ScanNet200 3D Semantic Label Benchmark
This table lists the benchmark results for the ScanNet200 3D semantic label scenario.
Method | Info | avg iou | head iou | common iou | tail iou | alarm clock | armchair | backpack | bag | ball | bar | basket | bathroom cabinet | bathroom counter | bathroom stall | bathroom stall door | bathroom vanity | bathtub | bed | bench | bicycle | bin | blackboard | blanket | blinds | board | book | bookshelf | bottle | bowl | box | broom | bucket | bulletin board | cabinet | calendar | candle | cart | case of water bottles | cd case | ceiling | ceiling light | chair | clock | closet | closet door | closet rod | closet wall | clothes | clothes dryer | coat rack | coffee kettle | coffee maker | coffee table | column | computer tower | container | copier | couch | counter | crate | cup | curtain | cushion | decoration | desk | dining table | dish rack | dishwasher | divider | door | doorframe | dresser | dumbbell | dustpan | end table | fan | file cabinet | fire alarm | fire extinguisher | fireplace | floor | folded chair | furniture | guitar | guitar case | hair dryer | handicap bar | hat | headphones | ironing board | jacket | keyboard | keyboard piano | kitchen cabinet | kitchen counter | ladder | lamp | laptop | laundry basket | laundry detergent | laundry hamper | ledge | light | light switch | luggage | machine | mailbox | mat | mattress | microwave | mini fridge | mirror | monitor | mouse | music stand | nightstand | object | office chair | ottoman | oven | paper | paper bag | paper cutter | paper towel dispenser | paper towel roll | person | piano | picture | pillar | pillow | pipe | plant | plate | plunger | poster | potted plant | power outlet | power strip | printer | projector | projector screen | purse | rack | radiator | rail | range hood | recycling bin | refrigerator | scale | seat | shelf | shoe | shower | shower curtain | shower curtain rod | shower door | shower floor | shower head | shower wall | sign | sink | soap dish | soap dispenser | sofa chair | speaker | stair rail | stairs | stand | stool | storage bin | storage container | storage organizer | stove | structure | stuffed animal | suitcase | table | telephone | tissue box | toaster | toaster oven | toilet | toilet paper | toilet paper dispenser | toilet paper holder | toilet seat cover dispenser | towel | trash bin | trash can | tray | tube | tv | tv stand | vacuum cleaner | vent | wall | wardrobe | washing machine | water bottle | water cooler | water pitcher | whiteboard | window | windowsill |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ||
DITR | 0.449 1 | 0.629 1 | 0.392 1 | 0.289 1 | 0.650 1 | 0.168 2 | 0.862 1 | 0.000 3 | 0.313 3 | 0.000 1 | 0.580 1 | 0.568 2 | 0.564 3 | 0.766 7 | 0.867 1 | 0.238 5 | 0.949 1 | 0.000 3 | 0.866 3 | 0.300 1 | 0.000 9 | 0.664 1 | 0.482 1 | 0.508 12 | 0.317 1 | 0.420 1 | 0.551 2 | 0.000 1 | 0.000 3 | 0.486 2 | 0.519 1 | 0.662 4 | 0.000 1 | 0.385 1 | 0.000 3 | 0.901 3 | 0.079 9 | 0.727 1 | 0.000 7 | 0.160 3 | 0.606 3 | 0.417 4 | 0.967 2 | 0.000 1 | 0.000 2 | 0.498 5 | 0.596 11 | 0.130 2 | 0.728 3 | 0.998 1 | 0.805 1 | 0.000 17 | 0.314 1 | 0.934 2 | 0.000 1 | 0.278 4 | 0.636 1 | 0.000 7 | 0.403 12 | 0.367 1 | 0.741 2 | 0.484 1 | 0.500 2 | 1.000 1 | 0.113 12 | 0.828 1 | 0.815 1 | 0.000 7 | 0.733 2 | 0.969 4 | 0.374 2 | 0.000 1 | 0.579 1 | 1.000 1 | 0.230 5 | 0.617 5 | 0.983 1 | 0.729 1 | 0.423 4 | 0.855 1 | 0.508 6 | 0.622 2 | 0.018 3 | 0.000 1 | 0.591 3 | 0.034 4 | 0.028 10 | 0.066 11 | 0.869 1 | 0.904 7 | 0.334 2 | 0.651 5 | 0.716 1 | 0.514 2 | 0.871 6 | 0.315 3 | 0.000 1 | 0.664 3 | 0.128 3 | 0.014 10 | 0.000 4 | 0.000 1 | 0.392 2 | 0.851 2 | 0.817 1 | 0.153 3 | 0.823 1 | 0.991 1 | 0.318 3 | 0.680 1 | 0.134 3 | 0.913 1 | 0.157 2 | 0.448 4 | 0.000 1 | 0.000 8 | 0.000 3 | 0.826 1 | 0.978 1 | 0.091 6 | 0.000 1 | 0.660 4 | 0.647 3 | 0.571 2 | 0.804 4 | 0.001 9 | 0.000 1 | 0.480 3 | 0.700 1 | 0.421 5 | 0.947 1 | 0.433 14 | 0.411 3 | 0.148 6 | 0.262 5 | 0.000 1 | 0.849 1 | 0.709 6 | 0.138 10 | 0.150 2 | 0.714 3 | 0.889 1 | 0.000 1 | 0.698 1 | 0.222 4 | 0.000 7 | 0.000 1 | 0.720 2 | 0.000 2 | 0.000 1 | 0.805 1 | 0.600 1 | 0.642 3 | 0.268 9 | 0.904 1 | 0.982 2 | 0.477 1 | 0.632 6 | 0.718 2 | 0.139 9 | 0.776 2 | 0.000 1 | 0.178 1 | 0.886 1 | 0.962 1 | 0.839 8 | 0.000 1 | 0.851 2 | 0.043 12 | 0.869 4 | 0.000 1 | 0.710 1 | 0.315 6 | 0.348 3 | 0.753 2 | 0.397 8 | |||||||||||||||||||||||||||||
