 1000.591 910.649 960.581 670.777 970.749 970.610 66
DPC0.592 930.720 800.700 840.602 1020.480 970.762 940.380 960.713 760.585 610.437 960.940 820.369 970.288 410.434 990.509 960.590 930.639 1010.567 730.772 980.755 950.592 76
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 940.766 590.659 1000.683 800.470 1010.740 990.387 940.620 940.490 890.476 860.922 1010.355 1000.245 680.511 850.511 950.571 960.643 990.493 1000.872 730.762 920.600 72
ROSMRF0.580 950.772 540.707 800.681 810.563 840.764 920.362 980.515 1060.465 970.465 900.936 870.427 830.207 800.438 970.577 880.536 990.675 910.486 1010.723 1040.779 840.524 96
SD-DETR0.576 960.746 650.609 1090.445 1150.517 930.643 1100.366 970.714 750.456 990.468 890.870 1120.432 770.264 600.558 730.674 760.586 940.688 860.482 1020.739 1020.733 1000.537 93
SQN_0.1%0.569 970.676 900.696 870.657 890.497 940.779 870.424 800.548 1020.515 820.376 1030.902 1100.422 850.357 90.379 1040.456 990.596 890.659 950.544 850.685 1070.665 1110.556 89
TextureNetpermissive0.566 980.672 920.664 980.671 850.494 950.719 1000.445 710.678 840.411 1070.396 1010.935 880.356 990.225 730.412 1010.535 910.565 970.636 1020.464 1040.794 960.680 1080.568 83
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 990.648 940.700 840.770 570.586 770.687 1040.333 1030.650 880.514 830.475 870.906 1070.359 980.223 750.340 1060.442 1010.422 1100.668 930.501 970.708 1050.779 840.534 94
Pointnet++ & Featurepermissive0.557 1000.735 700.661 990.686 790.491 960.744 980.392 910.539 1030.451 1000.375 1040.946 650.376 960.205 820.403 1020.356 1060.553 980.643 990.497 980.824 920.756 940.515 97
GMLPs0.538 1010.495 1110.693 890.647 930.471 1000.793 790.300 1060.477 1070.505 850.358 1050.903 1090.327 1030.081 1120.472 940.529 930.448 1080.710 750.509 940.746 1000.737 990.554 90
PanopticFusion-label0.529 1020.491 1120.688 930.604 1010.386 1070.632 1110.225 1170.705 790.434 1040.293 1110.815 1150.348 1010.241 690.499 890.669 770.507 1010.649 960.442 1100.796 950.602 1150.561 86
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1030.676 900.591 1120.609 990.442 1030.774 880.335 1020.597 950.422 1060.357 1060.932 950.341 1020.094 1110.298 1080.528 940.473 1060.676 900.495 990.602 1130.721 1030.349 115
Online SegFusion0.515 1040.607 1020.644 1030.579 1040.434 1040.630 1120.353 990.628 930.440 1020.410 990.762 1180.307 1050.167 990.520 830.403 1040.516 1000.565 1060.447 1080.678 1080.701 1050.514 99
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1050.558 1070.608 1100.424 1170.478 980.690 1030.246 1130.586 970.468 950.450 920.911 1050.394 920.160 1020.438 970.212 1130.432 1090.541 1110.475 1030.742 1010.727 1010.477 105
PCNN0.498 1060.559 1060.644 1030.560 1060.420 1060.711 1020.229 1150.414 1080.436 1030.352 1070.941 800.324 1040.155 1030.238 1130.387 1050.493 1020.529 1120.509 940.813 940.751 960.504 100
3DMV0.484 1070.484 1130.538 1150.643 950.424 1050.606 1150.310 1040.574 990.433 1050.378 1020.796 1160.301 1060.214 790.537 800.208 1140.472 1070.507 1150.413 1130.693 1060.602 1150.539 92
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1080.577 1050.611 1080.356 1190.321 1150.715 1010.299 1080.376 1120.328 1150.319 1090.944 740.285 1080.164 1000.216 1160.229 1110.484 1040.545 1100.456 1060.755 990.709 1040.475 106
