Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail ioualarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefloorfolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwallwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LGroundpermissive0.272 10.485 10.184 10.106 10.476 10.077 20.218 10.000 10.000 10.000 10.547 10.295 10.540 10.746 20.745 10.058 20.112 30.005 10.658 20.077 30.000 20.322 10.178 30.512 20.190 10.199 10.277 10.000 10.000 10.173 10.399 10.000 10.000 10.039 20.000 20.858 10.085 20.676 10.002 10.103 10.498 10.323 10.703 10.000 10.000 10.296 10.549 20.216 10.702 10.768 10.718 10.028 20.092 20.786 20.000 10.000 20.453 20.022 20.251 30.252 10.572 10.348 10.321 10.514 10.063 20.279 20.552 10.000 20.019 20.932 10.132 20.000 10.000 10.000 30.156 30.457 10.623 10.518 10.265 20.358 20.381 10.395 10.000 10.000 10.127 30.012 30.051 10.000 10.000 20.886 20.014 10.437 30.179 10.244 10.826 10.000 10.000 10.599 10.136 10.085 20.000 20.000 10.000 10.565 10.612 10.143 10.207 10.566 10.232 20.446 10.127 10.708 20.000 20.384 10.000 10.000 10.000 10.402 10.000 10.059 10.000 10.525 30.566 10.229 20.659 20.000 10.000 10.265 10.446 10.147 20.720 30.597 20.066 20.000 10.187 10.000 10.726 10.467 30.134 30.000 20.413 30.629 20.000 10.363 20.055 30.022 20.000 10.626 10.000 20.000 10.323 20.479 30.154 20.117 10.028 20.901 10.243 10.415 30.295 30.143 30.610 20.000 10.000 20.777 10.397 30.324 20.000 10.778 10.179 10.702 20.000 10.274 30.404 10.233 10.622 10.398 2
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
CSC-Pretrainpermissive0.249 30.455 30.171 20.079 30.418 20.059 30.186 20.000 10.000 10.000 10.335 30.250 20.316 20.766 10.697 30.142 10.170 10.003 20.553 30.112 10.097 10.201 30.186 20.476 30.081 20.000 20.216 30.000 10.000 10.001 30.314 30.000 10.000 10.055 10.000 20.832 30.094 10.659 20.002 10.076 20.310 30.293 30.664 30.000 10.000 10.175 30.634 10.130 20.552 30.686 30.700 30.076 10.110 10.770 30.000 10.000 20.430 30.000 30.319 10.166 20.542 30.327 20.205 30.332 20.052 30.375 10.444 30.000 20.012 30.930 30.203 10.000 10.000 10.046 10.175 10.413 20.592 20.471 20.299 10.152 30.340 20.247 30.000 10.000 10.225 10.058 20.037 20.000 10.207 10.862 30.014 10.548 10.033 20.233 20.816 20.000 10.000 10.542 30.123 20.121 10.019 10.000 10.000 10.463 20.454 30.045 30.128 30.557 20.235 10.441 20.063 30.484 30.000 20.308 30.000 10.000 10.000 10.318 30.000 10.000 20.000 10.545 20.543 20.164 30.734 10.000 10.000 10.215 30.371 20.198 10.743 10.205 30.062 30.000 10.079 20.000 10.683 20.547 20.142 20.000 20.441 20.579 30.000 10.464 10.098 20.041 10.000 10.590 20.000 20.000 10.373 10.494 10.174 10.105 20.001 30.895 20.222 20.537 20.307 20.180 20.625 10.000 10.000 20.591 30.609 20.398 10.000 10.766 30.014 30.638 30.000 10.377 10.004 30.206 30.609 30.465 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
Minkowski 34Dpermissive0.253 20.463 20.154 30.102 20.381 30.084 10.134 30.000 10.000 10.000 10.386 20.141 30.279 30.737 30.703 20.014 30.164 20.000 30.663 10.092 20.000 20.224 20.291 10.531 10.056 30.000 20.242 20.000 10.000 10.013 20.331 20.000 10.000 10.035 30.001 10.858 10.059 30.650 30.000 30.056 30.353 20.299 20.670 20.000 10.000 10.284 20.484 30.071 30.594 20.720 20.710 20.027 30.068 30.813 10.000 10.005 10.492 10.164 10.274 20.111 30.571 20.307 30.293 20.307 30.150 10.163 30.531 20.002 10.545 10.932 10.093 30.000 10.000 