Karim Abou Zeid, Kadir Yilmaz, Daan de Geus, Alexander Hermans, David Adrian, Timm Linder, Bastian Leibe: DINO in the Room: Leveraging 2D Foundation Models for 3D Segmentation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PTv3 ScanNet200 | 0.393 3 | 0.592 3 | 0.330 2 | 0.216 3 | 0.520 3 | 0.109 5 | 0.108 16 | 0.000 3 | 0.337 1 | 0.000 1 | 0.310 12 | 0.394 9 | 0.494 11 | 0.753 9 | 0.848 2 | 0.256 3 | 0.717 8 | 0.000 3 | 0.842 4 | 0.192 5 | 0.065 3 | 0.449 10 | 0.346 4 | 0.546 6 | 0.190 13 | 0.000 9 | 0.384 7 | 0.000 1 | 0.000 3 | 0.218 4 | 0.505 2 | 0.791 3 | 0.000 1 | 0.136 4 | 0.000 3 | 0.903 2 | 0.073 12 | 0.687 6 | 0.000 7 | 0.168 2 | 0.551 5 | 0.387 7 | 0.941 3 | 0.000 1 | 0.000 2 | 0.397 12 | 0.654 3 | 0.000 10 | 0.714 5 | 0.759 15 | 0.752 7 | 0.118 4 | 0.264 4 | 0.926 3 | 0.000 1 | 0.048 6 | 0.575 5 | 0.000 7 | 0.597 2 | 0.366 2 | 0.755 1 | 0.469 2 | 0.474 3 | 0.798 2 | 0.140 10 | 0.617 3 | 0.692 7 | 0.000 7 | 0.592 4 | 0.971 2 | 0.188 4 | 0.000 1 | 0.133 9 | 0.593 2 | 0.349 1 | 0.650 3 | 0.717 8 | 0.699 3 | 0.455 2 | 0.790 2 | 0.523 4 | 0.636 1 | 0.301 1 | 0.000 1 | 0.622 2 | 0.000 11 | 0.017 15 | 0.259 3 | 0.000 4 | 0.921 3 | 0.337 1 | 0.733 2 | 0.210 4 | 0.514 2 | 0.860 8 | 0.407 1 | 0.000 1 | 0.688 2 | 0.109 8 | 0.000 14 | 0.000 4 | 0.000 1 | 0.151 5 | 0.671 8 | 0.782 2 | 0.115 13 | 0.641 2 | 0.903 2 | 0.349 1 | 0.616 4 | 0.088 7 | 0.832 8 | 0.000 6 | 0.480 2 | 0.000 1 | 0.428 1 | 0.000 3 | 0.497 10 | 0.000 5 | 0.000 9 | 0.000 1 | 0.662 3 | 0.690 2 | 0.612 1 | 0.828 1 | 0.575 1 | 0.000 1 | 0.404 7 | 0.644 2 | 0.325 7 | 0.887 4 | 0.728 1 | 0.009 16 | 0.134 7 | 0.026 17 | 0.000 1 | 0.761 3 | 0.731 4 | 0.172 6 | 0.077 4 | 0.528 8 | 0.727 7 | 0.000 1 | 0.603 5 | 0.220 5 | 0.022 3 | 0.000 1 | 0.740 1 | 0.000 2 | 0.000 1 | 0.661 4 | 0.586 2 | 0.566 4 | 0.436 4 | 0.531 5 | 0.978 3 | 0.457 2 | 0.708 3 | 0.583 6 | 0.141 7 | 0.748 3 | 0.000 1 | 0.026 5 | 0.822 3 | 0.871 4 | 0.879 5 | 0.000 1 | 0.851 2 | 0.405 2 | 0.914 1 | 0.000 1 | 0.682 3 | 0.000 15 | 0.281 4 | 0.738 3 | 0.463 6 | |||||||||||||||||||||||||||||
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OctFormer ScanNet200 | ![]() | 0.326 13 | 0.539 10 | 0.265 10 | 0.131 12 | 0.499 6 | 0.110 4 | 0.522 3 | 0.000 3 | 0.000 7 | 0.000 1 | 0.318 11 | 0.427 7 | 0.455 15 | 0.743 11 | 0.765 13 | 0.175 11 | 0.842 4 | 0.000 3 | 0.828 5 | 0.204 4 | 0.033 6 | 0.429 11 | 0.335 6 | 0.601 2 | 0.312 3 | 0.000 9 | 0.357 10 | 0.000 1 | 0.000 3 | 0.047 11 | 0.423 9 | 0.000 11 | 0.000 1 | 0.105 9 | 0.000 3 | 0.873 9 | 0.079 9 | 0.670 12 | 0.000 7 | 0.117 5 | 0.471 13 | 0.432 3 | 0.829 11 | 0.000 1 | 0.000 2 | 0.584 2 | 0.417 17 | 0.089 6 | 0.684 9 | 0.837 12 | 0.705 16 | 0.021 12 | 0.178 11 | 0.892 6 | 0.000 1 | 0.028 8 | 0.505 13 | 0.000 7 | 0.457 9 | 0.200 14 | 0.662 4 | 0.412 9 | 0.244 15 | 0.496 8 | 0.000 17 | 0.451 8 | 0.626 9 | 0.000 7 | 0.102 11 | 0.943 9 | 0.138 13 | 0.000 1 | 0.000 12 | 0.149 8 | 0.291 3 | 0.534 9 | 0.722 7 | 0.632 7 | 0.331 10 | 0.253 14 | 0.453 11 | 0.487 11 | 0.000 4 | 0.000 1 | 0.479 6 | 0.000 11 | 0.022 13 | 0.000 12 | 0.000 4 | 0.900 10 | 0.128 11 | 0.684 3 | 0.164 10 | 0.413 4 | 0.854 10 | 0.000 12 | 0.000 1 | 0.512 16 | 0.074 15 | 0.003 11 | 0.000 4 | 0.000 1 | 0.000 11 | 0.469 15 | 0.613 12 | 0.132 8 | 0.529 7 | 0.871 3 | 0.227 16 | 0.582 7 | 0.026 17 | 0.787 12 | 0.000 6 | 0.339 15 | 0.000 1 | 0.000 8 | 0.000 3 | 0.626 7 | 0.000 5 | 0.029 8 | 0.000 1 | 0.587 9 | 0.612 8 | 0.411 7 | 0.724 10 | 0.000 10 | 0.000 1 | 0.407 6 | 0.552 5 | 0.513 3 | 0.849 10 | 0.655 4 | 0.408 4 | 0.000 11 | 0.296 2 | 0.000 1 | 0.686 15 | 0.645 14 | 0.145 8 | 0.022 8 | 0.414 14 | 0.633 11 | 0.000 1 | 0.637 2 | 0.224 3 | 0.000 7 | 0.000 1 | 0.650 8 | 0.000 2 | 0.000 1 | 0.622 9 | 0.535 12 | 0.343 12 | 0.483 3 | 0.230 13 | 0.943 10 | 0.289 10 | 0.618 7 | 0.596 5 | 0.140 8 | 0.679 8 | 0.000 1 | 0.022 6 | 0.783 11 | 0.620 12 | 0.906 1 | 0.000 1 | 0.806 8 | 0.137 10 | 0.865 5 | 0.000 1 | 0.378 12 | 0.000 15 | 0.168 15 | 0.680 8 | 0.227 13 | ||||||||||||||||||||||||||||
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