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1090.679 890.604 1110.578 1050.380 1080.682 1050.291 1090.106 1190.483 920.258 1170.920 1020.258 1120.025 1160.231 1150.325 1070.480 1050.560 1080.463 1050.725 1030.666 1100.231 119
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1100.474 1140.623 1060.463 1130.366 1100.651 1080.310 1040.389 1110.349 1130.330 1080.937 850.271 1100.126 1080.285 1090.224 1120.350 1150.577 1050.445 1090.625 1110.723 1020.394 111
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1110.548 1080.548 1140.597 1030.363 1110.628 1130.300 1060.292 1140.374 1090.307 1100.881 1110.268 1110.186 910.238 1130.204 1150.407 1110.506 1160.449 1070.667 1090.620 1140.462 109
SurfaceConvPF0.442 1110.505 1100.622 1070.380 1180.342 1130.654 1070.227 1160.397 1100.367 1100.276 1130.924 990.240 1130.198 870.359 1050.262 1090.366 1120.581 1040.435 1110.640 1100.668 1090.398 110
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1130.437 1160.646 1020.474 1120.369 1090.645 1090.353 990.258 1160.282 1180.279 1120.918 1040.298 1070.147 1070.283 1100.294 1080.487 1030.562 1070.427 1120.619 1120.633 1130.352 114
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1140.525 1090.647 1010.522 1070.324 1140.488 1190.077 1200.712 770.353 1110.401 1000.636 1200.281 1090.176 940.340 1060.565 890.175 1190.551 1090.398 1140.370 1200.602 1150.361 113
SPLAT Netcopyleft0.393 1150.472 1150.511 1160.606 1000.311 1160.656 1060.245 1140.405 1090.328 1150.197 1180.927 980.227 1150.000 1200.001 1210.249 1100.271 1180.510 1130.383 1160.593 1140.699 1060.267 117
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1160.297 1180.491 1170.432 1160.358 1120.612 1140.274 1110.116 1180.411 1070.265 1140.904 1080.229 1140.079 1130.250 1110.185 1160.320 1160.510 1130.385 1150.548 1150.597 1180.394 111
PointNet++permissive0.339 1170.584 1040.478 1180.458 1140.256 1180.360 1200.250 1120.247 1170.278 1190.261 1160.677 1190.183 1170.117 1090.212 1170.145 1180.364 1130.346 1200.232 1200.548 1150.523 1190.252 118
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
GrowSP++0.323 1180.114 1200.589 1130.499 1090.147 1200.555 1160.290 1100.336 1130.290 1170.262 1150.865 1140.102 1200.000 1200.037 1190.000 1210.000 1210.462 1170.381 1170.389 1190.664 1120.473 107
SSC-UNetpermissive0.308 1190.353 1170.290 1200.278 1200.166 1190.553 1170.169 1190.286 1150.147 1200.148 1200.908 1060.182 1180.064 1140.023 1200.018 1200.354 1140.363 1180.345 1180.546 1170.685 1070.278 116
ScanNetpermissive0.306 1200.203 1190.366 1190.501 1080.311 1160.524 1180.211 1180.002 1210.342 1140.189 1190.786 1170.145 1190.102 1100.245 1120.152 1170.318 1170.348 1190.300 1190.460 1180.437 1200.182 120
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1210.000 1210.041 1210.172 1210.030 1210.062 1210.001 1210.035 1200.004 1210.051 1210.143 1210.019 1210.003 1190.041 1180.050 1190.003 1200.054 1210.018 1210.005 1210.264 1210.082 121


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 50%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Competitor-MAFT0.816 11.000 10.983 30.872 100.718 50.941 10.588 30.652 380.819 20.776 30.720 50.780 40.769 121.000 10.797 100.813 270.798 71.000 10.659 3
PointRel0.816 11.000 10.971 80.908 60.743 20.923 70.573 70.714 220.695 180.734 90.747 20.725 110.809 11.000 10.814 80.899 30.820 31.000 10.610 17
: Relation3D (PointRel): Enhancing Relation Modeling for Point Cloud Instance Segmentation.