10.002 20.159 20.368 30.581 30.440 30.228 30.406 10.282 30.294 20.000 10.000 10.189 20.060 10.036 30.000 10.000 20.897 10.000 30.525 20.025 30.205 30.771 30.000 10.000 10.593 20.108 30.044 30.000 20.000 10.000 10.282 30.589 20.094 20.169 20.466 30.227 30.419 30.125 20.757 10.002 10.334 20.000 10.000 10.000 10.357 20.000 10.000 20.000 10.582 10.513 30.337 10.612 30.000 10.000 10.250 20.352 30.136 30.724 20.655 10.280 10.000 10.046 30.000 10.606 30.559 10.159 10.102 10.445 10.655 10.000 10.310 30.117 10.000 30.000 10.581 30.026 10.000 10.265 30.483 20.084 30.097 30.044 10.865 30.142 30.588 10.351 10.272 10.596 30.000 10.003 10.622 20.720 10.096 30.000 10.771 20.016 20.772 10.000 10.302 20.194 20.214 20.621 20.197 3
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg aphead apcommon aptail apalarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D Scannet2000.278 10.383 10.263 10.168 10.506 10.068 10.083 40.000 10.000 10.000 10.023 10.149 30.302 10.778 20.647 10.569 10.500 10.031 10.014 20.027 10.173 10.311 10.195 10.351 20.258 10.000 10.082 10.000 10.003 10.037 10.391 11.000 10.000 10.014 10.000 10.572 10.573 10.661 10.000 10.003 10.005 30.082 30.349 10.028 10.000 10.605 10.515 20.509 10.711 11.000 10.665 20.015 10.107 10.402 30.201 10.083 10.304 10.759 10.491 10.378 10.572 10.119 10.277 10.013 40.089 10.283 10.411 10.267 10.006 20.156 10.000 10.116 10.000 10.105 20.556 10.514 10.396 10.275 10.323 10.215 10.380 10.000 10.000 10.356 10.005 10.208 10.325 10.000 10.050 30.400 10.561 10.258 10.179 10.722 10.147 10.000 10.586 10.063 10.015 10.139 10.016 10.028 10.708 10.418 10.016 10.048 30.500 10.489 10.349 10.001 10.475 10.086 10.365 10.000 10.500 10.000 10.323 20.000 10.222 10.000 10.497 10.626 10.044 20.795 10.556 10.008 10.121 30.265 10.667 10.789 10.568 10.579 10.444 10.176 10.004 10.474 10.752 10.233 10.014 10.002 30.570 10.007 10.377 40.000 10.000 10.000 10.337 10.000 10.000 10.384 10.465 10.287 10.085 10.048 10.816 40.467 10.810 10.377 10.415 10.744 10.000 10.004 10.724 10.778 10.590 10.000 10.032 10.441 10.000 10.377 20.391 10.427 10.321 10.192 1
LGround Inst.permissive0.154 20.275 20.108 20.060 20.295 40.002 30.278 10.000 10.000 10.000 10.006 30.272 10.064 40.815 10.503 30.333 40.000 20.000 20.556 10.001 30.000 20.148 20.078 20.448 10.007 20.000 10.024 20.000 10.000 20.000 20.190 30.000 20.000 10.000 20.000 10.209 40.031 40.573 20.000 10.000 20.041 10.099 20.037 30.000 20.000 10.327 20.364 40.181 20.642 21.000 10.654 30.000 20.023 20.429 20.000 20.000 20.097 20.000 20.278 20.267 20.434 20.048 20.092 20.257 20.030 20.097 30.189 20.000 20.089 10.000 40.000 10.000 20.000 10.115 10.166 20.222 40.222 20.003 20.127 20.213 30.169 20.000 10.000 10.000 20.000 20.044 20.000 20.000 10.000 40.000 30.268 40.222 20.130 20.494 20.000 20.000 10.363 20.015 20.000 20.000 20.000 20.000 20.611 20.400 20.000 20.056 20.278 30.242 40.180 20.000 20.383 30.000 20.209 20.000 10.000 20.000 10.364 10.000 10.000 20.000 10.323 40.302 30.019 30.654 20.000 20.000 20.141 10.045 20.000 40.427 40.514 20.143 20.000 20.028 30.000 20.252 30.402 30.156 30.000 20.028 10.470 20.000 20.444 20.000 10.000 10.000 10.205 20.000 10.000 10.203 20.381 20.026 20.037 20.000 20.881 20.099 30.135 30.239 20.000 30.585 30.000 10.000 20.616 20.778 10.322 20.000 10.000 20.407 20.000 10.333 30.148 20.177 30.242 20.028 2
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.