L3DETR-ScanNet_200 | 0.336 8 | 0.533 11 | 0.279 6 | 0.155 10 | 0.508 5 | 0.073 11 | 0.101 17 | 0.000 3 | 0.058 6 | 0.000 1 | 0.294 14 | 0.233 14 | 0.548 4 | 0.927 1 | 0.788 10 | 0.264 2 | 0.463 11 | 0.000 3 | 0.638 12 | 0.098 13 | 0.014 7 | 0.411 12 | 0.226 13 | 0.525 10 | 0.225 9 | 0.010 7 | 0.397 6 | 0.000 1 | 0.000 3 | 0.192 6 | 0.380 14 | 0.598 6 | 0.000 1 | 0.117 6 | 0.000 3 | 0.883 6 | 0.082 8 | 0.689 4 | 0.000 7 | 0.032 17 | 0.549 6 | 0.417 4 | 0.910 5 | 0.000 1 | 0.000 2 | 0.448 8 | 0.613 9 | 0.000 10 | 0.697 7 | 0.960 3 | 0.759 4 | 0.158 2 | 0.293 3 | 0.883 7 | 0.000 1 | 0.312 3 | 0.583 4 | 0.079 4 | 0.422 11 | 0.068 17 | 0.660 7 | 0.418 7 | 0.298 12 | 0.430 12 | 0.114 11 | 0.526 5 | 0.776 3 | 0.051 3 | 0.679 3 | 0.946 6 | 0.152 7 | 0.000 1 | 0.183 8 | 0.000 15 | 0.211 8 | 0.511 10 | 0.409 16 | 0.565 12 | 0.355 8 | 0.448 8 | 0.512 5 | 0.557 3 | 0.000 4 | 0.000 1 | 0.420 9 | 0.000 11 | 0.007 17 | 0.104 6 | 0.000 4 | 0.125 17 | 0.330 3 | 0.514 15 | 0.146 12 | 0.321 13 | 0.860 8 | 0.174 11 | 0.000 1 | 0.629 6 | 0.075 14 | 0.000 14 | 0.000 4 | 0.000 1 | 0.002 10 | 0.671 8 | 0.712 7 | 0.141 6 | 0.339 12 | 0.856 4 | 0.261 12 | 0.529 10 | 0.067 10 | 0.835 6 | 0.000 6 | 0.369 12 | 0.000 1 | 0.259 2 | 0.000 3 | 0.629 6 | 0.000 5 | 0.487 1 | 0.000 1 | 0.579 11 | 0.646 4 | 0.107 17 | 0.720 11 | 0.122 7 | 0.000 1 | 0.333 14 | 0.505 10 | 0.303 9 | 0.908 3 | 0.503 13 | 0.565 2 | 0.074 8 | 0.324 1 | 0.000 1 | 0.740 8 | 0.661 11 | 0.109 13 | 0.000 10 | 0.427 13 | 0.563 17 | 0.000 1 | 0.579 11 | 0.108 8 | 0.000 7 | 0.000 1 | 0.664 6 | 0.000 2 | 0.000 1 | 0.641 7 | 0.539 11 | 0.416 7 | 0.515 2 | 0.256 11 | 0.940 12 | 0.312 6 | 0.209 17 | 0.620 3 | 0.138 11 | 0.636 11 | 0.000 1 | 0.000 12 | 0.775 13 | 0.861 5 | 0.765 12 | 0.000 1 | 0.801 9 | 0.119 11 | 0.860 8 | 0.000 1 | 0.687 2 | 0.001 14 | 0.192 14 | 0.679 9 | 0.699 1 | |||||||||||||||||||||||||||||
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
BFANet ScanNet200 | ![]() | 0.360 5 | 0.553 7 | 0.293 5 | 0.193 5 | 0.483 10 | 0.096 6 | 0.266 6 | 0.000 3 | 0.000 7 | 0.000 1 | 0.298 13 | 0.255 12 | 0.661 1 | 0.810 5 | 0.810 3 | 0.194 10 | 0.785 7 | 0.000 3 | 0.000 17 | 0.161 6 | 0.000 9 | 0.494 9 | 0.382 3 | 0.574 3 | 0.258 5 | 0.000 9 | 0.372 9 | 0.000 1 | 0.000 3 | 0.043 14 | 0.436 8 | 0.000 11 | 0.000 1 | 0.239 3 | 0.000 3 | 0.901 3 | 0.105 1 | 0.689 4 | 0.025 4 | 0.128 4 | 0.614 2 | 0.436 1 | 0.493 17 | 0.000 1 | 0.000 2 | 0.526 4 | 0.546 13 | 0.109 5 | 0.651 14 | 0.953 5 | 0.753 6 | 0.101 5 | 0.143 13 | 0.897 5 | 0.000 1 | 0.431 1 | 0.469 15 | 0.000 7 | 0.522 6 | 0.337 5 | 0.661 6 | 0.459 3 | 0.409 6 | 0.666 5 | 0.102 14 | 0.508 6 | 0.757 4 | 0.000 7 | 0.060 14 | 0.970 3 | 0.497 1 | 0.000 1 | 0.376 3 | 0.511 3 | 0.262 4 | 0.688 2 | 0.921 2 | 0.617 10 | 0.321 12 | 0.590 6 | 0.491 9 | 0.556 4 | 0.000 4 | 0.000 1 | 0.481 5 | 0.093 1 | 0.043 3 | 0.284 2 | 0.000 4 | 0.875 14 | 0.135 9 | 0.669 4 | 0.124 13 | 0.394 6 | 0.849 11 | 0.298 4 | 0.000 1 | 0.476 17 | 0.088 13 | 0.042 7 | 0.000 4 | 0.000 1 | 0.254 4 | 0.653 10 | 0.741 6 | 0.215 1 | 0.573 5 | 0.852 5 | 0.266 10 | 0.654 2 | 0.056 12 | 0.835 6 | 0.000 6 | 0.492 1 | 0.000 1 | 0.000 8 | 0.000 3 | 0.612 9 | 0.000 5 | 0.000 9 | 0.000 1 | 0.616 6 | 0.469 17 | 0.460 5 | 0.698 14 | 0.516 2 | 0.000 1 | 0.378 8 | 0.563 4 | 0.476 4 | 0.863 5 | 0.574 9 | 0.330 6 | 0.000 11 | 0.282 3 | 0.000 1 | 0.760 4 | 0.710 5 | 0.233 1 | 0.000 10 | 0.641 5 | 0.814 2 | 0.000 1 | 0.585 10 | 0.053 11 | 0.000 7 | 0.000 1 | 0.629 10 | 0.000 2 | 0.000 1 | 0.678 3 | 0.528 13 | 0.534 5 | 0.129 14 | 0.596 4 | 0.973 4 | 0.264 12 | 0.772 2 | 0.526 10 | 0.139 9 | 0.707 4 | 0.000 1 | 0.000 12 | 0.764 14 | 0.591 16 | 0.848 6 | 0.000 1 | 0.827 4 | 0.338 3 | 0.806 12 | 0.000 1 | 0.568 9 | 0.151 10 | 0.358 2 | 0.659 10 | 0.510 4 | ||||||||||||||||||||||||||||
Weiguang Zhao, Rui Zhang, Qiufeng Wang, Guangliang Cheng, Kaizhu Huang: BFANet: Revisiting 3D Semantic Segmentation with Boundary Feature Analysis. CVPR 2025 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PonderV2 ScanNet200 | 0.346 6 | 0.552 8 | 0.270 8 | 0.175 9 | 0.497 7 | 0.070 12 | 0.239 7 | 0.000 3 | 0.000 7 | 0.000 1 | 0.232 17 | 0.412 8 | 0.584 2 | 0.842 3 | 0.804 5 | 0.212 7 | 0.540 10 | 0.000 3 | 0.433 16 | 0.106 10 | 0.000 9 | 0.590 5 | 0.290 12 | 0.548 5 | 0.243 7 | 0.000 9 | 0.356 11 | 0.000 1 | 0.000 3 | 0.062 10 | 0.398 13 | 0.441 10 | 0.000 1 | 0.104 10 | 0.000 3 | 0.888 5 | 0.076 11 | 0.682 9 | 0.030 3 | 0.094 7 | 0.491 11 | 0.351 12 | 0.869 10 | 0.000 1 | 0.063 1 | 0.403 11 | 0.700 2 | 0.000 10 | 0.660 13 | 0.881 9 | 0.761 3 | 0.050 8 | 0.186 10 | 0.852 13 | 0.000 1 | 0.007 9 | 0.570 8 | 0.100 2 | 0.565 3 | 0.326 6 | 0.641 10 | 0.431 6 | 0.290 14 | 0.621 6 | 0.259 3 | 0.408 11 | 0.622 10 | 0.125 2 | 0.082 12 | 0.950 5 | 0.179 5 | 0.000 1 | 0.263 6 | 0.424 5 | 0.193 9 | 0.558 7 | 0.880 4 | 0.545 13 | 0.375 7 | 0.727 3 | 0.445 12 | 0.499 8 | 0.000 4 | 0.000 1 | 0.475 7 | 0.002 9 | 0.034 6 | 0.083 8 | 0.000 4 | 0.924 2 | 0.290 4 | 0.636 6 | 0.115 14 | 0.400 5 | 0.874 4 | 0.186 10 | 0.000 1 | 0.611 8 | 0.128 3 | 0.113 2 | 0.000 4 | 0.000 1 | 0.000 11 | 0.584 12 | 0.636 10 | 0.103 14 | 0.385 10 | 0.843 6 | 0.283 4 | 0.603 6 | 0.080 8 | 0.825 10 | 0.000 6 | 0.377 10 | 0.000 1 | 0.000 8 | 0.000 3 | 0.457 11 | 0.000 5 | 0.000 9 | 0.000 1 | 0.574 12 | 0.608 9 | 0.481 4 | 0.792 5 | 0.394 5 | 0.000 1 | 0.357 10 | 0.503 11 | 0.261 10 | 0.817 13 | 0.504 12 | 0.304 7 | 0.472 4 | 0.115 11 | 0.000 1 | 0.750 7 | 0.677 9 | 0.202 2 | 0.000 10 | 0.509 9 | 0.729 6 | 0.000 1 | 0.519 12 | 0.000 14 | 0.000 7 | 0.000 1 | 0.620 12 | 0.000 2 | 0.000 1 | 0.660 6 | 0.560 7 | 0.486 6 | 0.384 6 | 0.346 10 | 0.952 5 | 0.247 14 | 0.667 4 | 0.436 12 | 0.269 3 | 0.691 6 | 0.000 1 | 0.010 7 | 0.787 10 | 0.889 3 | 0.880 4 | 0.000 1 | 0.810 7 | 0.336 4 | 0.860 8 | 0.000 1 | 0.606 8 | 0.009 11 | 0.248 9 | 0.681 7 | 0.392 9 | |||||||||||||||||||||||||||||
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OA-CNN-L_ScanNet200 | 0.333 11 | 0.558 5 | 0.269 9 | 0.124 13 | 0.448 14 | 0.080 9 | 0.272 5 | 0.000 3 | 0.000 7 | 0.000 1 | 0.342 8 | 0.515 4 | 0.524 7 | 0.713 13 | 0.789 9 | 0.158 12 | 0.384 12 | 0.000 3 | 0.806 6 | 0.125 7 | 0.000 9 | 0.496 8 | 0.332 7 | 0.498 14 | 0.227 8 | 0.024 6 | 0.474 3 | 0.000 1 | 0.003 2 | 0.071 9 | 0.487 3 | 0.000 11 | 0.000 1 | 0.110 8 | 0.000 3 | 0.876 7 | 0.013 17 | 0.703 3 | 0.000 7 | 0.076 9 | 0.473 12 | 0.355 11 | 0.906 6 | 0.000 1 | 0.000 2 | 0.476 6 | 0.706 1 | 0.000 10 | 0.672 10 | 0.835 13 | 0.748 9 | 0.015 13 | 0.223 7 | 0.860 11 | 0.000 1 | 0.000 11 | 0.572 7 | 0.000 7 | 0.509 7 | 0.313 7 | 0.662 4 | 0.398 13 | 0.396 8 | 0.411 13 | 0.276 2 | 0.527 4 | 0.711 5 | 0.000 7 | 0.076 13 | 0.946 6 | 0.166 6 | 0.000 1 | 0.022 10 | 0.160 7 | 0.183 13 | 0.493 13 | 0.699 9 | 0.637 6 | 0.403 6 | 0.330 12 | 0.406 13 | 0.526 6 | 0.024 2 | 0.000 1 | 0.392 11 | 0.000 11 | 0.016 16 | 0.000 12 | 0.196 3 | 0.915 5 | 0.112 12 | 0.557 10 | 0.197 6 | 0.352 10 | 0.877 3 | 0.000 12 | 0.000 1 | 0.592 12 | 0.103 11 | 0.000 14 | 0.067 1 | 0.000 1 | 0.089 7 | 0.735 7 | 0.625 11 | 0.130 9 | 0.568 6 | 0.836 7 | 0.271 8 | 0.534 9 | 0.043 13 | 0.799 11 | 0.001 5 | 0.445 5 | 0.000 1 | 0.000 8 | 0.024 2 | 0.661 4 | 0.000 5 | 0.262 3 | 0.000 1 | 0.591 8 | 0.517 13 | 0.373 8 | 0.788 7 | 0.021 8 | 0.000 1 | 0.455 4 | 0.517 9 | 0.320 8 | 0.823 12 | 0.200 16 | 0.001 17 | 0.150 5 | 0.100 12 | 0.000 1 | 0.736 9 | 0.668 10 | 0.103 14 | 0.052 6 | 0.662 4 | 0.720 8 | 0.000 1 | 0.602 6 | 0.112 7 | 0.002 6 | 0.000 1 | 0.637 9 | 0.000 2 | 0.000 1 | 0.621 10 | 0.569 5 | 0.398 9 | 0.412 5 | 0.234 12 | 0.949 6 | 0.363 5 | 0.492 14 | 0.495 11 | 0.251 4 | 0.665 9 | 0.000 1 | 0.001 11 | 0.805 7 | 0.833 6 | 0.794 11 | 0.000 1 | 0.821 5 | 0.314 5 | 0.843 11 | 0.000 1 | 0.560 10 | 0.245 7 | 0.262 6 | 0.713 4 | 0.370 11 | |||||||||||||||||||||||||||||
CeCo | 0.340 7 | 0.551 9 | 0.247 13 | 0.181 6 | 0.475 12 | 0.057 15 | 0.142 12 | 0.000 3 | 0.000 7 | 0.000 1 | 0.387 6 | 0.463 6 | 0.499 9 | 0.924 2 | 0.774 11 | 0.213 6 | 0.257 13 | 0.000 3 | 0.546 15 | 0.100 11 | 0.006 8 | 0.615 2 | 0.177 17 | 0.534 7 | 0.246 6 | 0.000 9 | 0.400 5 | 0.000 1 | 0.338 1 | 0.006 16 | 0.484 5 | 0.609 5 | 0.000 1 | 0.083 11 | 0.000 3 | 0.873 9 | 0.089 5 | 0.661 14 | 0.000 7 | 0.048 15 | 0.560 4 | 0.408 6 | 0.892 8 | 0.000 1 | 0.000 2 | 0.586 1 | 0.616 8 | 0.000 10 | 0.692 8 | 0.900 8 | 0.721 12 | 0.162 1 | 0.228 6 | 0.860 11 | 0.000 1 | 0.000 11 | 0.575 5 | 0.083 3 | 0.550 4 | 0.347 4 | 0.624 13 | 0.410 10 | 0.360 9 | 0.740 3 | 0.109 13 | 0.321 15 | 0.660 8 | 0.000 7 | 0.121 9 | 0.939 13 | 0.143 8 | 0.000 1 | 0.400 2 | 0.003 13 | 0.190 11 | 0.564 6 | 0.652 10 | 0.615 11 | 0.421 5 | 0.304 13 | 0.579 1 | 0.547 5 | 0.000 4 | 0.000 1 | 0.296 14 | 0.000 11 | 0.030 9 | 0.096 7 | 0.000 4 | 0.916 4 | 0.037 13 | 0.551 12 | 0.171 9 | 0.376 7 | 0.865 7 | 0.286 5 | 0.000 1 | 0.633 5 | 0.102 12 | 0.027 8 | 0.011 3 | 0.000 1 | 0.000 11 | 0.474 14 | 0.742 5 | 0.133 7 | 0.311 13 | 0.824 8 | 0.242 13 | 0.503 14 | 0.068 9 | 0.828 9 | 0.000 6 | 0.429 7 | 0.000 1 | 0.063 5 | 0.000 3 | 0.781 2 | 0.000 5 | 0.000 9 | 0.000 1 | 0.665 2 | 0.633 6 | 0.450 6 | 0.818 2 | 0.000 10 | 0.000 1 | 0.429 5 | 0.532 7 | 0.226 13 | 0.825 11 | 0.510 11 | 0.377 5 | 0.709 2 | 0.079 14 | 0.000 1 | 0.753 5 | 0.683 8 | 0.102 15 | 0.063 5 | 0.401 16 | 0.620 13 | 0.000 1 | 0.619 3 | 0.000 14 | 0.000 7 | 0.000 1 | 0.595 13 | 0.000 2 | 0.000 1 | 0.345 14 | 0.564 6 | 0.411 8 | 0.603 1 | 0.384 8 | 0.945 9 | 0.266 11 | 0.643 5 | 0.367 14 | 0.304 1 | 0.663 10 | 0.000 1 | 0.010 7 | 0.726 15 | 0.767 7 | 0.898 3 | 0.000 1 | 0.784 13 | 0.435 1 | 0.861 7 | 0.000 1 | 0.447 11 | 0.000 15 | 0.257 7 | 0.656 11 | 0.377 10 | |||||||||||||||||||||||||||||
