Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail iouwallchairfloortabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CeCo0.340 10.551 10.247 10.181 10.784 10.661 20.939 10.564 10.624 10.721 10.484 10.429 10.575 10.027 40.774 10.503 10.753 10.242 10.656 10.945 10.534 10.865 10.860 10.177 40.616 20.400 10.818 10.579 10.615 10.367 10.408 10.726 20.633 10.162 10.360 10.619 10.000 10.828 10.873 10.924 10.109 20.083 20.564 10.057 40.475 20.266 10.781 10.767 10.257 10.100 20.825 10.663 10.048 40.620 30.551 10.595 20.532 10.692 20.246 10.000 30.213 10.615 10.861 10.376 10.900 10.000 10.102 40.660 10.321 20.547 10.226 10.000 10.311 10.742 10.011 20.006 20.000 10.000 20.546 40.824 10.345 20.665 10.450 10.435 10.683 10.411 10.338 10.000 30.000 10.030 40.000 10.068 30.892 10.000 10.063 20.000 40.257 10.304 30.387 20.079 20.228 10.190 10.000 40.586 10.347 10.133 20.000 20.037 10.377 30.000 10.384 10.006 30.003 20.421 10.410 10.643 10.171 20.121 20.142 30.000 10.510 30.447 10.474 20.000 10.000 40.286 10.083 10.000 30.000 10.603 10.096 10.063 10.000 20.000 10.000 10.898 10.000 10.429 10.000 10.400 10.550 10.000 10.633 10.000 10.000 10.377 10.000 40.916 10.000 20.000 10.000 10.000 20.000 10.102 40.499 20.296 10.463 10.089 20.304 10.740 10.401 40.010 10.000 10.560 10.000 10.000 20.709 10.652 10.000 20.000 10.000 10.143 20.000 20.000 10.609 10.000 1
: Understanding Imbalanced Semantic Segmentation Through Neural Collapse.
LGroundpermissive0.272 20.485 20.184 20.106 20.778 20.676 10.932 20.479 40.572 20.718 20.399 20.265 20.453 30.085 20.745 20.446 20.726 20.232 30.622 20.901 20.512 30.826 20.786 30.178 30.549 30.277 20.659 30.381 20.518 20.295 40.323 20.777 10.599 20.028 30.321 20.363 30.000 10.708 30.858 20.746 30.063 30.022 30.457 20.077 20.476 10.243 20.402 20.397 40.233 20.077 40.720 40.610 30.103 10.629 20.437 40.626 10.446 20.702 10.190 20.005 10.058 30.322 20.702 30.244 20.768 20.000 10.134 30.552 20.279 30.395 20.147 30.000 10.207 20.612 20.000 30.000 30.000 10.000 20.658 20.566 20.323 30.525 40.229 30.179 20.467 40.154 30.000 20.002 10.000 10.051 10.000 10.127 10.703 20.000 10.000 30.216 10.112 40.358 20.547 10.187 10.092 30.156 40.055 30.296 20.252 20.143 10.000 20.014 20.398 20.000 10.028 30.173 10.000 40.265 30.348 20.415 40.179 10.019 30.218 10.000 10.597 20.274 40.565 10.000 10.012 30.000 20.039 30.022 20.000 10.117 20.000 20.000 20.000 20.000 10.000 10.324 30.000 10.384 20.000 10.000 20.251 40.000 10.566 20.000 10.000 10.066 30.404 10.886 30.199 10.000 10.000 10.059 10.000 10.136 10.540 10.127 40.295 20.085 30.143 40.514 20.413 30.000 30.000 10.498 20.000 10.000 20.000 20.623 20.000 20.000 10.000 10.132 30.000 20.000 10.000 20.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
CSC-Pretrainpermissive0.249 40.455 40.171 30.079 40.766 40.659 30.930 40.494 20.542 40.700 40.314 40.215 40.430 40.121 10.697 40.441 30.683 30.235 20.609 40.895 30.476 40.816 30.770 40.186 20.634 10.216 40.734 20.340 30.471 30.307 30.293 40.591 40.542 40.076 20.205 40.464 20.000 10.484 40.832 40.766 20.052 40.000 40.413 30.059 30.418 30.222 30.318 40.609 30.206 40.112 10.743 20.625 20.076 20.579 40.548 20.590 30.371 30.552 40.081 30.003 20.142 20.201 40.638 40.233 30.686 40.000 10.142 20.444 40.375 10.247 40.198 20.000 10.128 40.454 40.019 10.097 10.000 10.000 20.553 30.557 30.373 10.545 30.164 40.014 40.547 30.174 20.000 20.002 10.000 10.037 20.000 10.063 40.664 40.000 10.000 30.130 20.170 20.152 40.335 40.079 20.110 20.175 20.098 20.175 40.166 30.045 40.207 10.014 20.465 10.000 10.001 40.001 40.046 10.299 20.327 30.537 30.033 30.012 40.186 20.000 10.205 40.377 20.463 30.000 10.058 20.000 20.055 20.041 10.000 10.105 30.000 20.000 20.000 20.000 10.000 10.398 20.000 10.308 40.000 10.000 20.319 20.000 10.543 30.000 10.000 10.062 40.004 30.862 40.000 20.000 10.000 10.000 20.000 10.123 20.316 30.225 20.250 30.094 10.180 30.332 30.441 20.000 30.000 10.310 40.000 10.000 20.000 20.592 30.000 20.000 10.000 10.203 10.000 20.000 10.000 20.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
Minkowski 34Dpermissive0.253 30.463 30.154 40.102 30.771 30.650 40.932 20.483 30.571 30.710 30.331 30.250 30.492 20.044 30.703 30.419 40.606 40.227 40.621 30.865 40.531 20.771 40.813 20.291 10.484 40.242 30.612 40.282 40.440 40.351 20.299 30.622 30.593 30.027 40.293 30.310 40.000 10.757 20.858 20.737 40.150 10.164 10.368 40.084 10.381 40.142 40.357 30.720 20.214 30.092 30.724 30.596 40.056 30.655 10.525 30.581 40.352 40.594 30.056 40.000 30.014 40.224 30.772 20.205 40.720 30.000 10.159 10.531 30.163 40.294 30.136 40.000 10.169 30.589 30.000 30.000 30.000 10.002 10.663 10.466 40.265 40.582 20.337 20.016 30.559 20.084 40.000 20.000 30.000 10.036 30.000 10.125 20.670 30.000 10.102 10.071 30.164 30.406 10.386 30.046 40.068 40.159 30.117 10.284 30.111 40.094 30.000 20.000 40.197 40.000 10.044 20.013 20.002 30.228 40.307 40.588 20.025 40.545 10.134 40.000 10.655 10.302 30.282 40.000 10.060 10.000 20.035 40.000 30.000 10.097 40.000 20.000 20.005 10.000 10.000 10.096 40.000 10.334 30.000 10.000 20.274 30.000 10.513 40.000 10.000 10.280 20.194 20.897 20.000 20.000 10.000 10.000 20.000 10.108 30.279 40.189 30.141 40.059 40.272 20.307 40.445 10.003 20.000 10.353 30.000 10.026 10.000 20.581 40.001 10.000 10.000 10.093 40.002 10.000 10.000 20.