Minkowski 34D Inst.permissive0.130 30.246 30.083 30.043 40.299 30.000 40.278 10.000 10.000 10.000 10.022 20.175 20.122 20.537 30.521 20.400 20.000 20.000 20.000 30.008 20.000 20.048 30.076 30.182 40.000 30.000 10.022 30.000 10.000 20.000 20.141 40.000 20.000 10.000 20.000 10.210 30.063 20.547 40.000 10.000 20.000 40.100 10.026 40.000 20.000 10.241 40.488 30.000 30.564 41.000 10.672 10.000 20.021 30.486 10.000 20.000 20.067 30.000 20.194 40.033 40.415 30.026 30.025 40.271 10.004 30.094 40.142 40.000 20.000 30.111 20.000 10.000 20.000 10.088 30.083 40.278 20.110 30.000 30.082 40.199 40.137 30.000 10.000 10.000 20.000 20.041 30.000 20.000 10.308 10.067 20.280 20.016 30.101 30.373 40.000 20.000 10.319 30.007 30.000 20.000 20.000 20.000 20.028 40.355 40.000 20.101 10.444 20.289 20.114 40.000 20.394 20.000 20.032 40.000 10.000 20.000 10.201 40.000 10.000 20.000 10.384 20.248 40.000 40.529 30.000 20.000 20.133 20.020 40.089 30.720 20.500 30.099 30.000 20.000 40.000 20.238 40.334 40.190 20.000 20.000 40.317 40.000 20.472 10.000 10.000 10.000 10.094 40.000 10.000 10.082 40.236 30.004 40.019 30.000 20.883 10.061 40.262 20.217 30.000 30.557 40.000 10.000 20.460 40.761 30.156 40.000 10.000 20.259 30.000 10.394 10.019 30.084 40.232 30.000 4
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
CSC-Pretrain Inst.permissive0.123 40.223 40.082 40.046 30.308 20.004 20.278 10.000 10.000 10.000 10.000 40.032 40.105 30.537 30.348 40.378 30.000 20.000 20.000 30.000 40.000 20.000 40.037 40.323 30.000 30.000 10.013 40.000 10.000 20.000 20.235 20.000 20.000 10.000 20.000 10.231 20.045 30.564 30.000 10.000 20.006 20.078 40.065 20.000 20.000 10.259 30.516 10.000 30.600 31.000 10.578 40.000 20.000 40.184 40.000 20.000 20.034 40.000 20.211 30.089 30.394 40.018 40.064 30.171 30.001 40.144 20.172 30.000 20.000 30.044 30.000 10.000 20.000 10.064 40.126 30.278 20.093 40.000 30.094 30.214 20.011 40.000 10.000 10.000 20.000 20.022 40.000 20.000 10.275 20.000 30.275 30.000 40.098 40.407 30.000 20.000 10.250 40.007 40.000 20.000 20.000 20.000 20.333 30.376 30.000 20.000 40.042 40.285 30.119 30.000 20.224 40.000 20.184 30.000 10.000 20.000 10.244 30.000 10.000 20.000 10.377 30.378 20.051 10.424 40.000 20.000 20.116 40.030 30.125 20.441 30.444 40.063 40.000 20.042 20.000 20.297 20.483 20.096 40.000 20.028 10.338 30.000 20.444 20.000 10.000 10.000 10.189 30.000 10.000 10.141 30.152 40.017 30.000 40.000 20.838 30.193 20.111 40.105 40.198 20.588 20.000 10.000 20.542 30.343 40.267 30.000 10.000 20.108 40.000 10.333 30.000 40.228 20.202 40.022 3
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mix3Dpermissive0.781 10.964 10.855 10.843 100.781 10.858 70.575 20.831 150.685 50.714 10.979 10.594 30.310 150.801 10.892 70.841 20.819 30.723 20.940 70.887 10.725 9
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
IPCA0.731 140.890 50.837 30.864 20.726 130.873 20.530 90.824 170.489 650.647 80.978 20.609 20.336 60.624 300.733 390.758 70.776 230.570 450.949 20.877 50.728 5
OccuSeg+Semantic0.764 20.758 400.796 150.839 110.746 70.907 10.562 30.850 100.680 60.672 50.978 20.610 10.335 70.777 30.819 260.847 10.830 10.691 60.972 10.885 20.727 7
One-Thing-One-Click0.693 230.743 460.794 170.655 650.684 220.822 260.497 200.719 450.622 190.617 150.977 40.447 470.339 50.750 120.664 540.703 240.790 190.596 340.946 40.855 150.647 29
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PointConvFormer0.749 50.793 260.790 180.807 200.750 60.856 80.524 100.881 60.588 320.642 120.977 40.591 50.274 290.781 20.929 10.804 30.796 140.642 160.947 30.885 20.715 13
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
One Thing One Click0.701 200.825 200.796 150.723 410.716 150.832 180.433 510.816 180.634 160.609 190.969 60.418 600.344 40.559 470.833 230.715 200.808 70.560 490.902 220.847 190.680 20
PointFormerV20.752 40.742 470.809 100.872 10.758 30.860 60.552 40.891 50.610 220.687 20.960 70.559 120.304 180.766 70.926 20.767 50.797 130.644 150.942 50.876 70.722 11
Retro-FPN0.744 110.842 160.800 130.767 340.740 90.836 160.541 60.914 10.672 80.626 140.958 80.552 130.272 300.777 30.886 90.696 260.801 100.674 90.941 60.858 120.717 12
O-CNNpermissive0.762 30.924 20.823 40.844 90.770 20.852 90.577 10.847 110.711 10.640 130.958 80.592 40.217 500.762 90.888 80.758 70.813 50.726 10.932 130.868 80.744 3