Spherical Mask(CtoF)0.812 31.000 10.973 70.852 140.718 60.917 90.574 50.677 290.748 110.729 130.715 70.795 20.809 11.000 10.831 40.854 90.787 111.000 10.638 6
EV3D0.811 41.000 10.968 90.852 140.717 70.921 80.574 60.677 290.748 110.730 120.703 120.795 20.809 11.000 10.831 40.854 90.778 151.000 10.638 7
SIM3D0.803 51.000 10.967 100.863 130.692 180.924 60.552 110.732 210.667 220.732 110.662 160.796 10.789 91.000 10.803 90.864 60.766 201.000 10.643 5
OneFormer3Dcopyleft0.801 61.000 10.973 60.909 50.698 150.928 40.582 40.668 340.685 190.780 20.687 140.698 190.702 151.000 10.794 120.900 20.784 130.986 520.635 8
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
Competitor-SPFormer0.800 71.000 10.986 20.845 160.705 130.915 100.532 130.733 200.757 100.733 100.708 90.698 180.648 350.981 380.890 10.830 180.796 80.997 390.644 4
UniPerception0.800 71.000 10.930 120.872 100.727 40.862 240.454 190.764 130.820 10.746 70.706 100.750 60.772 100.926 450.764 180.818 260.826 10.997 390.660 2
InsSSM0.799 91.000 10.915 140.710 410.729 30.925 50.664 10.670 320.770 70.766 40.739 30.737 70.700 161.000 10.792 130.829 200.815 40.997 390.625 10
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
TST3D0.795 101.000 10.929 130.918 40.709 100.884 190.596 20.704 250.769 80.734 80.644 210.699 170.751 131.000 10.794 110.876 50.757 230.997 390.550 32
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
MG-Former0.791 111.000 10.980 50.837 190.626 260.897 120.543 120.759 150.800 60.766 50.659 170.769 50.697 191.000 10.791 140.707 480.791 101.000 10.610 16
ExtMask3D0.789 121.000 10.988 10.756 340.706 120.912 110.429 200.647 400.806 50.755 60.673 150.689 200.772 111.000 10.789 150.852 110.811 51.000 10.617 13
Queryformer0.787 131.000 10.933 110.601 500.754 10.886 170.558 100.661 360.767 90.665 190.716 60.639 250.808 51.000 10.844 30.897 40.804 61.000 10.624 11
MAFT0.786 141.000 10.894 190.807 230.694 170.893 150.486 150.674 310.740 130.786 10.704 110.727 100.739 141.000 10.707 240.849 130.756 241.000 10.685 1
KmaxOneFormerNetpermissive0.783 150.903 550.981 40.794 270.706 110.931 30.561 90.701 260.706 160.727 140.697 130.731 90.689 221.000 10.856 20.750 390.761 221.000 10.599 21
Mask3D0.780 161.000 10.786 430.716 390.696 160.885 180.500 140.714 220.810 40.672 180.715 70.679 210.809 11.000 10.831 40.833 170.787 111.000 10.602 19
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
SPFormerpermissive0.770 170.903 550.903 160.806 240.609 320.886 160.568 80.815 60.705 170.711 150.655 180.652 240.685 231.000 10.789 160.809 280.776 171.000 10.583 25
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
SoftGroup++0.769 181.000 10.803 360.937 10.684 190.865 210.213 350.870 20.664 230.571 250.758 10.702 150.807 61.000 10.653 310.902 10.792 91.000 10.626 9
SoftGrouppermissive0.761 191.000 10.808 320.845 160.716 80.862 230.243 320.824 40.655 250.620 200.734 40.699 160.791 80.981 380.716 220.844 140.769 181.000 10.594 23
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
ISBNetpermissive0.757 201.000 10.904 150.731 370.678 200.895 130.458 170.644 420.670 210.710 160.620 260.732 80.650 251.000 10.756 190.778 310.779 141.000 10.614 14
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
TD3Dpermissive0.751 211.000 10.774 440.867 120.621 280.934 20.404 210.706 240.812 30.605 230.633 240.626 260.690 211.000 10.640 330.820 230.777 161.000 10.612 15