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PPT-SpUNet-F.T. | 0.332 12 | 0.556 6 | 0.270 7 | 0.123 14 | 0.519 4 | 0.091 7 | 0.349 4 | 0.000 3 | 0.000 7 | 0.000 1 | 0.339 9 | 0.383 10 | 0.498 10 | 0.833 4 | 0.807 4 | 0.241 4 | 0.584 9 | 0.000 3 | 0.755 7 | 0.124 8 | 0.000 9 | 0.608 3 | 0.330 8 | 0.530 9 | 0.314 2 | 0.000 9 | 0.374 8 | 0.000 1 | 0.000 3 | 0.197 5 | 0.459 7 | 0.000 11 | 0.000 1 | 0.117 6 | 0.000 3 | 0.876 7 | 0.095 2 | 0.682 9 | 0.000 7 | 0.086 8 | 0.518 7 | 0.433 2 | 0.930 4 | 0.000 1 | 0.000 2 | 0.563 3 | 0.542 14 | 0.077 7 | 0.715 4 | 0.858 11 | 0.756 5 | 0.008 16 | 0.171 12 | 0.874 8 | 0.000 1 | 0.039 7 | 0.550 11 | 0.000 7 | 0.545 5 | 0.256 8 | 0.657 8 | 0.453 4 | 0.351 10 | 0.449 11 | 0.213 6 | 0.392 12 | 0.611 11 | 0.000 7 | 0.037 15 | 0.946 6 | 0.138 13 | 0.000 1 | 0.000 12 | 0.063 11 | 0.308 2 | 0.537 8 | 0.796 5 | 0.673 4 | 0.323 11 | 0.392 10 | 0.400 14 | 0.509 7 | 0.000 4 | 0.000 1 | 0.649 1 | 0.000 11 | 0.023 12 | 0.000 12 | 0.000 4 | 0.914 6 | 0.002 16 | 0.506 16 | 0.163 11 | 0.359 8 | 0.872 5 | 0.000 12 | 0.000 1 | 0.623 7 | 0.112 6 | 0.001 12 | 0.000 4 | 0.000 1 | 0.021 9 | 0.753 5 | 0.565 15 | 0.150 4 | 0.579 4 | 0.806 9 | 0.267 9 | 0.616 4 | 0.042 14 | 0.783 13 | 0.000 6 | 0.374 11 | 0.000 1 | 0.000 8 | 0.000 3 | 0.620 8 | 0.000 5 | 0.000 9 | 0.000 1 | 0.572 13 | 0.634 5 | 0.350 9 | 0.792 5 | 0.000 10 | 0.000 1 | 0.376 9 | 0.535 6 | 0.378 6 | 0.855 7 | 0.672 3 | 0.074 13 | 0.000 11 | 0.185 10 | 0.000 1 | 0.727 12 | 0.660 12 | 0.076 17 | 0.000 10 | 0.432 12 | 0.646 10 | 0.000 1 | 0.594 8 | 0.006 13 | 0.000 7 | 0.000 1 | 0.658 7 | 0.000 2 | 0.000 1 | 0.661 4 | 0.549 10 | 0.300 14 | 0.291 8 | 0.045 14 | 0.942 11 | 0.304 8 | 0.600 8 | 0.572 7 | 0.135 12 | 0.695 5 | 0.000 1 | 0.008 9 | 0.793 9 | 0.942 2 | 0.899 2 | 0.000 1 | 0.816 6 | 0.181 7 | 0.897 2 | 0.000 1 | 0.679 4 | 0.223 8 | 0.264 5 | 0.691 5 | 0.345 12 | |||||||||||||||||||||||||||||
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AWCS | 0.305 14 | 0.508 14 | 0.225 14 | 0.142 11 | 0.463 13 | 0.063 13 | 0.195 9 | 0.000 3 | 0.000 7 | 0.000 1 | 0.467 3 | 0.551 3 | 0.504 8 | 0.773 6 | 0.764 14 | 0.142 13 | 0.029 17 | 0.000 3 | 0.626 13 | 0.100 11 | 0.000 9 | 0.360 13 | 0.179 15 | 0.507 13 | 0.137 15 | 0.006 8 | 0.300 12 | 0.000 1 | 0.000 3 | 0.172 8 | 0.364 15 | 0.512 9 | 0.000 1 | 0.056 14 | 0.000 3 | 0.865 13 | 0.093 4 | 0.634 17 | 0.000 7 | 0.071 13 | 0.396 14 | 0.296 16 | 0.876 9 | 0.000 1 | 0.000 2 | 0.373 13 | 0.436 16 | 0.063 9 | 0.749 2 | 0.877 10 | 0.721 12 | 0.131 3 | 0.124 14 | 0.804 15 | 0.000 1 | 0.000 11 | 0.515 12 | 0.010 6 | 0.452 10 | 0.252 9 | 0.578 14 | 0.417 8 | 0.179 17 | 0.484 10 | 0.171 7 | 0.337 14 | 0.606 12 | 0.000 7 | 0.115 10 | 0.937 14 | 0.142 9 | 0.000 1 | 0.008 11 | 0.000 15 | 0.157 16 | 0.484 14 | 0.402 17 | 0.501 15 | 0.339 9 | 0.553 7 | 0.529 3 | 0.478 12 | 0.000 4 | 0.000 1 | 0.404 10 | 0.001 10 | 0.022 13 | 0.077 9 | 0.000 4 | 0.894 12 | 0.219 7 | 0.628 7 | 0.093 15 | 0.305 14 | 0.886 1 | 0.233 9 | 0.000 1 | 0.603 9 | 0.112 6 | 0.023 9 | 0.000 4 | 0.000 1 | 0.000 11 | 0.741 6 | 0.664 8 | 0.097 15 | 0.253 14 | 0.782 10 | 0.264 11 | 0.523 11 | 0.154 2 | 0.707 16 | 0.000 6 | 0.411 8 | 0.000 1 | 0.000 8 | 0.000 3 | 0.332 16 | 0.000 5 | 0.000 9 | 0.000 1 | 0.602 7 | 0.595 10 | 0.185 13 | 0.656 16 | 0.159 6 | 0.000 1 | 0.355 11 | 0.424 15 | 0.154 15 | 0.729 15 | 0.516 10 | 0.220 10 | 0.620 3 | 0.084 13 | 0.000 1 | 0.707 14 | 0.651 13 | 0.173 5 | 0.014 9 | 0.381 17 | 0.582 14 | 0.000 1 | 0.619 3 | 0.049 12 | 0.000 7 | 0.000 1 | 0.702 4 | 0.000 2 | 0.000 1 | 0.302 16 | 0.489 15 | 0.317 13 | 0.334 7 | 0.392 7 | 0.922 14 | 0.254 13 | 0.533 13 | 0.394 13 | 0.129 14 | 0.613 15 | 0.000 1 | 0.000 12 | 0.820 5 | 0.649 11 | 0.749 13 | 0.000 1 | 0.782 14 | 0.282 6 | 0.863 6 | 0.000 1 | 0.288 15 | 0.006 12 | 0.220 11 | 0.633 14 | 0.542 3 | |||||||||||||||||||||||||||||