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg ap 25%head ap 25%common ap 25%tail ap 25%chairtabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D Scannet2000.445 10.653 10.392 10.254 10.844 10.746 10.818 10.888 30.556 10.262 10.890 10.025 11.000 10.608 10.930 10.694 30.721 10.930 40.686 20.966 10.615 30.440 10.725 30.201 10.890 20.414 30.827 10.552 10.158 40.806 10.924 10.042 20.512 10.412 40.226 10.604 20.830 11.000 10.125 10.792 10.815 10.097 10.648 10.551 10.354 31.000 10.630 10.241 21.000 10.853 10.204 10.974 30.841 10.778 10.358 10.927 10.300 10.045 10.640 10.363 10.745 10.710 11.000 10.000 10.330 10.943 10.315 10.600 11.000 10.027 10.080 40.556 40.500 10.409 10.000 10.194 11.000 10.500 10.493 20.761 20.053 30.042 20.780 10.454 10.009 10.333 10.050 10.321 10.000 10.084 10.552 10.008 10.027 10.750 10.500 10.442 20.657 10.765 10.120 20.183 20.021 21.000 10.510 20.016 10.000 10.400 10.619 10.000 10.396 10.290 10.000 10.741 10.699 11.000 10.260 10.017 20.125 40.000 10.792 30.399 31.000 10.000 10.049 20.265 10.063 20.000 21.000 10.335 20.381 10.500 10.250 10.004 10.000 10.727 20.000 10.538 30.000 10.188 10.677 20.000 10.930 10.000 10.000 10.966 10.391 10.908 10.000 10.028 10.000 11.000 10.000 10.152 10.451 20.458 10.971 10.573 10.606 10.167 40.625 10.004 10.000 10.058 40.000 10.000 11.000 11.000 10.000 10.056 10.000 10.200 20.309 10.000 11.000 10.000 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
Minkowski 34D Inst.permissive0.280 30.488 30.192 40.124 30.804 30.518 30.772 40.904 20.337 40.191 30.443 30.000 20.861 30.502 30.868 30.669 40.587 30.997 20.467 40.828 40.732 10.342 30.745 20.119 40.918 10.404 40.419 30.398 20.172 20.618 40.743 30.167 10.077 40.500 10.000 20.568 30.506 41.000 10.044 30.000 20.502 30.010 30.593 30.284 40.305 40.903 40.213 40.142 30.981 20.790 40.000 31.000 10.715 40.538 40.346 30.830 40.067 20.000 20.400 20.074 30.333 30.551 21.000 10.000 10.292 20.777 30.118 40.317 30.100 30.000 20.191 20.648 20.000 20.000 20.000 10.000 20.000 30.500 10.213 40.825 10.021 40.333 10.648 40.098 30.000 20.000 20.000 20.077 20.000 10.000 40.150 40.000 20.000 20.000 40.225 20.281 30.447 30.000 40.090 30.148 30.000 30.479 40.542 10.000 20.000 10.200 20.131 40.000 10.250 20.000 30.000 10.159 40.396 40.677 20.021 30.000 30.500 10.000 11.000 10.442 20.125 40.000 10.000 30.000 20.000 30.333 10.000 20.528 10.000 20.000 20.000 20.000 20.000 10.200 40.000 10.516 40.000 10.000 20.500 30.000 10.833 20.000 10.000 10.286 30.083 30.750 20.000 10.000 20.000 10.000 20.000 10.059 40.445 30.200 20.535 30.070 20.167 30.385 30.375 20.000 20.000 10.333 30.000 10.000 10.000 20.500 20.000 10.000 20.000 10.200 20.000 20.000 10.000 20.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrain Inst.permissive0.275 40.466 40.218 30.110 40.783 40.383 40.783 30.829 40.367 30.168 40.305 40.000 20.661 40.413 40.869 20.719 10.546 40.997 20.685 30.841 30.555 40.277 40.768 10.132 20.779 40.448 20.364 40.212 40.161 30.768 20.692 40.000 30.395 20.500 10.000 20.450 40.591 21.000 10.020 40.000 20.423 40.007 40.625 20.420 20.505 21.000 10.353 20.119 40.571 30.819 20.014 21.000 10.774 20.689 30.311 40.866 20.067 20.000 20.400 20.000 40.278 40.501 31.000 10.000 10.162 40.584 40.286 20.206 40.125 20.000 20.084 30.649 10.000 20.000 20.000 10.000 20.000 30.125 40.312 30.727 30.221 10.000 30.667 30.114 20.000 20.000 20.000 20.065 40.000 10.004 30.278 20.000 20.000 20.500 20.000 40.571 10.000 40.250 30.019 40.145 40.000 30.667 20.200 40.000 20.000 10.200 20.258 30.000 10.000 30.000 30.000 10.369 30.429 30.613 30.000 40.000 30.500 10.000 10.500 40.333 40.500 30.000 10.106 10.000 20.000 30.000 20.000 20.333 30.000 20.000 20.000 20.000 20.000 10.918 10.000 10.638 10.000 10.000 20.750 10.000 10.833 20.000 10.000 10.143 40.000 40.750 20.000 10.000 20.000 10.000 20.000 10.063 30.377 40.200 20.222 40.055 30.500 20.677 20.250 30.000 20.000 10.500 20.000 10.000 10.000 20.500 20.000 10.000 20.000 10.115 40.000 20.000 10.000 20.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
LGround Inst.permissive0.314 20.529 20.225 20.155 20.810 20.625 20.798 20.940 10.372 20.217 20.484 20.000 20.927 20.528 20.826 40.694 20.605 21.000 10.731 10.846 20.716 20.350 20.589 40.123 30.857 30.457 10.578 20.376 30.183 10.765 30.800 20.000 30.278 30.500 10.000 20.659 10.569 31.000 10.093 20.000 20.539 20.010 20.578 40.378 30.571 11.000 10.337 30.252 10.530 40.814 30.000 30.744 40.743 30.746 20.346 20.863 30.067 20.000 20.400 20.167 20.667 20.488 41.000 10.000 10.208 30.783 20.166 30.375 20.071 40.000 20.200 10.607 30.000 20.000 20.000 10.000 21.000 10.500 10.517 10.716 40.221 10.000 30.706 20.085 40.000 20.000 20.000 20.077 30.000 10.063 20.278 20.000 20.000 20.500 20.083 30.181 40.515 20.286 20.144 10.219 10.042 10.582 30.400 30.000 20.000 10.000 40.305 20.000 10.000 30.036 20.000 10.413 20.500 20.533 40.250 20.200 10.500 10.000 11.000 10.472 11.000 10.000 10.000 30.000 20.250 10.000 20.000 20.333 30.000 20.000 20.000 20.000 20.000 10.600 30.000 10.594 20.000 10.000 20.500 30.000 10.647 40.000 10.000 10.429 20.333 20.500 40.000 10.000 20.000 10.000 20.000 10.069 20.696 10.050 40.556 20.031 40.042 40.750 10.250 30.000 20.000 10.630 10.000 10.000 10.000 20.500 20.000 10.000 20.000 10.400 10.000 20.000 10.000 20.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mix3Dpermissive0.781 10.964 10.855 10.843 100.781 10.858 70.575 30.831 180.685 70.714 10.979 10.594 30.310 160.801 10.892 80.841 20.819 30.723 30.940 70.887 10.725 12
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
CU-Hybrid Net0.764 20.924 20.819 70.840 110.757 60.853 90.580 10.848 130.709 20.643 110.958 90.587 70.295 220.753 140.884 120.758 100.815 50.725 20.927 160.867 90.743 5
OccuSeg+Semantic0.764 20.758 450.796 190.839 120.746 110.907 10.562 50.850 120.680 90.672 50.978 20.610 10.335 80.777 40.819 320.847 10.830 10.691 80.972 10.885 20.727 10
O-CNNpermissive0.762 40.924 20.823 40.844 90.770 20.852 100.577 20.847 140.711 10.640 150.958 90.592 40.217 570.762 100.888 90.758 100.813 60.726 10.932 140.868 80.744 4