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
PBNetpermissive0.747 221.000 10.818 280.837 200.713 90.844 260.457 180.647 400.711 150.614 210.617 280.657 230.650 251.000 10.692 250.822 220.765 211.000 10.595 22
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
GraphCut0.732 231.000 10.788 410.724 380.642 250.859 250.248 310.787 110.618 280.596 240.653 200.722 130.583 471.000 10.766 170.861 70.825 21.000 10.504 38
IPCA-Inst0.731 241.000 10.788 420.884 90.698 140.788 420.252 300.760 140.646 260.511 330.637 230.665 220.804 71.000 10.644 320.778 320.747 261.000 10.561 29
TopoSeg0.725 251.000 10.806 350.933 20.668 220.758 460.272 290.734 190.630 270.549 290.654 190.606 270.697 200.966 420.612 370.839 150.754 251.000 10.573 26
DKNet0.718 261.000 10.814 290.782 280.619 290.872 200.224 330.751 170.569 320.677 170.585 320.724 120.633 370.981 380.515 470.819 240.736 271.000 10.617 12
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
SSEC0.707 271.000 10.850 210.924 30.648 230.747 490.162 370.862 30.572 310.520 310.624 250.549 300.649 341.000 10.560 420.706 490.768 191.000 10.591 24
HAISpermissive0.699 281.000 10.849 220.820 210.675 210.808 360.279 270.757 160.465 380.517 320.596 300.559 290.600 411.000 10.654 300.767 340.676 310.994 480.560 30
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
SSTNetpermissive0.698 291.000 10.697 600.888 80.556 390.803 370.387 220.626 440.417 430.556 280.585 330.702 140.600 411.000 10.824 70.720 470.692 291.000 10.509 37
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
DualGroup0.694 301.000 10.799 380.811 220.622 270.817 310.376 230.805 90.590 300.487 370.568 360.525 340.650 250.835 550.600 380.829 190.655 341.000 10.526 34
SphereSeg0.680 311.000 10.856 200.744 350.618 300.893 140.151 380.651 390.713 140.537 300.579 350.430 440.651 241.000 10.389 580.744 420.697 280.991 500.601 20
DANCENET0.680 311.000 10.807 330.733 360.600 330.768 450.375 240.543 520.538 330.610 220.599 290.498 350.632 390.981 380.739 210.856 80.633 400.882 630.454 47
Box2Mask0.677 331.000 10.847 230.771 300.509 480.816 320.277 280.558 510.482 350.562 270.640 220.448 400.700 161.000 10.666 260.852 120.578 470.997 390.488 42
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
OccuSeg+instance0.672 341.000 10.758 520.682 430.576 370.842 270.477 160.504 580.524 340.567 260.585 340.451 390.557 491.000 10.751 200.797 290.563 501.000 10.467 46
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
Mask-Group0.664 351.000 10.822 270.764 330.616 310.815 330.139 420.694 280.597 290.459 410.566 370.599 280.600 410.516 650.715 230.819 250.635 381.000 10.603 18
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
INS-Conv-instance0.657 361.000 10.760 500.667 450.581 350.863 220.323 250.655 370.477 360.473 390.549 390.432 430.650 251.000 10.655 290.738 430.585 460.944 550.472 45
CSC-Pretrained0.648 371.000 10.810 300.768 310.523 460.813 340.143 410.819 50.389 460.422 500.511 430.443 410.650 251.000 10.624 350.732 440.634 391.000 10.375 54
PE0.645 381.000 10.773 460.798 260.538 410.786 430.088 500.799 100.350 500.435 480.547 400.545 310.646 360.933 440.562 410.761 370.556 550.997 390.501 40
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