: Long-Tailed 3D Semantic Segmentation with Adaptive Weight Constraint and Sampling. ICRA 2024 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ALS-MinkowskiNet | ![]() | 0.414 2 | 0.610 2 | 0.322 3 | 0.271 2 | 0.542 2 | 0.153 3 | 0.159 11 | 0.000 3 | 0.000 7 | 0.000 1 | 0.404 4 | 0.503 5 | 0.532 6 | 0.672 16 | 0.804 5 | 0.285 1 | 0.888 2 | 0.000 3 | 0.900 2 | 0.226 2 | 0.087 2 | 0.598 4 | 0.342 5 | 0.671 1 | 0.217 10 | 0.087 3 | 0.449 4 | 0.000 1 | 0.000 3 | 0.253 3 | 0.477 6 | 1.000 1 | 0.000 1 | 0.118 5 | 0.000 3 | 0.905 1 | 0.071 13 | 0.710 2 | 0.076 2 | 0.047 16 | 0.665 1 | 0.376 8 | 0.981 1 | 0.000 1 | 0.000 2 | 0.466 7 | 0.632 7 | 0.113 4 | 0.769 1 | 0.956 4 | 0.795 2 | 0.031 9 | 0.314 1 | 0.936 1 | 0.000 1 | 0.390 2 | 0.601 3 | 0.000 7 | 0.458 8 | 0.366 2 | 0.719 3 | 0.440 5 | 0.564 1 | 0.699 4 | 0.314 1 | 0.464 7 | 0.784 2 | 0.200 1 | 0.283 6 | 0.973 1 | 0.142 9 | 0.000 1 | 0.250 7 | 0.285 6 | 0.220 7 | 0.718 1 | 0.752 6 | 0.723 2 | 0.460 1 | 0.248 15 | 0.475 10 | 0.463 13 | 0.000 4 | 0.000 1 | 0.446 8 | 0.021 5 | 0.025 11 | 0.285 1 | 0.000 4 | 0.972 1 | 0.149 8 | 0.769 1 | 0.230 3 | 0.535 1 | 0.879 2 | 0.252 8 | 0.000 1 | 0.693 1 | 0.129 2 | 0.000 14 | 0.000 4 | 0.000 1 | 0.447 1 | 0.958 1 | 0.662 9 | 0.159 2 | 0.598 3 | 0.780 11 | 0.344 2 | 0.646 3 | 0.106 6 | 0.893 3 | 0.135 3 | 0.455 3 | 0.000 1 | 0.194 3 | 0.259 1 | 0.726 3 | 0.475 4 | 0.000 9 | 0.000 1 | 0.741 1 | 0.865 1 | 0.571 2 | 0.817 3 | 0.445 3 | 0.000 1 | 0.506 2 | 0.630 3 | 0.230 12 | 0.916 2 | 0.728 1 | 0.635 1 | 1.000 1 | 0.252 6 | 0.000 1 | 0.804 2 | 0.697 7 | 0.137 11 | 0.043 7 | 0.717 2 | 0.807 3 | 0.000 1 | 0.510 13 | 0.245 2 | 0.000 7 | 0.000 1 | 0.709 3 | 0.000 2 | 0.000 1 | 0.703 2 | 0.572 4 | 0.646 2 | 0.223 10 | 0.531 5 | 0.984 1 | 0.397 3 | 0.813 1 | 0.798 1 | 0.135 12 | 0.800 1 | 0.000 1 | 0.097 2 | 0.832 2 | 0.752 8 | 0.842 7 | 0.000 1 | 0.852 1 | 0.149 9 | 0.846 10 | 0.000 1 | 0.666 5 | 0.359 5 | 0.252 8 | 0.777 1 | 0.690 2 | ||||||||||||||||||||||||||||
Guangda Ji, Silvan Weder, Francis Engelmann, Marc Pollefeys, Hermann Blum: ARKit LabelMaker: A New Scale for Indoor 3D Scene Understanding. arxiv | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
IMFSegNet | 0.334 9 | 0.532 13 | 0.251 11 | 0.179 7 | 0.486 9 | 0.041 16 | 0.139 13 | 0.003 1 | 0.283 4 | 0.000 1 | 0.274 15 | 0.191 15 | 0.457 14 | 0.704 14 | 0.795 7 | 0.197 9 | 0.830 6 | 0.000 3 | 0.710 9 | 0.055 16 | 0.064 4 | 0.518 6 | 0.305 10 | 0.458 17 | 0.216 12 | 0.027 5 | 0.284 13 | 0.000 1 | 0.000 3 | 0.044 12 | 0.406 10 | 0.561 7 | 0.000 1 | 0.080 12 | 0.000 3 | 0.873 9 | 0.021 15 | 0.683 8 | 0.000 7 | 0.076 9 | 0.494 10 | 0.363 9 | 0.648 16 | 0.000 1 | 0.000 2 | 0.425 9 | 0.649 4 | 0.000 10 | 0.668 12 | 0.908 7 | 0.740 11 | 0.010 14 | 0.206 8 | 0.862 10 | 0.000 1 | 0.000 11 | 0.560 9 | 0.000 7 | 0.359 13 | 0.237 11 | 0.631 12 | 0.408 11 | 0.411 4 | 0.322 15 | 0.246 4 | 0.439 10 | 0.599 13 | 0.047 4 | 0.213 7 | 0.940 10 | 0.139 11 | 0.000 1 | 0.369 5 | 0.124 10 | 0.188 12 | 0.495 11 | 0.624 11 | 0.626 8 | 0.320 14 | 0.595 4 | 0.495 8 | 0.496 10 | 0.000 4 | 0.000 1 | 0.340 12 | 0.014 6 | 0.032 7 | 0.135 5 | 0.000 4 | 0.903 8 | 0.277 6 | 0.612 8 | 0.196 7 | 0.344 12 | 0.848 13 | 0.260 6 | 0.000 1 | 0.574 13 | 0.073 16 | 0.062 4 | 0.000 4 | 0.000 1 | 0.091 6 | 0.839 3 | 0.776 3 | 0.123 12 | 0.392 9 | 0.756 12 | 0.274 5 | 0.518 12 | 0.029 16 | 0.842 4 | 0.000 6 | 0.357 13 | 0.000 1 | 0.035 7 | 0.000 3 | 0.444 12 | 0.793 2 | 0.245 5 | 0.000 1 | 0.512 16 | 0.512 15 | 0.159 15 | 0.713 13 | 0.000 10 | 0.000 1 | 0.336 13 | 0.484 12 | 0.569 2 | 0.852 9 | 0.615 6 | 0.120 12 | 0.068 10 | 0.228 8 | 0.000 1 | 0.733 10 | 0.773 2 | 0.190 4 | 0.000 10 | 0.608 6 | 0.792 4 | 0.000 1 | 0.597 7 | 0.000 14 | 0.025 2 | 0.000 1 | 0.573 17 | 0.000 2 | 0.000 1 | 0.508 11 | 0.555 8 | 0.363 10 | 0.139 12 | 0.610 2 | 0.947 8 | 0.305 7 | 0.594 9 | 0.527 9 | 0.009 17 | 0.633 13 | 0.000 1 | 0.060 3 | 0.820 5 | 0.604 15 | 0.799 9 | 0.000 1 | 0.799 11 | 0.034 14 | 0.784 13 | 0.000 1 | 0.618 6 | 0.424 2 | 0.134 16 | 0.646 13 | 0.214 14 | |||||||||||||||||||||||||||||
GSTran | 0.334 10 | 0.533 12 | 0.250 12 | 0.179 8 | 0.487 8 | 0.041 16 | 0.139 13 | 0.003 1 | 0.273 5 | 0.000 1 | 0.273 16 | 0.189 16 | 0.465 12 | 0.704 14 | 0.794 8 | 0.198 8 | 0.831 5 | 0.000 3 | 0.712 8 | 0.055 16 | 0.063 5 | 0.518 6 | 0.306 9 | 0.459 16 | 0.217 10 | 0.028 4 | 0.282 14 | 0.000 1 | 0.000 3 | 0.044 12 | 0.405 11 | 0.558 8 | 0.000 1 | 0.080 12 | 0.000 3 | 0.873 9 | 0.020 16 | 0.684 7 | 0.000 7 | 0.075 12 | 0.496 9 | 0.363 9 | 0.651 15 | 0.000 1 | 0.000 2 | 0.425 9 | 0.648 5 | 0.000 10 | 0.669 11 | 0.914 6 | 0.741 10 | 0.009 15 | 0.200 9 | 0.864 9 | 0.000 1 | 0.000 11 | 0.560 9 | 0.000 7 | 0.357 14 | 0.233 12 | 0.633 11 | 0.408 11 | 0.411 4 | 0.320 16 | 0.242 5 | 0.440 9 | 0.598 14 | 0.047 4 | 0.205 8 | 0.940 10 | 0.139 11 | 0.000 1 | 0.372 4 | 0.138 9 | 0.191 10 | 0.495 11 | 0.618 13 | 0.624 9 | 0.321 12 | 0.595 4 | 0.496 7 | 0.499 8 | 0.000 4 | 0.000 1 | 0.340 12 | 0.014 6 | 0.032 7 | 0.136 4 | 0.000 4 | 0.903 