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DMF-Net0.752 50.906 60.793 220.802 280.689 270.825 300.556 60.867 80.681 80.602 290.960 70.555 160.365 30.779 30.859 170.747 130.795 170.717 40.917 190.856 170.764 2
PointTransformerV20.752 50.742 520.809 130.872 10.758 50.860 60.552 70.891 50.610 280.687 20.960 70.559 140.304 190.766 80.926 20.767 70.797 130.644 210.942 50.876 70.722 14
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
PointConvFormer0.749 70.793 310.790 230.807 240.750 100.856 80.524 160.881 60.588 390.642 140.977 40.591 50.274 320.781 20.929 10.804 30.796 140.642 220.947 30.885 20.715 17
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
BPNetcopyleft0.749 70.909 40.818 90.811 210.752 80.839 180.485 310.842 150.673 100.644 100.957 120.528 240.305 180.773 60.859 170.788 40.818 40.693 70.916 200.856 170.723 13
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MSP0.748 90.623 760.804 150.859 30.745 120.824 320.501 230.912 20.690 60.685 30.956 130.567 110.320 130.768 70.918 30.720 210.802 90.676 110.921 170.881 40.779 1
StratifiedFormerpermissive0.747 100.901 70.803 160.845 80.757 60.846 140.512 190.825 210.696 50.645 90.956 130.576 90.262 430.744 180.861 160.742 140.770 300.705 50.899 310.860 140.734 6
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
VMNetpermissive0.746 110.870 120.838 20.858 40.729 170.850 120.501 230.874 70.587 400.658 70.956 130.564 120.299 200.765 90.900 50.716 240.812 70.631 270.939 80.858 150.709 18
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
Virtual MVFusion0.746 110.771 390.819 70.848 60.702 250.865 50.397 680.899 30.699 30.664 60.948 390.588 60.330 90.746 170.851 240.764 80.796 140.704 60.935 100.866 100.728 8
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
Retro-FPN0.744 130.842 190.800 170.767 400.740 130.836 220.541 100.914 10.672 110.626 180.958 90.552 170.272 340.777 40.886 110.696 310.801 100.674 130.941 60.858 150.717 15
EQ-Net0.743 140.620 770.799 180.849 50.730 160.822 340.493 290.897 40.664 120.681 40.955 170.562 130.378 10.760 110.903 40.738 150.801 100.673 140.907 240.877 50.745 3
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
LRPNet0.742 150.816 260.806 140.807 240.752 80.828 280.575 30.839 170.699 30.637 160.954 220.520 260.320 130.755 130.834 280.760 90.772 270.676 110.915 210.862 120.717 15
SAT0.742 150.860 140.765 340.819 160.769 30.848 130.533 120.829 190.663 130.631 170.955 170.586 80.274 320.753 140.896 60.729 160.760 360.666 160.921 170.855 190.733 7
LargeKernel3D0.739 170.909 40.820 60.806 260.740 130.852 100.545 90.826 200.594 380.643 110.955 170.541 190.263 420.723 200.858 190.775 60.767 310.678 100.933 120.848 230.694 23
MinkowskiNetpermissive0.736 180.859 150.818 90.832 130.709 220.840 170.521 180.853 110.660 150.643 110.951 300.544 180.286 270.731 190.893 70.675 380.772 270.683 90.874 490.852 210.727 10
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
IPCA0.731 190.890 80.837 30.864 20.726 180.873 20.530 150.824 220.489 700.647 80.978 20.609 20.336 70.624 360.733 450.758 100.776 250.570 520.949 20.877 50.728 8
SparseConvNet0.725 200.647 730.821 50.846 70.721 200.869 30.533 120.754 410.603 340.614 220.955 170.572 100.325 110.710 210.870 130.724 190.823 20.628 280.934 110.865 110.683 25
PointTransformer++0.725 200.727 590.811 120.819 160.765 40.841 160.502 220.814 270.621 240.623 190.955 170.556 150.284 280.620 370.866 140.781 50.757 390.648 190.932 140.862 120.709 18
MatchingNet0.724 220.812 280.812 110.810 220.735 150.834 230.495 280.860 100.572 460.602 290.954 220.512 280.280 290.757 120.845 260.725 180.780 230.606 380.937 90.851 220.700 21
INS-Conv-semantic0.717 230.751 480.759 370.812 200.704 240.868 40.537 110.842 150.609 300.608 250.953 250.534 200.293 230.616 380.864 150.719 230.793 180.640 230.933 120.845 270.663 30
PointMetaBase0.714 240.835 200.785 250.821 140.684 290.846 140.531 140.865 90.614 250.596 320.953 250.500 310.246 490.674 220.888 90.692 320.764 330.624 290.849 630.844 280.675 27
contrastBoundarypermissive0.705 250.769 420.775 300.809 230.687 280.820 370.439 550.812 280.661 140.591 350.945 480.515 270.171 750.633 330.856 200.720 210.796 140.668 150.889 380.847 250.689 24
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
RFCR0.702 260.889 90.745 460.813 190.672 310.818 410.493 290.815 250.623 220.610 230.947 410.470 400.249 480.594 410.848 250.705 280.779 240.646 200.892 360.823 350.611 45
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 270.825 240.796 190.723 470.716 210.832 240.433 570.816 230.634 200.609 240.969 60.418 650.344 50.559 520.833 290.715 250.808 80.560 560.902 280.847 250.680 26
JSENetpermissive0.699 280.881 110.762 350.821 140.667 320.800 530.522 170.792 330.613 260.607 260.935 670.492 330.205 620.576 460.853 220.691 330.758 380.652 180.872 520.828 320.649 34
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
PicassoNet-IIpermissive0.696 290.704 630.790 230.787 320.709 220.837 200.459 400.815 250.543 550.615 210.956 130.529 220.250 460.551 570.790 370.703 290.799 120.619 330.908 230.848 230.700 21
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
One-Thing-One-Click0.693 300.743 510.794 210.655 700.684 290.822 340.497 270.719 510.622 230.617 200.977 40.447 520.339 60.750 160.664 600.703 290.790 200.596 420.946 40.855 190.647 35
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Feature_GeometricNetpermissive0.690 310.884 100.754 410.795 310.647 370.818 410.422 590.802 310.612 270.604 270.945 480.462 430.189 700.563 510.853 220.726 170.765 320.632 260.904 260.821 380.606 49
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 320.704 630.741 500.754 440.656 330.829 260.501 230.741 460.609 300.548 420.950 340.522 250.371 20.633 330.756 400.715 250.771 290.623 300.861 590.814 400.658 31