RPGN0.643 391.000 10.758 510.582 560.539 400.826 300.046 550.765 120.372 480.436 470.588 310.539 330.650 251.000 10.577 390.750 400.653 360.997 390.495 41
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
Dyco3Dcopyleft0.641 401.000 10.841 240.893 70.531 430.802 380.115 470.588 490.448 400.438 450.537 420.430 450.550 500.857 470.534 450.764 360.657 330.987 510.568 27
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
GICN0.638 411.000 10.895 180.800 250.480 520.676 540.144 400.737 180.354 490.447 420.400 560.365 510.700 161.000 10.569 400.836 160.599 421.000 10.473 44
PointGroup0.636 421.000 10.765 470.624 470.505 500.797 390.116 460.696 270.384 470.441 430.559 380.476 370.596 441.000 10.666 260.756 380.556 540.997 390.513 36
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
DD-UNet+Group0.635 430.667 580.797 400.714 400.562 380.774 440.146 390.810 80.429 420.476 380.546 410.399 470.633 371.000 10.632 340.722 460.609 411.000 10.514 35
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
Mask3D_evaluation0.631 441.000 10.829 260.606 490.646 240.836 280.068 510.511 560.462 390.507 340.619 270.389 490.610 401.000 10.432 530.828 210.673 320.788 670.552 31
DENet0.629 451.000 10.797 390.608 480.589 340.627 580.219 340.882 10.310 520.402 550.383 580.396 480.650 251.000 10.663 280.543 660.691 301.000 10.568 28
3D-MPA0.611 461.000 10.833 250.765 320.526 450.756 470.136 440.588 490.470 370.438 460.432 520.358 530.650 250.857 470.429 540.765 350.557 531.000 10.430 49
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
OSIS0.605 471.000 10.801 370.599 510.535 420.728 510.286 260.436 620.679 200.491 350.433 500.256 550.404 620.857 470.620 360.724 450.510 601.000 10.539 33
AOIA0.601 481.000 10.761 490.687 420.485 510.828 290.008 620.663 350.405 450.405 540.425 530.490 360.596 440.714 580.553 440.779 300.597 430.992 490.424 51
PCJC0.578 491.000 10.810 310.583 550.449 550.813 350.042 560.603 470.341 510.490 360.465 470.410 460.650 250.835 550.264 640.694 530.561 510.889 600.504 39
SSEN0.575 501.000 10.761 480.473 580.477 530.795 400.066 520.529 540.658 240.460 400.461 480.380 500.331 640.859 460.401 570.692 550.653 351.000 10.348 56
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
RWSeg0.567 510.528 680.708 590.626 460.580 360.745 500.063 530.627 430.240 560.400 560.497 440.464 380.515 511.000 10.475 490.745 410.571 481.000 10.429 50
NeuralBF0.555 520.667 580.896 170.843 180.517 470.751 480.029 570.519 550.414 440.439 440.465 460.000 740.484 530.857 470.287 620.693 540.651 371.000 10.485 43
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
MTML0.549 531.000 10.807 340.588 540.327 600.647 560.004 640.815 70.180 590.418 510.364 600.182 580.445 561.000 10.442 520.688 560.571 491.000 10.396 52
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
ClickSeg_Instance0.539 541.000 10.621 630.300 610.530 440.698 520.127 450.533 530.222 570.430 490.400 550.365 510.574 480.938 430.472 500.659 580.543 560.944 550.347 57
One_Thing_One_Clickpermissive0.529 550.667 580.718 550.777 290.399 560.683 530.000 670.669 330.138 620.391 570.374 590.539 320.360 630.641 620.556 430.774 330.593 440.997 390.251 62
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Sparse R-CNN0.515 561.000 10.538 680.282 620.468 540.790 410.173 360.345 640.429 410.413 530.484 450.176 590.595 460.591 630.522 460.668 570.476 610.986 530.327 58