8 | 0.279 5 | 0.601 9 | 0.198 5 | 0.345 11 | 0.849 11 | 0.260 6 | 0.000 1 | 0.573 14 | 0.072 17 | 0.060 5 | 0.000 4 | 0.000 1 | 0.089 7 | 0.838 4 | 0.775 4 | 0.125 11 | 0.381 11 | 0.752 13 | 0.274 5 | 0.517 13 | 0.032 15 | 0.841 5 | 0.000 6 | 0.354 14 | 0.000 1 | 0.047 6 | 0.000 3 | 0.439 13 | 0.787 3 | 0.252 4 | 0.000 1 | 0.512 16 | 0.507 16 | 0.158 16 | 0.717 12 | 0.000 10 | 0.000 1 | 0.337 12 | 0.483 13 | 0.570 1 | 0.853 8 | 0.614 7 | 0.121 11 | 0.070 9 | 0.229 7 | 0.000 1 | 0.732 11 | 0.773 2 | 0.193 3 | 0.000 10 | 0.606 7 | 0.791 5 | 0.000 1 | 0.593 9 | 0.000 14 | 0.010 5 | 0.000 1 | 0.574 16 | 0.000 2 | 0.000 1 | 0.507 12 | 0.554 9 | 0.361 11 | 0.136 13 | 0.608 3 | 0.948 7 | 0.304 8 | 0.593 10 | 0.533 8 | 0.011 16 | 0.634 12 | 0.000 1 | 0.060 3 | 0.821 4 | 0.613 13 | 0.797 10 | 0.000 1 | 0.799 11 | 0.036 13 | 0.782 14 | 0.000 1 | 0.609 7 | 0.423 3 | 0.133 17 | 0.647 12 | 0.213 15 | |||||||||||||||||||||||||||||
LGround | ![]() | 0.272 15 | 0.485 15 | 0.184 15 | 0.106 15 | 0.476 11 | 0.077 10 | 0.218 8 | 0.000 3 | 0.000 7 | 0.000 1 | 0.547 2 | 0.295 11 | 0.540 5 | 0.746 10 | 0.745 15 | 0.058 16 | 0.112 16 | 0.005 1 | 0.658 11 | 0.077 15 | 0.000 9 | 0.322 14 | 0.178 16 | 0.512 11 | 0.190 13 | 0.199 2 | 0.277 15 | 0.000 1 | 0.000 3 | 0.173 7 | 0.399 12 | 0.000 11 | 0.000 1 | 0.039 16 | 0.000 3 | 0.858 14 | 0.085 7 | 0.676 11 | 0.002 5 | 0.103 6 | 0.498 8 | 0.323 14 | 0.703 12 | 0.000 1 | 0.000 2 | 0.296 15 | 0.549 12 | 0.216 1 | 0.702 6 | 0.768 14 | 0.718 14 | 0.028 10 | 0.092 16 | 0.786 16 | 0.000 1 | 0.000 11 | 0.453 16 | 0.022 5 | 0.251 17 | 0.252 9 | 0.572 15 | 0.348 14 | 0.321 11 | 0.514 7 | 0.063 15 | 0.279 16 | 0.552 15 | 0.000 7 | 0.019 16 | 0.932 15 | 0.132 15 | 0.000 1 | 0.000 12 | 0.000 15 | 0.156 17 | 0.457 15 | 0.623 12 | 0.518 14 | 0.265 16 | 0.358 11 | 0.381 15 | 0.395 14 | 0.000 4 | 0.000 1 | 0.127 17 | 0.012 8 | 0.051 1 | 0.000 12 | 0.000 4 | 0.886 13 | 0.014 14 | 0.437 17 | 0.179 8 | 0.244 15 | 0.826 15 | 0.000 12 | 0.000 1 | 0.599 10 | 0.136 1 | 0.085 3 | 0.000 4 | 0.000 1 | 0.000 11 | 0.565 13 | 0.612 13 | 0.143 5 | 0.207 15 | 0.566 14 | 0.232 15 | 0.446 15 | 0.127 4 | 0.708 15 | 0.000 6 | 0.384 9 | 0.000 1 | 0.000 8 | 0.000 3 | 0.402 14 | 0.000 5 | 0.059 7 | 0.000 1 | 0.525 15 | 0.566 11 | 0.229 12 | 0.659 15 | 0.000 10 | 0.000 1 | 0.265 15 | 0.446 14 | 0.147 16 | 0.720 17 | 0.597 8 | 0.066 14 | 0.000 11 | 0.187 9 | 0.000 1 | 0.726 13 | 0.467 17 | 0.134 12 | 0.000 10 | 0.413 15 | 0.629 12 | 0.000 1 | 0.363 16 | 0.055 10 | 0.022 3 | 0.000 1 | 0.626 11 | 0.000 2 | 0.000 1 | 0.323 15 | 0.479 17 | 0.154 16 | 0.117 15 | 0.028 16 | 0.901 15 | 0.243 15 | 0.415 16 | 0.295 17 | 0.143 6 | 0.610 16 | 0.000 1 | 0.000 12 | 0.777 12 | 0.397 17 | 0.324 16 | 0.000 1 | 0.778 15 | 0.179 8 | 0.702 16 | 0.000 1 | 0.274 16 | 0.404 4 | 0.233 10 | 0.622 15 | 0.398 7 | ||||||||||||||||||||||||||||
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CSC-Pretrain | ![]() | 0.249 17 | 0.455 17 | 0.171 16 | 0.079 17 | 0.418 15 | 0.059 14 | 0.186 10 | 0.000 3 | 0.000 7 | 0.000 1 | 0.335 10 | 0.250 13 | 0.316 16 | 0.766 7 | 0.697 17 | 0.142 13 | 0.170 14 | 0.003 2 | 0.553 14 | 0.112 9 | 0.097 1 | 0.201 16 | 0.186 14 | 0.476 15 | 0.081 16 | 0.000 9 | 0.216 17 | 0.000 1 | 0.000 3 | 0.001 17 | 0.314 17 | 0.000 11 | 0.000 1 | 0.055 15 | 0.000 3 | 0.832 16 | 0.094 3 | 0.659 15 | 0.002 5 | 0.076 9 | 0.310 16 | 0.293 17 | 0.664 14 | 0.000 1 | 0.000 2 | 0.175 17 | 0.634 6 | 0.130 2 | 0.552 17 | 0.686 17 | 0.700 17 | 0.076 7 | 0.110 15 | 0.770 17 | 0.000 1 | 0.000 11 | 0.430 17 | 0.000 7 | 0.319 15 | 0.166 15 | 0.542 17 | 0.327 16 | 0.205 16 | 0.332 14 | 0.052 16 | 0.375 13 | 0.444 17 | 0.000 7 | 0.012 17 | 0.930 17 | 0.203 3 | 0.000 1 | 0.000 12 | 0.046 12 | 0.175 14 | 0.413 16 | 0.592 14 | 0.471 16 | 0.299 15 | 0.152 16 | 0.340 16 | 0.247 17 | 0.000 4 | 0.000 1 | 0.225 15 | 0.058 3 | 0.037 4 | 0.000 12 | 0.207 2 | 0.862 15 | 0.014 14 | 0.548 13 | 0.033 16 | 0.233 16 | 0.816 16 | 0.000 12 | 0.000 1 | 0.542 15 | 0.123 5 | 0.121 1 | 0.019 2 | 0.000 1 | 0.000 11 | 0.463 16 | 0.454 17 | 0.045 17 | 0.128 17 | 0.557 15 | 0.235 14 | 0.441 16 | 0.063 11 | 0.484 17 | 0.000 6 | 0.308 17 | 0.000 1 | 0.000 8 | 0.000 3 | 0.318 17 | 0.000 5 | 0.000 9 | 0.000 1 | 0.545 14 | 0.543 12 | 0.164 14 | 0.734 9 | 0.000 10 | 0.000 1 | 0.215 17 | 0.371 16 | 0.198 14 | 0.743 14 | 0.205 15 | 0.062 15 | 0.000 11 | 0.079 14 | 0.000 1 | 0.683 16 | 0.547 16 | 0.142 9 | 0.000 10 | 0.441 11 | 0.579 15 | 0.000 1 | 0.464 14 | 0.098 9 | 0.041 1 | 0.000 1 | 0.590 14 | 0.000 2 | 0.000 1 | 0.373 13 | 0.494 14 | 0.174 15 | 0.105 16 | 0.001 17 | 0.895 16 | 0.222 16 | 0.537 12 | 0.307 16 | 0.180 5 | 0.625 14 | 0.000 1 | 0.000 12 | 0.591 17 | 0.609 14 | 0.398 15 | 0.000 1 | 0.766 17 | 0.014 16 | 0.638 17 | 0.000 1 | 0.377 13 | 0.004 13 | 0.206 13 | 0.609 17 | 0.465 5 | ||||||||||||||||||||||||||||