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 330.866 130.748 430.819 160.645 390.794 560.450 450.802 310.587 400.604 270.945 480.464 420.201 650.554 540.840 270.723 200.732 480.602 400.907 240.822 370.603 52
KP-FCNN0.684 340.847 180.758 390.784 340.647 370.814 440.473 330.772 360.605 320.594 340.935 670.450 500.181 730.587 420.805 350.690 340.785 220.614 340.882 420.819 390.632 40
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
VACNN++0.684 340.728 580.757 400.776 360.690 260.804 510.464 380.816 230.577 450.587 360.945 480.508 300.276 310.671 230.710 500.663 430.750 420.589 470.881 430.832 310.653 33
Superpoint Network0.683 360.851 170.728 540.800 300.653 350.806 490.468 350.804 290.572 460.602 290.946 450.453 490.239 520.519 630.822 300.689 360.762 350.595 440.895 340.827 330.630 41
PointContrast_LA_SEM0.683 360.757 460.784 260.786 330.639 410.824 320.408 620.775 350.604 330.541 440.934 710.532 210.269 380.552 550.777 380.645 530.793 180.640 230.913 220.824 340.671 28
VI-PointConv0.676 380.770 410.754 410.783 350.621 450.814 440.552 70.758 390.571 480.557 400.954 220.529 220.268 400.530 610.682 550.675 380.719 510.603 390.888 390.833 300.665 29
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 390.789 320.748 430.763 420.635 430.814 440.407 640.747 430.581 440.573 370.950 340.484 340.271 360.607 390.754 410.649 480.774 260.596 420.883 410.823 350.606 49
SALANet0.670 400.816 260.770 320.768 390.652 360.807 480.451 420.747 430.659 160.545 430.924 770.473 390.149 850.571 480.811 340.635 560.746 430.623 300.892 360.794 520.570 62
PointASNLpermissive0.666 410.703 650.781 280.751 460.655 340.830 250.471 340.769 370.474 730.537 460.951 300.475 380.279 300.635 310.698 540.675 380.751 410.553 610.816 700.806 440.703 20
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PointConvpermissive0.666 410.781 340.759 370.699 550.644 400.822 340.475 320.779 340.564 510.504 600.953 250.428 590.203 640.586 440.754 410.661 440.753 400.588 480.902 280.813 420.642 36
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PPCNN++permissive0.663 430.746 490.708 570.722 480.638 420.820 370.451 420.566 770.599 360.541 440.950 340.510 290.313 150.648 280.819 320.616 610.682 660.590 460.869 550.810 430.656 32
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
DCM-Net0.658 440.778 350.702 600.806 260.619 460.813 470.468 350.693 590.494 660.524 520.941 590.449 510.298 210.510 650.821 310.675 380.727 500.568 540.826 680.803 460.637 38
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 450.698 660.743 480.650 710.564 630.820 370.505 210.758 390.631 210.479 640.945 480.480 360.226 530.572 470.774 390.690 340.735 460.614 340.853 620.776 660.597 55
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 460.752 470.734 520.664 680.583 580.815 430.399 670.754 410.639 180.535 480.942 570.470 400.309 170.665 240.539 670.650 470.708 560.635 250.857 610.793 540.642 36
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 470.778 350.731 530.699 550.577 590.829 260.446 470.736 470.477 720.523 540.945 480.454 470.269 380.484 720.749 440.618 590.738 440.599 410.827 670.792 570.621 43
MVPNetpermissive0.641 480.831 210.715 550.671 650.590 540.781 620.394 690.679 610.642 170.553 410.937 640.462 430.256 440.649 270.406 800.626 570.691 630.666 160.877 450.792 570.608 48
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointConv-SFPN0.641 480.776 370.703 590.721 490.557 660.826 290.451 420.672 630.563 520.483 630.943 560.425 620.162 800.644 290.726 460.659 450.709 550.572 510.875 470.786 610.559 67
PointMRNet0.640 500.717 620.701 610.692 580.576 600.801 520.467 370.716 520.563 520.459 690.953 250.429 580.169 770.581 450.854 210.605 620.710 530.550 620.894 350.793 540.575 60
FPConvpermissive0.639 510.785 330.760 360.713 530.603 490.798 540.392 700.534 820.603 340.524 520.948 390.457 450.250 460.538 590.723 480.598 660.696 610.614 340.872 520.799 470.567 64
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 520.797 300.769 330.641 760.590 540.820 370.461 390.537 810.637 190.536 470.947 410.388 720.206 610.656 250.668 580.647 510.732 480.585 490.868 560.793 540.473 85
PointSPNet0.637 530.734 550.692 680.714 520.576 600.797 550.446 470.743 450.598 370.437 740.942 570.403 680.150 840.626 350.800 360.649 480.697 600.557 590.846 640.777 650.563 65
SConv0.636 540.830 220.697 640.752 450.572 620.780 640.445 490.716 520.529 580.530 490.951 300.446 530.170 760.507 670.666 590.636 550.682 660.541 670.886 400.799 470.594 56
Supervoxel-CNN0.635 550.656 710.711 560.719 500.613 470.757 730.444 520.765 380.534 570.566 380.928 750.478 370.272 340.636 300.531 690.664 420.645 760.508 740.864 580.792 570.611 45
joint point-basedpermissive0.634 560.614 780.778 290.667 670.633 440.825 300.420 600.804 290.467 750.561 390.951 300.494 320.291 240.566 490.458 750.579 720.764 330.559 580.838 650.814 400.598 54
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 570.731 560.688 710.675 620.591 530.784 610.444 520.565 780.610 280.492 610.949 370.456 460.254 450.587 420.706 510.599 650.665 720.612 370.868 560.791 600.579 59
PointNet2-SFPN0.631 580.771 390.692 680.672 630.524 700.837 200.440 540.706 570.538 560.446 710.944 540.421 640.219 560.552 550.751 430.591 680.737 450.543 660.901 300.768 680.557 68
APCF-Net0.631 580.742 520.687 730.672 630.557 660.792 590.408 620.665 640.545 540.508 570.952 290.428 590.186 710.634 320.702 520.620 580.706 570.555 600.873 500.798 490.581 58
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
3DSM_DMMF0.631 580.626 750.745 460.801 290.607 480.751 740.506 200.729 500.565 500.491 620.866 910.434 540.197 680.595 400.630 620.709 270.705 580.560 560.875 470.740 760.491 80