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
BPNetcopyleft0.749 50.909 30.818 70.811 170.752 50.839 130.485 240.842 130.673 70.644 100.957 100.528 190.305 170.773 50.859 130.788 40.818 40.693 50.916 150.856 140.723 10
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
PicassoNet-IIpermissive0.696 220.704 570.790 180.787 260.709 160.837 140.459 340.815 200.543 490.615 160.956 110.529 170.250 400.551 520.790 310.703 240.799 120.619 250.908 170.848 180.700 16
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
MSP0.748 70.623 710.804 110.859 30.745 80.824 240.501 160.912 20.690 40.685 30.956 110.567 90.320 120.768 60.918 30.720 160.802 90.676 80.921 140.881 40.779 1
StratifiedFormerpermissive0.747 80.901 40.803 120.845 80.757 40.846 110.512 130.825 160.696 30.645 90.956 110.576 70.262 370.744 140.861 120.742 90.770 270.705 30.899 250.860 110.734 4
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
VMNetpermissive0.746 90.870 90.838 20.858 40.729 120.850 100.501 160.874 70.587 330.658 70.956 110.564 100.299 190.765 80.900 50.716 190.812 60.631 210.939 80.858 120.709 14
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
SparseConvNet0.725 150.647 670.821 50.846 70.721 140.869 30.533 80.754 350.603 280.614 170.955 150.572 80.325 100.710 160.870 100.724 140.823 20.628 220.934 110.865 100.683 19
EQ-Net0.743 120.620 720.799 140.849 50.730 110.822 260.493 220.897 40.664 90.681 40.955 150.562 110.378 10.760 100.903 40.738 100.801 100.673 100.907 180.877 50.745 2
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
VI-PointConv0.676 320.770 360.754 340.783 290.621 380.814 360.552 40.758 330.571 410.557 330.954 170.529 170.268 350.530 560.682 490.675 320.719 440.603 310.888 340.833 230.665 22
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
MatchingNet0.724 160.812 230.812 90.810 180.735 100.834 170.495 210.860 80.572 390.602 240.954 170.512 220.280 260.757 110.845 210.725 130.780 210.606 300.937 90.851 170.700 16
INS-Conv-semantic0.717 170.751 430.759 300.812 160.704 180.868 40.537 70.842 130.609 240.608 200.953 190.534 150.293 210.616 310.864 110.719 180.793 170.640 170.933 120.845 210.663 23
PointConvpermissive0.666 350.781 290.759 300.699 490.644 330.822 260.475 250.779 280.564 440.504 530.953 190.428 540.203 570.586 380.754 350.661 380.753 330.588 410.902 220.813 350.642 30
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointMRNet0.640 440.717 560.701 550.692 520.576 530.801 450.467 310.716 460.563 450.459 630.953 190.429 530.169 700.581 390.854 150.605 570.710 470.550 550.894 290.793 480.575 54
APCF-Net0.631 530.742 470.687 670.672 570.557 600.792 540.408 570.665 590.545 480.508 500.952 220.428 540.186 640.634 260.702 460.620 520.706 510.555 530.873 460.798 420.581 52
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
PointASNLpermissive0.666 350.703 590.781 220.751 400.655 270.830 190.471 270.769 310.474 680.537 390.951 230.475 320.279 270.635 250.698 480.675 320.751 340.553 540.816 660.806 370.703 15
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
SConv0.636 480.830 180.697 580.752 390.572 560.780 590.445 430.716 460.529 520.530 420.951 230.446 480.170 690.507 620.666 530.636 490.682 600.541 610.886 350.799 400.594 50
MinkowskiNetpermissive0.736 130.859 120.818 70.832 120.709 160.840 120.521 120.853 90.660 110.643 110.951 230.544 140.286 250.731 150.893 60.675 320.772 250.683 70.874 450.852 160.727 7
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
joint point-basedpermissive0.634 500.614 730.778 230.667 610.633 370.825 230.420 540.804 230.467 700.561 320.951 230.494 260.291 220.566 440.458 700.579 670.764 290.559 510.838 600.814 330.598 48
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
ROSMRF3D0.673 330.789 270.748 360.763 360.635 360.814 360.407 590.747 370.581 370.573 300.950 270.484 280.271 320.607 330.754 350.649 420.774 240.596 340.883 360.823 280.606 43
FusionNet0.688 260.704 570.741 430.754 380.656 260.829 200.501 160.741 400.609 240.548 350.950 270.522 200.371 20.633 270.756 340.715 200.771 260.623 230.861 550.814 330.658 24
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