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
ODIN - Sem200 | ![]() | 0.368 4 | 0.562 4 | 0.297 4 | 0.207 4 | 0.380 17 | 0.196 1 | 0.828 2 | 0.000 3 | 0.321 2 | 0.000 1 | 0.400 5 | 0.775 1 | 0.460 13 | 0.501 17 | 0.769 12 | 0.065 15 | 0.870 3 | 0.000 3 | 0.913 1 | 0.213 3 | 0.000 9 | 0.000 17 | 0.389 2 | 0.554 4 | 0.312 3 | 0.000 9 | 0.591 1 | 0.000 1 | 0.000 3 | 0.491 1 | 0.487 3 | 0.894 2 | 0.000 1 | 0.378 2 | 0.303 1 | 0.796 17 | 0.088 6 | 0.669 13 | 0.081 1 | 0.216 1 | 0.256 17 | 0.334 13 | 0.898 7 | 0.000 1 | 0.000 2 | 0.370 14 | 0.599 10 | 0.000 10 | 0.581 16 | 0.988 2 | 0.749 8 | 0.090 6 | 0.242 5 | 0.921 4 | 0.000 1 | 0.202 5 | 0.609 2 | 0.000 7 | 0.655 1 | 0.214 13 | 0.654 9 | 0.346 15 | 0.408 7 | 0.485 9 | 0.169 8 | 0.631 2 | 0.704 6 | 0.000 7 | 0.814 1 | 0.940 10 | 0.127 16 | 0.000 1 | 0.000 12 | 0.462 4 | 0.227 6 | 0.641 4 | 0.885 3 | 0.657 5 | 0.434 3 | 0.000 17 | 0.550 2 | 0.393 15 | 0.000 4 | 0.000 1 | 0.590 4 | 0.000 11 | 0.048 2 | 0.077 9 | 0.000 4 | 0.784 16 | 0.131 10 | 0.557 10 | 0.316 2 | 0.359 8 | 0.833 14 | 0.373 2 | 0.000 1 | 0.661 4 | 0.108 9 | 0.001 12 | 0.000 4 | 0.000 1 | 0.301 3 | 0.612 11 | 0.565 15 | 0.129 10 | 0.482 8 | 0.468 16 | 0.274 5 | 0.561 8 | 0.376 1 | 0.912 2 | 0.181 1 | 0.440 6 | 0.000 1 | 0.166 4 | 0.000 3 | 0.641 5 | 0.000 5 | 0.426 2 | 0.000 1 | 0.642 5 | 0.626 7 | 0.259 11 | 0.787 8 | 0.429 4 | 0.000 1 | 0.589 1 | 0.523 8 | 0.246 11 | 0.857 6 | 0.000 17 | 0.228 9 | 0.000 11 | 0.265 4 | 0.000 1 | 0.752 6 | 0.832 1 | 0.090 16 | 0.157 1 | 0.791 1 | 0.578 16 | 0.000 1 | 0.373 15 | 0.539 1 | 0.000 7 | 0.000 1 | 0.685 5 | 0.000 2 | 0.000 1 | 0.632 8 | 0.575 3 | 0.663 1 | 0.152 11 | 0.358 9 | 0.926 13 | 0.397 3 | 0.454 15 | 0.610 4 | 0.119 15 | 0.685 7 | 0.000 1 | 0.000 12 | 0.803 8 | 0.740 9 | 0.441 14 | 0.000 1 | 0.800 10 | 0.000 17 | 0.871 3 | 0.000 1 | 0.220 17 | 0.487 1 | 0.862 1 | 0.682 6 | 0.054 17 | ||||||||||||||||||||||||||||
Ayush Jain, Pushkal Katara, Nikolaos Gkanatsios, Adam W. Harley, Gabriel Sarch, Kriti Aggarwal, Vishrav Chaudhary, Katerina Fragkiadaki: ODIN: A Single Model for 2D and 3D Segmentation. CVPR 2024 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Minkowski 34D | ![]() | 0.253 16 | 0.463 16 | 0.154 17 | 0.102 16 | 0.381 16 | 0.084 8 | 0.134 15 | 0.000 3 | 0.000 7 | 0.000 1 | 0.386 7 | 0.141 17 | 0.279 17 | 0.737 12 | 0.703 16 | 0.014 17 | 0.164 15 | 0.000 3 | 0.663 10 | 0.092 14 | 0.000 9 | 0.224 15 | 0.291 11 | 0.531 8 | 0.056 17 | 0.000 9 | 0.242 16 | 0.000 1 | 0.000 3 | 0.013 15 | 0.331 16 | 0.000 11 | 0.000 1 | 0.035 17 | 0.001 2 | 0.858 14 | 0.059 14 | 0.650 16 | 0.000 7 | 0.056 14 | 0.353 15 | 0.299 15 | 0.670 13 | 0.000 1 | 0.000 2 | 0.284 16 | 0.484 15 | 0.071 8 | 0.594 15 | 0.720 16 | 0.710 15 | 0.027 11 | 0.068 17 | 0.813 14 | 0.000 1 | 0.005 10 | 0.492 14 | 0.164 1 | 0.274 16 | 0.111 16 | 0.571 16 | 0.307 17 | 0.293 13 | 0.307 17 | 0.150 9 | 0.163 17 | 0.531 16 | 0.002 6 | 0.545 5 | 0.932 15 | 0.093 17 | 0.000 1 | 0.000 12 | 0.002 14 | 0.159 15 | 0.368 17 | 0.581 15 | 0.440 17 | 0.228 17 | 0.406 9 | 0.282 17 | 0.294 16 | 0.000 4 | 0.000 1 | 0.189 16 | 0.060 2 | 0.036 5 | 0.000 12 | 0.000 4 | 0.897 11 | 0.000 17 | 0.525 14 | 0.025 17 | 0.205 17 | 0.771 17 | 0.000 12 | 0.000 1 | 0.593 11 | 0.108 9 | 0.044 6 | 0.000 4 | 0.000 1 | 0.000 11 | 0.282 17 | 0.589 14 | 0.094 16 | 0.169 16 | 0.466 17 | 0.227 16 | 0.419 17 | 0.125 5 | 0.757 14 | 0.002 4 | 0.334 16 | 0.000 1 | 0.000 8 | 0.000 3 | 0.357 15 | 0.000 5 | 0.000 9 | 0.000 1 | 0.582 10 | 0.513 14 | 0.337 10 | 0.612 17 | 0.000 10 | 0.000 1 | 0.250 16 | 0.352 17 | 0.136 17 | 0.724 16 | 0.655 4 | 0.280 8 | 0.000 11 | 0.046 16 | 0.000 1 | 0.606 17 | 0.559 15 | 0.159 7 | 0.102 3 | 0.445 10 | 0.655 9 | 0.000 1 | 0.310 17 | 0.117 6 | 0.000 7 | 0.000 1 | 0.581 15 | 0.026 1 | 0.000 1 | 0.265 17 | 0.483 16 | 0.084 17 | 0.097 17 | 0.044 15 | 0.865 17 | 0.142 17 | 0.588 11 | 0.351 15 | 0.272 2 | 0.596 17 | 0.000 1 | 0.003 10 | 0.622 16 | 0.720 10 | 0.096 17 | 0.000 1 | 0.771 16 | 0.016 15 | 0.772 15 | 0.000 1 | 0.302 14 | 0.194 9 | 0.214 12 | 0.621 16 | 0.197 16 | ||||||||||||||||||||||||||||
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019 |