FusionAwareConv0.630 610.604 800.741 500.766 410.590 540.747 750.501 230.734 480.503 650.527 500.919 810.454 470.323 120.550 580.420 790.678 370.688 640.544 640.896 330.795 510.627 42
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 620.800 290.625 830.719 500.545 680.806 490.445 490.597 720.448 790.519 550.938 630.481 350.328 100.489 710.499 740.657 460.759 370.592 450.881 430.797 500.634 39
SegGroup_sempermissive0.627 630.818 250.747 450.701 540.602 500.764 700.385 740.629 690.490 680.508 570.931 740.409 670.201 650.564 500.725 470.618 590.692 620.539 680.873 500.794 520.548 71
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 640.830 220.694 660.757 430.563 640.772 680.448 460.647 670.520 600.509 560.949 370.431 570.191 690.496 690.614 630.647 510.672 700.535 700.876 460.783 620.571 61
HPEIN0.618 650.729 570.668 740.647 730.597 520.766 690.414 610.680 600.520 600.525 510.946 450.432 550.215 580.493 700.599 640.638 540.617 810.570 520.897 320.806 440.605 51
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 660.858 160.772 310.489 880.532 690.792 590.404 660.643 680.570 490.507 590.935 670.414 660.046 940.510 650.702 520.602 640.705 580.549 630.859 600.773 670.534 74
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 670.760 440.667 750.649 720.521 710.793 570.457 410.648 660.528 590.434 760.947 410.401 690.153 830.454 740.721 490.648 500.717 520.536 690.904 260.765 690.485 81
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
wsss-transformer0.600 680.634 740.743 480.697 570.601 510.781 620.437 560.585 750.493 670.446 710.933 720.394 700.011 960.654 260.661 610.603 630.733 470.526 710.832 660.761 710.480 82
LAP-D0.594 690.720 600.692 680.637 770.456 800.773 670.391 720.730 490.587 400.445 730.940 610.381 730.288 250.434 770.453 770.591 680.649 740.581 500.777 740.749 750.610 47
DPC0.592 700.720 600.700 620.602 810.480 760.762 720.380 750.713 550.585 430.437 740.940 610.369 750.288 250.434 770.509 730.590 700.639 790.567 550.772 750.755 730.592 57
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 710.766 430.659 780.683 600.470 790.740 770.387 730.620 710.490 680.476 650.922 790.355 780.245 500.511 640.511 720.571 730.643 770.493 780.872 520.762 700.600 53
ROSMRF0.580 720.772 380.707 580.681 610.563 640.764 700.362 770.515 830.465 760.465 680.936 660.427 610.207 600.438 750.577 650.536 760.675 690.486 790.723 810.779 630.524 76
SD-DETR0.576 730.746 490.609 870.445 920.517 720.643 880.366 760.714 540.456 770.468 670.870 900.432 550.264 410.558 530.674 560.586 710.688 640.482 800.739 790.733 780.537 73
SQN_0.1%0.569 740.676 680.696 650.657 690.497 730.779 650.424 580.548 790.515 620.376 810.902 880.422 630.357 40.379 810.456 760.596 670.659 730.544 640.685 840.665 890.556 69
TextureNetpermissive0.566 750.672 700.664 760.671 650.494 740.719 780.445 490.678 620.411 850.396 790.935 670.356 770.225 540.412 790.535 680.565 740.636 800.464 820.794 730.680 860.568 63
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 760.648 720.700 620.770 380.586 570.687 820.333 810.650 650.514 630.475 660.906 850.359 760.223 550.340 830.442 780.422 870.668 710.501 750.708 820.779 630.534 74
Pointnet++ & Featurepermissive0.557 770.735 540.661 770.686 590.491 750.744 760.392 700.539 800.451 780.375 820.946 450.376 740.205 620.403 800.356 830.553 750.643 770.497 760.824 690.756 720.515 77
GMLPs0.538 780.495 880.693 670.647 730.471 780.793 570.300 840.477 840.505 640.358 830.903 870.327 810.081 910.472 730.529 700.448 850.710 530.509 720.746 770.737 770.554 70
PanopticFusion-label0.529 790.491 890.688 710.604 800.386 850.632 890.225 940.705 580.434 820.293 890.815 920.348 790.241 510.499 680.669 570.507 780.649 740.442 880.796 720.602 920.561 66
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 800.676 680.591 900.609 780.442 810.774 660.335 800.597 720.422 840.357 840.932 730.341 800.094 900.298 850.528 710.473 830.676 680.495 770.602 900.721 810.349 92
Online SegFusion0.515 810.607 790.644 810.579 830.434 820.630 900.353 780.628 700.440 800.410 770.762 950.307 830.167 780.520 620.403 810.516 770.565 840.447 860.678 850.701 830.514 78
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 820.558 840.608 880.424 940.478 770.690 810.246 900.586 740.468 740.450 700.911 830.394 700.160 810.438 750.212 900.432 860.541 890.475 810.742 780.727 790.477 83
PCNN0.498 830.559 830.644 810.560 850.420 840.711 800.229 920.414 850.436 810.352 850.941 590.324 820.155 820.238 900.387 820.493 790.529 900.509 720.813 710.751 740.504 79
3DMV0.484 840.484 900.538 920.643 750.424 830.606 930.310 820.574 760.433 830.378 800.796 930.301 840.214 590.537 600.208 910.472 840.507 930.413 910.693 830.602 920.539 72
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 850.577 820.611 860.356 960.321 930.715 790.299 860.376 890.328 920.319 870.944 540.285 860.164 790.216 930.229 880.484 810.545 880.456 840.755 760.709 820.475 84
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 860.679 670.604 890.578 840.380 860.682 830.291 870.106 950.483 710.258 940.920 800.258 900.025 950.231 920.325 840.480 820.560 860.463 830.725 800.666 880.231 96
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 870.474 910.623 840.463 900.366 880.651 860.310 820.389 880.349 900.330 860.937 640.271 880.126 870.285 860.224 890.350 920.577 830.445 870.625 880.723 800.394 88
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
SurfaceConvPF0.442 880.505 870.622 850.380 950.342 910.654 850.227 930.397 870.367 880.276 910.924 770.240 910.198 670.359 820.262 860.366 890.581 820.435 890.640 870.668 870.398 87
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