PPCNN++permissive0.663 370.746 440.708 510.722 420.638 350.820 290.451 360.566 730.599 300.541 370.950 270.510 230.313 140.648 220.819 260.616 560.682 600.590 390.869 510.810 360.656 25
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
SIConv0.625 590.830 180.694 600.757 370.563 580.772 630.448 400.647 620.520 540.509 490.949 300.431 520.191 620.496 640.614 580.647 450.672 650.535 640.876 420.783 560.571 55
MCCNNpermissive0.633 510.866 100.731 460.771 310.576 530.809 400.410 560.684 540.497 600.491 550.949 300.466 360.105 830.581 390.646 560.620 520.680 620.542 600.817 650.795 440.618 38
P. Hermosilla, T. Ritschel, P.P. Vazquez, A. Vinacua, T. Ropinski: Monte Carlo Convolution for Learning on Non-Uniformly Sampled Point Clouds. SIGGRAPH Asia 2018
PointMTL0.632 520.731 510.688 650.675 560.591 460.784 560.444 460.565 740.610 220.492 540.949 300.456 410.254 390.587 360.706 450.599 600.665 670.612 290.868 520.791 540.579 53
CU-Hybrid Net0.693 230.596 760.789 200.803 220.677 230.800 460.469 280.846 120.554 470.591 270.948 330.500 250.316 130.609 320.847 200.732 110.808 70.593 370.894 290.839 220.652 27
FPConvpermissive0.639 450.785 280.760 290.713 470.603 420.798 490.392 640.534 780.603 280.524 450.948 330.457 400.250 400.538 540.723 420.598 610.696 550.614 260.872 480.799 400.567 58
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
Virtual MVFusion0.746 90.771 340.819 60.848 60.702 190.865 50.397 620.899 30.699 20.664 60.948 330.588 60.330 80.746 130.851 180.764 60.796 140.704 40.935 100.866 90.728 5
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
AttAN0.609 620.760 390.667 690.649 670.521 650.793 520.457 350.648 610.528 530.434 700.947 360.401 640.153 760.454 690.721 430.648 440.717 450.536 630.904 200.765 630.485 75
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
RFCR0.702 190.889 60.745 390.813 150.672 240.818 330.493 220.815 200.623 180.610 180.947 360.470 340.249 420.594 350.848 190.705 230.779 220.646 140.892 310.823 280.611 39
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
PD-Net0.638 460.797 250.769 270.641 710.590 470.820 290.461 330.537 770.637 150.536 400.947 360.388 670.206 540.656 190.668 520.647 450.732 410.585 420.868 520.793 480.473 79
Pointnet++ & Featurepermissive0.557 720.735 490.661 710.686 530.491 690.744 710.392 640.539 760.451 740.375 760.946 390.376 690.205 550.403 750.356 790.553 710.643 720.497 700.824 640.756 660.515 71
Superpoint Network0.683 300.851 140.728 480.800 240.653 280.806 420.468 290.804 230.572 390.602 240.946 390.453 440.239 450.519 580.822 240.689 300.762 300.595 360.895 280.827 260.630 35
HPEIN0.618 600.729 520.668 680.647 680.597 450.766 640.414 550.680 550.520 540.525 440.946 390.432 500.215 510.493 650.599 590.638 480.617 760.570 450.897 260.806 370.605 45
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
Feature_GeometricNetpermissive0.690 250.884 70.754 340.795 250.647 300.818 330.422 530.802 250.612 210.604 220.945 420.462 380.189 630.563 460.853 160.726 120.765 280.632 200.904 200.821 310.606 43
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
VACNN++0.684 280.728 530.757 330.776 300.690 200.804 440.464 320.816 180.577 380.587 290.945 420.508 240.276 280.671 170.710 440.663 370.750 350.589 400.881 390.832 240.653 26
contrastBoundarypermissive0.705 180.769 370.775 240.809 190.687 210.820 290.439 490.812 220.661 100.591 270.945 420.515 210.171 680.633 270.856 140.720 160.796 140.668 110.889 330.847 190.689 18
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
RandLA-Netpermissive0.645 410.778 300.731 460.699 490.577 520.829 200.446 410.736 410.477 670.523 470.945 420.454 420.269 330.484 670.749 380.618 540.738 370.599 330.827 620.792 510.621 37
Feature-Geometry Netpermissive0.685 270.866 100.748 360.819 140.645 320.794 510.450 390.802 250.587 330.604 220.945 420.464 370.201 580.554 490.840 220.723 150.732 410.602 320.907 180.822 300.603 46
HPGCNN0.656 390.698 600.743 410.650 660.564 570.820 290.505 150.758 330.631 170.479 580.945 420.480 300.226 460.572 420.774 330.690 280.735 390.614 260.853 580.776 600.597 49
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
PointNet2-SFPN0.631 530.771 340.692 620.672 570.524 640.837 140.440 480.706 510.538 500.446 650.944 480.421 590.219 490.552 500.751 370.591 630.737 380.543 590.901 240.768 620.557 62