Occipital-SCS0.512 571.000 10.716 560.509 570.506 490.611 590.092 490.602 480.177 600.346 600.383 570.165 600.442 570.850 540.386 590.618 620.543 570.889 600.389 53
3D-BoNet0.488 581.000 10.672 620.590 530.301 620.484 690.098 480.620 450.306 530.341 610.259 640.125 620.434 590.796 570.402 560.499 680.513 590.909 590.439 48
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
PanopticFusion-inst0.478 590.667 580.712 580.595 520.259 650.550 650.000 670.613 460.175 610.250 660.434 490.437 420.411 610.857 470.485 480.591 650.267 710.944 550.359 55
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
SPG_WSIS0.470 600.667 580.685 610.677 440.372 580.562 630.000 670.482 590.244 550.316 630.298 610.052 690.442 580.857 470.267 630.702 500.559 521.000 10.287 60
SALoss-ResNet0.459 611.000 10.737 540.159 720.259 640.587 610.138 430.475 600.217 580.416 520.408 540.128 610.315 650.714 580.411 550.536 670.590 450.873 640.304 59
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MASCpermissive0.447 620.528 680.555 660.381 590.382 570.633 570.002 650.509 570.260 540.361 590.432 510.327 540.451 550.571 640.367 600.639 600.386 620.980 540.276 61
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
SegGroup_inspermissive0.445 630.667 580.773 450.185 690.317 610.656 550.000 670.407 630.134 630.381 580.267 630.217 570.476 540.714 580.452 510.629 610.514 581.000 10.222 65
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
3D-SISpermissive0.382 641.000 10.432 710.245 640.190 660.577 620.013 610.263 660.033 690.320 620.240 650.075 650.422 600.857 470.117 690.699 510.271 700.883 620.235 64
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
Hier3Dcopyleft0.323 650.667 580.542 670.264 630.157 690.550 640.000 670.205 690.009 710.270 650.218 660.075 650.500 520.688 610.007 750.698 520.301 670.459 720.200 66
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
UNet-backbone0.319 660.667 580.715 570.233 650.189 670.479 700.008 620.218 670.067 680.201 680.173 670.107 630.123 700.438 660.150 660.615 630.355 630.916 580.093 74
R-PointNet0.306 670.500 700.405 720.311 600.348 590.589 600.054 540.068 720.126 640.283 640.290 620.028 700.219 680.214 690.331 610.396 720.275 680.821 660.245 63
Region-18class0.284 680.250 740.751 530.228 670.270 630.521 660.000 670.468 610.008 730.205 670.127 680.000 740.068 720.070 730.262 650.652 590.323 650.740 680.173 67
SemRegionNet-20cls0.250 690.333 710.613 640.229 660.163 680.493 670.000 670.304 650.107 650.147 710.100 700.052 680.231 660.119 710.039 710.445 700.325 640.654 690.141 70
tmp0.248 700.667 580.437 700.188 680.153 700.491 680.000 670.208 680.094 670.153 700.099 710.057 670.217 690.119 710.039 710.466 690.302 660.640 700.140 71
3D-BEVIS0.248 700.667 580.566 650.076 730.035 750.394 730.027 590.035 740.098 660.099 730.030 740.025 710.098 710.375 680.126 680.604 640.181 730.854 650.171 68
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Sem_Recon_ins0.227 720.764 570.486 690.069 740.098 720.426 720.017 600.067 730.015 700.172 690.100 690.096 640.054 740.183 700.135 670.366 730.260 720.614 710.168 69
ASIS0.199 730.333 710.253 740.167 710.140 710.438 710.000 670.177 700.008 720.121 720.069 720.004 730.231 670.429 670.036 730.445 710.273 690.333 740.119 73