PNET20.442 880.548 850.548 910.597 820.363 890.628 910.300 840.292 900.374 870.307 880.881 890.268 890.186 710.238 900.204 920.407 880.506 940.449 850.667 860.620 910.462 86
Tangent Convolutionspermissive0.438 900.437 930.646 800.474 890.369 870.645 870.353 780.258 920.282 940.279 900.918 820.298 850.147 860.283 870.294 850.487 800.562 850.427 900.619 890.633 900.352 91
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 910.525 860.647 790.522 860.324 920.488 960.077 970.712 560.353 890.401 780.636 970.281 870.176 740.340 830.565 660.175 960.551 870.398 920.370 960.602 920.361 90
SimConv0.410 920.000 970.782 270.772 370.722 190.838 190.407 640.000 980.000 980.595 330.947 410.000 980.270 370.000 980.000 980.000 980.786 210.621 320.000 980.841 290.621 43
SPLAT Netcopyleft0.393 930.472 920.511 930.606 790.311 940.656 840.245 910.405 860.328 920.197 950.927 760.227 930.000 980.001 970.249 870.271 950.510 910.383 940.593 910.699 840.267 94
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 940.297 950.491 940.432 930.358 900.612 920.274 880.116 940.411 850.265 920.904 860.229 920.079 920.250 880.185 930.320 930.510 910.385 930.548 920.597 950.394 88
PointNet++permissive0.339 950.584 810.478 950.458 910.256 960.360 970.250 890.247 930.278 950.261 930.677 960.183 940.117 880.212 940.145 950.364 900.346 970.232 970.548 920.523 960.252 95
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
SSC-UNetpermissive0.308 960.353 940.290 970.278 970.166 970.553 940.169 960.286 910.147 960.148 970.908 840.182 950.064 930.023 960.018 970.354 910.363 950.345 950.546 940.685 850.278 93
ScanNetpermissive0.306 970.203 960.366 960.501 870.311 940.524 950.211 950.002 970.342 910.189 960.786 940.145 960.102 890.245 890.152 940.318 940.348 960.300 960.460 950.437 970.182 97
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 980.000 970.041 980.172 980.030 980.062 980.001 980.035 960.004 970.051 980.143 980.019 970.003 970.041 950.050 960.003 970.054 980.018 980.005 970.264 980.082 98


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg ap 25%bathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
SoftGroup++0.874 11.000 10.972 90.947 10.839 40.898 80.556 200.913 20.881 80.756 50.828 20.748 40.821 11.000 10.937 30.937 10.887 11.000 10.821 2
Mask3D0.870 21.000 10.985 60.782 260.818 60.938 30.760 30.749 200.923 30.877 20.760 40.785 10.820 21.000 10.912 60.864 190.878 30.983 340.825 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
SoftGrouppermissive0.865 31.000 10.969 100.860 100.860 10.913 50.558 180.899 30.911 40.760 40.828 10.736 50.802 40.981 260.919 50.875 100.877 41.000 10.820 3
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
SPFormerpermissive0.851 41.000 10.994 20.806 200.774 130.942 20.637 100.849 90.859 110.889 10.720 60.730 60.665 101.000 10.911 100.868 170.873 51.000 10.796 4
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
IPCA-Inst0.851 41.000 10.968 110.884 70.842 30.862 200.693 70.812 160.888 70.677 170.783 30.698 80.807 31.000 10.911 100.865 180.865 61.000 10.757 7
SphereSeg0.835 61.000 10.963 140.891 50.794 80.954 10.822 20.710 230.961 20.721 90.693 120.530 260.653 111.000 10.867 180.857 220.859 70.991 310.771 5
GraphCut0.832 71.000 10.922 270.724 360.798 70.902 70.701 60.856 70.859 100.715 100.706 70.748 30.640 211.000 10.934 40.862 200.880 21.000 10.729 10
TopoSeg0.832 71.000 10.981 70.933 20.819 50.826 270.524 250.841 100.811 160.681 160.759 50.687 90.727 50.981 260.911 100.883 80.853 81.000 10.756 8
PBNetpermissive0.825 91.000 10.963 130.837 140.843 20.865 150.822 10.647 300.878 90.733 70.639 200.683 100.650 121.000 10.853 190.870 140.820 91.000 10.744 9
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. Arxiv
DKNet0.815 101.000 10.930 200.844 120.765 160.915 40.534 230.805 180.805 180.807 30.654 140.763 20.650 121.000 10.794 310.881 90.766 131.000 10.758 6
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
RPGN0.806 111.000 10.992 40.789 220.723 270.891 90.650 90.810 170.832 130.665 190.699 100.658 110.700 61.000 10.881 150.832 290.774 110.997 250.613 29
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
HAISpermissive0.803 121.000 10.994 20.820 180.759 170.855 210.554 210.882 40.827 150.615 260.676 130.638 140.646 191.000 10.912 60.797 390.767 120.994 300.726 11
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
Box2Mask0.803 121.000 10.962 150.874 80.707 300.887 120.686 80.598 340.961 10.715 110.694 110.469 310.700 61.000 10.912 60.902 30.753 190.997 250.637 23
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
Mask-Group0.792 141.000 10.968 120.812 190.766 150.864 160.460 280.815 150.888 60.598 280.651 170.639 130.600 250.918 300.941 10.896 40.721 241.000 10.723 12
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
CSC-Pretrained0.791 151.000 10.996 10.829 170.767 140.889 110.600 130.819 140.770 240.594 290.620 230.541 220.700 61.000 10.941 10.889 60.763 151.000 10.526 38
SSTNetpermissive0.789 161.000 10.840 410.888 60.717 280.835 230.717 50.684 280.627 370.724 80.652 160.727 70.600 251.000 10.912 60.822 320.757 181.000 10.691 19
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
GICN0.788 171.000 10.978 80.867 90.781 110.833 240.527 240.824 110.806 170.549 360.596 250.551 190.700 61.000 10.853 190.935 20.733 211.000 10.651 20
DENet0.786 181.000 10.929 210.736 340.750 230.720 420.755 40.934 10.794 190.590 300.561 310.537 230.650 121.000 10.882 130.804 370.789 101.000 10.719 13
SSEC0.781 191.000 10.945 170.763 310.780 120.819 290.601 120.824 110.790 200.638 220.622 220.536 240.600 251.000 10.882 130.790 400.765 141.000 10.698 17
PointGroup0.778 201.000 10.900 310.798 210.715 290.863 170.493 260.706 240.895 50.569 340.701 80.576 170.639 221.000 10.880 160.851 240.719 250.997 250.709 15