PointCNN with RGBpermissive0.458 810.577 780.611 810.356 910.321 880.715 740.299 810.376 850.328 880.319 820.944 480.285 820.164 720.216 890.229 840.484 770.545 830.456 790.755 720.709 770.475 78
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
PointConv-SFPN0.641 420.776 320.703 530.721 430.557 600.826 220.451 360.672 580.563 450.483 570.943 500.425 570.162 730.644 230.726 400.659 390.709 490.572 440.875 430.786 550.559 61
SAFNet-segpermissive0.654 400.752 420.734 450.664 620.583 510.815 350.399 610.754 350.639 140.535 410.942 510.470 340.309 160.665 180.539 620.650 410.708 500.635 190.857 570.793 480.642 30
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
PointSPNet0.637 470.734 500.692 620.714 460.576 530.797 500.446 410.743 390.598 310.437 680.942 510.403 630.150 770.626 290.800 300.649 420.697 540.557 520.846 590.777 590.563 59
DCM-Net0.658 380.778 300.702 540.806 210.619 390.813 390.468 290.693 530.494 610.524 450.941 530.449 460.298 200.510 600.821 250.675 320.727 430.568 470.826 630.803 390.637 32
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
PCNN0.498 790.559 790.644 760.560 800.420 790.711 750.229 870.414 810.436 770.352 800.941 530.324 780.155 750.238 860.387 780.493 750.529 850.509 660.813 670.751 680.504 73
DPC0.592 650.720 540.700 560.602 760.480 700.762 670.380 700.713 490.585 360.437 680.940 550.369 700.288 230.434 720.509 680.590 650.639 740.567 480.772 710.755 670.592 51
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
LAP-D0.594 640.720 540.692 620.637 720.456 740.773 620.391 660.730 430.587 330.445 670.940 550.381 680.288 230.434 720.453 720.591 630.649 690.581 430.777 700.749 690.610 41
PointMRNet-lite0.553 730.633 690.648 730.659 630.430 770.800 460.390 670.592 690.454 730.371 770.939 570.368 710.136 800.368 770.448 730.560 700.715 460.486 730.882 370.720 760.462 80
DenSeR0.628 570.800 240.625 780.719 440.545 620.806 420.445 430.597 670.448 750.519 480.938 580.481 290.328 90.489 660.499 690.657 400.759 310.592 380.881 390.797 430.634 33
DGCNN_reproducecopyleft0.446 830.474 870.623 790.463 850.366 830.651 810.310 770.389 840.349 860.330 810.937 590.271 840.126 810.285 820.224 850.350 880.577 780.445 820.625 840.723 740.394 83
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
MVPNetpermissive0.641 420.831 170.715 490.671 590.590 470.781 570.394 630.679 560.642 130.553 340.937 590.462 380.256 380.649 210.406 760.626 510.691 570.666 120.877 410.792 510.608 42
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
ROSMRF0.580 670.772 330.707 520.681 550.563 580.764 650.362 720.515 790.465 710.465 620.936 610.427 560.207 530.438 700.577 600.536 720.675 640.486 730.723 770.779 570.524 70
JSENetpermissive0.699 210.881 80.762 280.821 130.667 250.800 460.522 110.792 270.613 200.607 210.935 620.492 270.205 550.576 410.853 160.691 270.758 320.652 130.872 480.828 250.649 28
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
SPH3D-GCNpermissive0.610 610.858 130.772 250.489 830.532 630.792 540.404 600.643 630.570 420.507 520.935 620.414 610.046 890.510 600.702 460.602 590.705 520.549 560.859 560.773 610.534 68
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
TextureNetpermissive0.566 700.672 640.664 700.671 590.494 680.719 730.445 430.678 570.411 810.396 730.935 620.356 730.225 470.412 740.535 630.565 690.636 750.464 770.794 690.680 810.568 57
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
KP-FCNN0.684 280.847 150.758 320.784 280.647 300.814 360.473 260.772 300.605 260.594 260.935 620.450 450.181 660.587 360.805 290.690 280.785 200.614 260.882 370.819 320.632 34
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
PointContrast_LA_SEM0.683 300.757 410.784 210.786 270.639 340.824 240.408 570.775 290.604 270.541 370.934 660.532 160.269 330.552 500.777 320.645 470.793 170.640 170.913 160.824 270.671 21
wsss-transformer0.600 630.634 680.743 410.697 510.601 440.781 570.437 500.585 710.493 620.446 650.933 670.394 650.011 910.654 200.661 550.603 580.733 400.526 650.832 610.761 650.480 76
subcloud_weak0.516 760.676 620.591 850.609 730.442 750.774 610.335 750.597 670.422 800.357 790.932 680.341 760.094 850.298 810.528 660.473 790.676 630.495 710.602 860.721 750.349 87