Sgpn_scannet0.143 740.208 750.390 730.169 700.065 730.275 740.029 580.069 710.000 740.087 740.043 730.014 720.027 750.000 740.112 700.351 740.168 740.438 730.138 72
MaskRCNN 2d->3d Proj0.058 750.333 710.002 750.000 750.053 740.002 750.002 660.021 750.000 740.045 750.024 750.238 560.065 730.000 740.014 740.107 750.020 750.110 750.006 75


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 20.512 10.422 170.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 30.481 20.451 130.769 40.656 30.567 40.931 30.395 60.390 50.700 40.534 40.689 100.770 20.574 30.865 90.831 30.675 5
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MVF-GNN(2D)0.636 30.606 140.794 40.434 160.688 10.337 80.464 120.798 30.632 50.589 30.908 80.420 20.329 120.743 20.594 20.738 20.676 50.527 40.906 20.818 60.715 3
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 230.648 40.463 30.549 20.742 70.676 20.628 20.961 10.420 20.379 60.684 80.381 180.732 30.723 30.599 20.827 160.851 20.634 7
CMX0.613 50.681 80.725 120.502 120.634 60.297 180.478 100.830 20.651 40.537 70.924 40.375 70.315 140.686 70.451 140.714 50.543 210.504 60.894 70.823 50.688 4
DMMF_3d0.605 60.651 90.744 100.782 30.637 50.387 40.536 30.732 80.590 70.540 60.856 210.359 110.306 150.596 140.539 30.627 200.706 40.497 80.785 210.757 190.476 22
EMSANet0.600 70.716 40.746 90.395 180.614 90.382 50.523 40.713 110.571 110.503 100.922 60.404 50.397 40.655 90.400 160.626 210.663 60.469 130.900 40.827 40.577 14
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
MCA-Net0.595 80.533 200.756 80.746 40.590 100.334 100.506 70.670 150.587 80.500 120.905 100.366 100.352 90.601 130.506 80.669 160.648 90.501 70.839 150.769 150.516 21
RFBNet0.592 90.616 110.758 70.659 50.581 110.330 110.469 110.655 180.543 140.524 80.924 40.355 130.336 110.572 170.479 100.671 140.648 90.480 100.814 190.814 70.614 10
FAN_NV_RVC0.586 100.510 210.764 60.079 260.620 80.330 110.494 80.753 50.573 90.556 50.884 160.405 40.303 160.718 30.452 130.672 130.658 70.509 50.898 50.813 80.727 2
DCRedNet0.583 110.682 70.723 130.542 110.510 200.310 150.451 130.668 160.549 130.520 90.920 70.375 70.446 20.528 200.417 150.670 150.577 180.478 110.862 100.806 90.628 9
MIX6D_RVC0.582 120.695 50.687 170.225 210.632 70.328 130.550 10.748 60.623 60.494 150.890 140.350 150.254 230.688 60.454 120.716 40.597 170.489 90.881 80.768 160.575 15
SSMAcopyleft0.577 130.695 50.716 150.439 140.563 140.314 140.444 150.719 90.551 120.503 100.887 150.346 160.348 100.603 120.353 200.709 60.600 150.457 140.901 30.786 110.599 13
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
DMMF0.567 140.623 100.767 50.238 200.571 130.347 60.413 190.719 90.472 200.418 220.895 130.357 120.260 220.696 50.523 70.666 170.642 110.437 180.895 60.793 100.603 12
UNIV_CNP_RVC_UE0.566 150.569 190.686 190.435 150.524 170.294 190.421 180.712 120.543 140.463 170.872 170.320 170.363 80.611 110.477 110.686 110.627 120.443 170.862 100.775 140.639 6
EMSAFormer0.564 160.581 160.736 110.564 100.546 160.219 230.517 50.675 140.486 190.427 210.904 110.352 140.320 130.589 150.528 50.708 70.464 240.413 220.847 140.786 110.611 11
SN_RN152pyrx8_RVCcopyleft0.546 170.572 170.663 210.638 70.518 180.298 170.366 240.633 210.510 170.446 190.864 190.296 200.267 190.542 190.346 210.704 80.575 190.431 190.853 130.766 170.630 8