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
PE0.776 211.000 10.900 320.860 100.728 260.869 130.400 340.857 60.774 210.568 350.701 90.602 160.646 190.933 290.843 220.890 50.691 320.997 250.709 14
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
DD-UNet+Group0.764 221.000 10.897 340.837 130.753 200.830 260.459 300.824 110.699 310.629 240.653 150.438 340.650 121.000 10.880 160.858 210.690 331.000 10.650 21
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
INS-Conv-instance0.762 231.000 10.923 240.765 290.785 100.905 60.600 130.655 290.646 360.683 150.647 180.530 250.650 121.000 10.824 240.830 300.693 310.944 380.644 22
Dyco3Dcopyleft0.761 241.000 10.935 180.893 40.752 220.863 180.600 130.588 350.742 270.641 210.633 210.546 210.550 320.857 330.789 330.853 230.762 160.987 320.699 16
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
OccuSeg+instance0.742 251.000 10.923 240.785 230.745 240.867 140.557 190.578 380.729 280.670 180.644 190.488 290.577 311.000 10.794 310.830 300.620 401.000 10.550 34
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
RWSeg0.739 261.000 10.899 330.759 320.753 210.823 280.282 380.691 270.658 340.582 330.594 260.547 200.628 231.000 10.795 300.868 160.728 231.000 10.692 18
3D-MPA0.737 271.000 10.933 190.785 230.794 90.831 250.279 400.588 350.695 320.616 250.559 320.556 180.650 121.000 10.809 280.875 110.696 291.000 10.608 31
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
MTML0.731 281.000 10.992 40.779 280.609 390.746 370.308 370.867 50.601 400.607 270.539 350.519 270.550 321.000 10.824 240.869 150.729 221.000 10.616 27
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
OSIS0.725 291.000 10.885 370.653 420.657 360.801 310.576 170.695 260.828 140.698 130.534 360.457 330.500 390.857 330.831 230.841 270.627 391.000 10.619 26
SSEN0.724 301.000 10.926 220.781 270.661 340.845 220.596 160.529 400.764 260.653 200.489 410.461 320.500 390.859 320.765 340.872 130.761 171.000 10.577 32
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
NeuralBF0.718 311.000 10.945 160.901 30.754 190.817 300.460 280.700 250.772 220.688 140.568 300.000 510.500 390.981 260.606 420.872 120.740 201.000 10.614 28
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
Sparse R-CNN0.714 321.000 10.926 230.694 370.699 320.890 100.636 110.516 410.693 330.743 60.588 270.369 370.601 240.594 440.800 290.886 70.676 340.986 330.546 35
SALoss-ResNet0.695 331.000 10.855 390.579 460.589 410.735 400.484 270.588 350.856 120.634 230.571 290.298 380.500 391.000 10.824 240.818 330.702 280.935 420.545 36
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
PanopticFusion-inst0.693 341.000 10.852 400.655 410.616 380.788 320.334 360.763 190.771 230.457 460.555 330.652 120.518 360.857 330.765 340.732 460.631 370.944 380.577 33
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
Occipital-SCS0.688 351.000 10.913 280.730 350.737 250.743 390.442 310.855 80.655 350.546 370.546 340.263 400.508 380.889 310.568 430.771 430.705 270.889 450.625 25
3D-BoNet0.687 361.000 10.887 360.836 150.587 420.643 490.550 220.620 310.724 290.522 410.501 390.243 410.512 371.000 10.751 360.807 360.661 360.909 440.612 30
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
PCJC0.684 371.000 10.895 350.757 330.659 350.862 190.189 470.739 210.606 390.712 120.581 280.515 280.650 120.857 330.357 480.785 410.631 380.889 450.635 24
SPG_WSIS0.678 381.000 10.880 380.836 150.701 310.727 410.273 420.607 330.706 300.541 390.515 380.174 430.600 250.857 330.716 370.846 260.711 261.000 10.506 39
One_Thing_One_Clickpermissive0.675 391.000 10.823 420.782 250.621 370.766 340.211 440.736 220.560 430.586 310.522 370.636 150.453 430.641 430.853 190.850 250.694 300.997 250.411 43
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
SegGroup_inspermissive0.637 401.000 10.923 260.593 450.561 430.746 380.143 490.504 420.766 250.485 440.442 420.372 360.530 350.714 400.815 270.775 420.673 351.000 10.431 42
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
MASCpermissive0.615 410.711 470.802 430.540 470.757 180.777 330.029 500.577 390.588 420.521 420.600 240.436 350.534 340.697 410.616 410.838 280.526 420.980 350.534 37
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
UNet-backbone0.605 421.000 10.909 290.764 300.603 400.704 430.415 330.301 470.548 440.461 450.394 430.267 390.386 450.857 330.649 400.817 340.504 430.959 360.356 46
3D-SISpermissive0.558 431.000 10.773 440.614 440.503 450.691 450.200 450.412 430.498 470.546 380.311 480.103 470.600 250.857 330.382 450.799 380.445 490.938 410.371 44
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
R-PointNet0.544 440.500 500.655 500.661 400.663 330.765 350.432 320.214 490.612 380.584 320.499 400.204 420.286 490.429 470.655 390.650 510.539 410.950 370.499 40
Hier3Dcopyleft0.540 451.000 10.727 450.626 430.467 480.693 440.200 450.412 430.480 480.528 400.318 470.077 500.600 250.688 420.382 450.768 440.472 450.941 400.350 47
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
Region-18class0.497 460.250 520.902 300.689 380.540 440.747 360.276 410.610 320.268 510.489 430.348 440.000 510.243 510.220 500.663 380.814 350.459 470.928 430.496 41
tmp0.474 471.000 10.727 450.433 500.481 470.673 470.022 520.380 450.517 460.436 480.338 460.128 450.343 470.429 470.291 500.728 470.473 440.833 480.300 49
SemRegionNet-20cls0.470 481.000 10.727 450.447 490.481 460.678 460.024 510.380 450.518 450.440 470.339 450.128 450.350 460.429 470.212 510.711 480.465 460.833 480.290 50
ASIS0.422 490.333 510.707 480.676 390.401 490.650 480.350 350.177 500.594 410.376 490.202 490.077 490.404 440.571 450.197 520.674 500.447 480.500 510.260 51