SegGroup_sempermissive0.627 580.818 210.747 380.701 480.602 430.764 650.385 690.629 640.490 630.508 500.931 690.409 620.201 580.564 450.725 410.618 540.692 560.539 620.873 460.794 460.548 65
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
Supervoxel-CNN0.635 490.656 650.711 500.719 440.613 400.757 680.444 460.765 320.534 510.566 310.928 700.478 310.272 300.636 240.531 640.664 360.645 710.508 680.864 540.792 510.611 39
SPLAT Netcopyleft0.393 880.472 880.511 880.606 740.311 890.656 790.245 860.405 820.328 880.197 900.927 710.227 890.000 930.001 930.249 830.271 910.510 860.383 890.593 870.699 790.267 89
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
SurfaceConvPF0.442 840.505 830.622 800.380 900.342 860.654 800.227 880.397 830.367 840.276 860.924 720.240 870.198 600.359 780.262 820.366 850.581 770.435 840.640 830.668 820.398 82
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
SALANet0.670 340.816 220.770 260.768 330.652 290.807 410.451 360.747 370.659 120.545 360.924 720.473 330.149 780.571 430.811 280.635 500.746 360.623 230.892 310.794 460.570 56
CCRFNet0.589 660.766 380.659 720.683 540.470 730.740 720.387 680.620 660.490 630.476 590.922 740.355 740.245 430.511 590.511 670.571 680.643 720.493 720.872 480.762 640.600 47
FCPNpermissive0.447 820.679 610.604 840.578 790.380 810.682 780.291 820.106 910.483 660.258 890.920 750.258 860.025 900.231 880.325 800.480 780.560 810.463 780.725 760.666 830.231 91
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
FusionAwareConv0.630 560.604 750.741 430.766 350.590 470.747 700.501 160.734 420.503 590.527 430.919 760.454 420.323 110.550 530.420 750.678 310.688 580.544 570.896 270.795 440.627 36
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
Tangent Convolutionspermissive0.438 860.437 890.646 750.474 840.369 820.645 820.353 730.258 880.282 900.279 850.918 770.298 810.147 790.283 830.294 810.487 760.562 800.427 850.619 850.633 850.352 86
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DMV, FTSDF0.501 780.558 800.608 830.424 890.478 710.690 760.246 850.586 700.468 690.450 640.911 780.394 650.160 740.438 700.212 860.432 820.541 840.475 760.742 740.727 730.477 77
SSC-UNetpermissive0.308 910.353 900.290 920.278 920.166 920.553 890.169 910.286 870.147 920.148 920.908 790.182 910.064 880.023 920.018 930.354 870.363 900.345 900.546 900.685 800.278 88
DVVNet0.562 710.648 660.700 560.770 320.586 500.687 770.333 760.650 600.514 570.475 600.906 800.359 720.223 480.340 790.442 740.422 830.668 660.501 690.708 780.779 570.534 68
ScanNet+FTSDF0.383 890.297 910.491 890.432 880.358 850.612 870.274 830.116 900.411 810.265 870.904 810.229 880.079 870.250 840.185 890.320 890.510 860.385 880.548 880.597 900.394 83
GMLPs0.538 740.495 840.693 610.647 680.471 720.793 520.300 790.477 800.505 580.358 780.903 820.327 770.081 860.472 680.529 650.448 810.710 470.509 660.746 730.737 710.554 64
SQN_0.1%0.569 690.676 620.696 590.657 640.497 670.779 600.424 520.548 750.515 560.376 750.902 830.422 580.357 30.379 760.456 710.596 620.659 680.544 570.685 800.665 840.556 63
PNET20.442 840.548 810.548 860.597 770.363 840.628 860.300 790.292 860.374 830.307 830.881 840.268 850.186 640.238 860.204 880.407 840.506 890.449 800.667 820.620 860.462 80
SD-DETR0.576 680.746 440.609 820.445 870.517 660.643 830.366 710.714 480.456 720.468 610.870 850.432 500.264 360.558 480.674 500.586 660.688 580.482 750.739 750.733 720.537 67
3DSM_DMMF0.631 530.626 700.745 390.801 230.607 410.751 690.506 140.729 440.565 430.491 550.866 860.434 490.197 610.595 340.630 570.709 220.705 520.560 490.875 430.740 700.491 74
PanopticFusion-label0.529 750.491 850.688 650.604 750.386 800.632 840.225 890.705 520.434 780.293 840.815 870.348 750.241 440.499 630.669 510.507 740.649 690.442 830.796 680.602 870.561 60
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
3DMV0.484 800.484 860.538 870.643 700.424 780.606 880.310 770.574 720.433 790.378 740.796 880.301 800.214 520.537 550.208 870.472 800.507 880.413 860.693 790.602 870.539 66
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
ScanNetpermissive0.306 920.203 920.366 910.501 820.311 890.524 900.211 900.002 930.342 870.189 910.786 890.145 920.102 840.245 850.152 900.318 900.348 910.300 910.460 910.437 920.182 92
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