UDSSEG_RVC0.545 180.610 130.661 220.588 80.556 150.268 210.482 90.642 200.572 100.475 160.836 230.312 180.367 70.630 100.189 230.639 190.495 230.452 150.826 170.756 200.541 17
segfomer with 6d0.542 190.594 150.687 170.146 240.579 120.308 160.515 60.703 130.472 200.498 130.868 180.369 90.282 170.589 150.390 170.701 90.556 200.416 210.860 120.759 180.539 19
FuseNetpermissive0.535 200.570 180.681 200.182 220.512 190.290 200.431 160.659 170.504 180.495 140.903 120.308 190.428 30.523 210.365 190.676 120.621 140.470 120.762 220.779 130.541 17
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 210.613 120.722 140.418 170.358 260.337 80.370 230.479 240.443 220.368 240.907 90.207 230.213 250.464 240.525 60.618 220.657 80.450 160.788 200.721 230.408 25
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 220.481 240.612 230.579 90.456 220.343 70.384 210.623 220.525 160.381 230.845 220.254 220.264 210.557 180.182 240.581 240.598 160.429 200.760 230.661 250.446 24
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 230.505 220.709 160.092 250.427 230.241 220.411 200.654 190.385 260.457 180.861 200.053 260.279 180.503 220.481 90.645 180.626 130.365 240.748 240.725 220.529 20
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 240.490 230.581 240.289 190.507 210.067 260.379 220.610 230.417 240.435 200.822 250.278 210.267 190.503 220.228 220.616 230.533 220.375 230.820 180.729 210.560 16
Enet (reimpl)0.376 250.264 260.452 260.452 130.365 240.181 240.143 260.456 250.409 250.346 250.769 260.164 240.218 240.359 250.123 260.403 260.381 260.313 260.571 250.685 240.472 23
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 260.293 250.521 250.657 60.361 250.161 250.250 250.004 260.440 230.183 260.836 230.125 250.060 260.319 260.132 250.417 250.412 250.344 250.541 260.427 260.109 26
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EMSANet (Instance)0.241 10.401 10.439 10.085 10.242 10.220 10.081 10.289 20.117 20.121 10.182 10.126 10.346 10.181 20.181 20.358 10.156 10.675 20.131 1
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
UniDet_RVC0.205 20.381 20.323 30.037 30.226 30.177 30.063 20.277 30.120 10.067 30.131 30.074 30.317 20.080 30.235 10.289 30.141 30.678 10.080 3
FKNet0.204 30.334 30.358 20.038 20.234 20.184 20.025 30.318 10.042 40.088 20.141 20.053 40.300 30.207 10.171 30.292 20.149 20.636 30.109 2
MaskRCNN_ScanNetpermissive0.119 40.129 40.212 40.002 40.112 40.148 40.014 40.205 40.044 30.066 40.078 40.095 20.142 40.030 40.128 40.139 40.080 40.459 40.057 4
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
3DASPP-SCE0.691 30.500 10.938 30.824 41.000 11.000 10.500 31.000 10.857 30.500 20.556 40.000 20.812 30.500 2
LAST-PCL-type0.780 10.250 31.000 11.000 11.000 11.000 11.000 10.500 21.000 10.500 20.889 10.000 21.000 11.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12
multi-taskpermissive0.700 20.500 11.000 10.882 30.500 31.000 11.000 10.500 21.000 11.000 10.778 20.000 20.938 20.000 3
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
SE-ResNeXt-SSMA0.498 40.000 50.812 40.941 20.500 30.500 40.500 30.500 20.429 50.500 20.667 30.500 10.625 40.000 3
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.353 50.250 30.812 40.529 50.500 30.500 40.000 50.500 20.571 40.000 50.556 40.000 20.375 50.000 3