3D-BEVIS0.401 500.667 480.687 490.419 510.137 520.587 500.188 480.235 480.359 500.211 510.093 520.080 480.311 480.571 450.382 450.754 450.300 510.874 470.357 45
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Sgpn_scannet0.390 510.556 490.636 510.493 480.353 500.539 510.271 430.160 510.450 490.359 500.178 500.146 440.250 500.143 510.347 490.698 490.436 500.667 500.331 48
MaskRCNN 2d->3d Proj0.261 520.903 460.081 520.008 520.233 510.175 520.280 390.106 520.150 520.203 520.175 510.480 300.218 520.143 510.542 440.404 520.153 520.393 520.049 52


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 10.512 10.422 140.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 20.481 20.451 100.769 30.656 30.567 30.931 30.395 40.390 40.700 30.534 30.689 80.770 20.574 30.865 60.831 30.675 4
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 190.648 30.463 30.549 20.742 60.676 20.628 20.961 10.420 20.379 50.684 60.381 140.732 20.723 30.599 20.827 120.851 20.634 6
CMX0.613 40.681 70.725 80.502 110.634 50.297 150.478 80.830 20.651 40.537 60.924 40.375 50.315 110.686 50.451 110.714 40.543 180.504 50.894 40.823 40.688 3
DMMF_3d0.605 50.651 80.744 70.782 30.637 40.387 40.536 30.732 70.590 60.540 50.856 170.359 90.306 120.596 110.539 20.627 170.706 40.497 70.785 170.757 150.476 18
MCA-Net0.595 60.533 160.756 60.746 40.590 80.334 70.506 50.670 110.587 70.500 100.905 80.366 80.352 80.601 100.506 50.669 140.648 70.501 60.839 110.769 110.516 17
RFBNet0.592 70.616 90.758 50.659 50.581 90.330 80.469 90.655 140.543 120.524 70.924 40.355 100.336 100.572 130.479 70.671 120.648 70.480 90.814 150.814 50.614 9
FAN_NV_RVC0.586 80.510 170.764 40.079 220.620 70.330 80.494 60.753 40.573 80.556 40.884 120.405 30.303 130.718 20.452 100.672 110.658 50.509 40.898 30.813 60.727 2
DCRedNet0.583 90.682 60.723 90.542 100.510 160.310 120.451 100.668 120.549 110.520 80.920 60.375 50.446 20.528 160.417 120.670 130.577 150.478 100.862 70.806 70.628 8
MIX6D_RVC0.582 100.695 40.687 130.225 170.632 60.328 100.550 10.748 50.623 50.494 130.890 100.350 110.254 190.688 40.454 90.716 30.597 140.489 80.881 50.768 120.575 11
SSMAcopyleft0.577 110.695 40.716 110.439 130.563 110.314 110.444 120.719 80.551 100.503 90.887 110.346 120.348 90.603 90.353 160.709 50.600 120.457 120.901 20.786 80.599 10
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
UNIV_CNP_RVC_UE0.566 120.569 150.686 150.435 140.524 130.294 160.421 150.712 90.543 120.463 150.872 130.320 130.363 70.611 80.477 80.686 90.627 90.443 150.862 70.775 100.639 5
SN_RN152pyrx8_RVCcopyleft0.546 130.572 130.663 170.638 70.518 140.298 140.366 200.633 170.510 150.446 170.864 150.296 160.267 160.542 150.346 170.704 60.575 160.431 160.853 100.766 130.630 7
UDSSEG_RVC0.545 140.610 110.661 180.588 80.556 120.268 180.482 70.642 160.572 90.475 140.836 190.312 140.367 60.630 70.189 190.639 160.495 200.452 130.826 130.756 160.541 13
segfomer with 6d0.542 150.594 120.687 130.146 200.579 100.308 130.515 40.703 100.472 170.498 110.868 140.369 70.282 140.589 120.390 130.701 70.556 170.416 180.860 90.759 140.539 15
FuseNetpermissive0.535 160.570 140.681 160.182 180.512 150.290 170.431 130.659 130.504 160.495 120.903 90.308 150.428 30.523 170.365 150.676 100.621 110.470 110.762 180.779 90.541 13
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 170.613 100.722 100.418 150.358 220.337 60.370 190.479 200.443 180.368 200.907 70.207 190.213 210.464 200.525 40.618 180.657 60.450 140.788 160.721 190.408 21
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 180.481 200.612 190.579 90.456 180.343 50.384 170.623 180.525 140.381 190.845 180.254 180.264 180.557 140.182 200.581 200.598 130.429 170.760 190.661 210.446 20
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 190.505 180.709 120.092 210.427 190.241 190.411 160.654 150.385 220.457 160.861 160.053 220.279 150.503 180.481 60.645 150.626 100.365 200.748 200.725 180.529 16
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 200.490 190.581 200.289 160.507 170.067 220.379 180.610 190.417 200.435 180.822 210.278 170.267 160.503 180.228 180.616 190.533 190.375 190.820 140.729 170.560 12
Enet (reimpl)0.376 210.264 220.452 220.452 120.365 200.181 200.143 220.456 210.409 210.346 210.769 220.164 200.218 200.359 210.123 220.403 220.381 220.313 220.571 210.685 200.472 19
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 220.293 210.521 210.657 60.361 210.161 210.250 210.004 220.440 190.183 220.836 190.125 210.060 220.319 220.132 210.417 210.412 210.344 210.541 220.427 220.109 22
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
DMMF0.003 230.000 230.005 230.000 230.000 230.037 230.001 230.000 230.001 230.005 230.003 230.000 230.000 230.000 230.000 230.000 230.002 230.001 230.000 230.006 230.000 23


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
UniDet_RVC0.205 10.381 10.323 10.037 10.226 10.177 10.063 10.277 10.120 10.067 10.131 10.074 20.317 10.080 10.235 10.289 10.141 10.678 10.080 1
MaskRCNN_ScanNetpermissive0.119 20.129 20.212 20.002 20.112 20.148 20.014 20.205 20.044 20.066 20.078 20.095 10.142 20.030 20.128 20.139 20.080 20.459 20.057 2
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
multi-taskpermissive0.700 10.500 11.000 10.882 20.500 21.000 11.000 10.500 21.000 11.000 10.778 10.000 20.938 10.000 2
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.691 20.500 10.938 20.824 31.000 11.000 10.500 21.000 10.857 20.500 20.556 30.000 20.812 20.500 1
SE-ResNeXt-SSMA0.498 30.000 40.812 30.941 10.500 20.500 30.500 20.500 20.429 40.500 20.667 20.500 10.625 30.000 2
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.353 40.250 30.812 30.529 40.500 20.500 30.000 40.500 20.571 30.000 40.556 30.000 20.375 40.000 2