Online SegFusion0.515 770.607 740.644 760.579 780.434 760.630 850.353 730.628 650.440 760.410 710.762 900.307 790.167 710.520 570.403 770.516 730.565 790.447 810.678 810.701 780.514 72
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
PointNet++permissive0.339 900.584 770.478 900.458 860.256 910.360 920.250 840.247 890.278 910.261 880.677 910.183 900.117 820.212 900.145 910.364 860.346 920.232 920.548 880.523 910.252 90
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
3DWSSS0.425 870.525 820.647 740.522 810.324 870.488 910.077 920.712 500.353 850.401 720.636 920.281 830.176 670.340 790.565 610.175 920.551 820.398 870.370 920.602 870.361 85
ERROR0.054 930.000 930.041 930.172 930.030 930.062 930.001 930.035 920.004 930.051 930.143 930.019 930.003 920.041 910.050 920.003 930.054 930.018 930.005 930.264 930.082 93


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Mask3D0.566 10.926 20.597 40.408 150.420 10.737 30.239 20.598 70.386 10.458 20.549 10.568 40.716 10.601 200.480 30.646 50.575 20.922 20.364 4
GraphCut0.552 21.000 10.611 30.438 110.392 40.714 40.139 50.598 80.327 30.389 40.510 40.598 10.427 180.754 90.463 40.761 10.588 10.903 50.329 11
SPFormer0.549 30.745 90.640 10.484 40.395 30.739 20.311 10.566 120.335 20.468 10.492 50.555 50.478 100.747 110.436 50.712 20.540 30.893 70.343 10
DKNet0.532 40.815 50.624 20.517 20.377 60.749 10.107 70.509 180.304 50.437 30.475 60.581 20.539 60.775 60.339 90.640 70.506 50.901 60.385 3
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
IPCA-Inst0.520 50.889 30.551 100.548 10.418 20.665 130.064 140.585 90.260 110.277 140.471 80.500 60.644 20.785 40.369 60.591 120.511 40.878 130.362 5
SoftGroup++0.513 60.704 150.578 70.398 160.363 100.704 50.061 150.647 40.297 90.378 70.537 20.343 80.614 30.828 30.295 140.710 40.505 60.875 150.394 1
SSTNetpermissive0.506 70.738 120.549 110.497 30.316 140.693 80.178 40.377 270.198 160.330 80.463 90.576 30.515 80.857 20.494 10.637 80.457 110.943 10.290 17
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
SoftGrouppermissive0.504 80.667 210.579 60.372 180.381 50.694 70.072 110.677 20.303 60.387 50.531 30.319 120.582 40.754 80.318 100.643 60.492 70.907 40.388 2
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
OccuSeg+instance0.486 90.802 60.536 130.428 130.369 70.702 60.205 30.331 310.301 70.379 60.474 70.327 90.437 140.862 10.485 20.601 110.394 190.846 220.273 19
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
TopoSeg0.479 100.704 150.564 80.467 70.366 80.633 200.068 120.554 150.262 100.328 90.447 100.323 100.534 70.722 130.288 160.614 90.482 80.912 30.358 7
SSEC0.462 110.778 70.586 50.394 170.341 110.674 100.114 60.556 140.313 40.303 110.430 110.271 150.358 240.616 190.295 130.589 130.467 100.880 110.355 8
HAISpermissive0.457 120.704 150.561 90.457 80.364 90.673 110.046 220.547 160.194 170.308 100.426 120.288 140.454 130.711 140.262 180.563 190.434 140.889 90.344 9
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
DD-UNet+Group0.436 130.630 270.508 180.480 50.310 150.624 230.065 130.638 50.174 180.256 170.384 160.194 250.428 160.759 70.289 150.574 170.400 170.849 200.291 16
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
INS-Conv-instance0.435 140.716 140.495 200.355 200.331 120.689 90.102 90.394 260.208 150.280 120.395 150.250 180.544 50.741 120.309 120.536 250.391 200.842 250.258 23
Mask-Group0.434 150.778 70.516 160.471 60.330 130.658 140.029 240.526 170.249 120.256 160.400 140.309 130.384 220.296 380.368 70.575 160.425 150.877 140.362 6
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
Box2Mask0.433 160.741 100.463 250.433 120.283 170.625 220.103 80.298 340.125 240.260 150.424 130.322 110.472 110.701 160.363 80.711 30.309 320.882 100.272 21
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
RPGN0.428 170.630 270.508 170.367 190.249 220.658 150.016 310.673 30.131 230.234 200.383 170.270 160.434 150.748 100.274 170.609 100.406 160.842 240.267 22
DENet0.413 180.741 100.520 140.237 310.284 160.523 280.097 100.691 10.138 200.209 290.229 300.238 200.390 200.707 150.310 110.448 330.470 90.892 80.310 13
PointGroup0.407 190.639 260.496 190.415 140.243 240.645 190.021 290.570 110.114 250.211 270.359 190.217 230.428 170.660 170.256 190.562 200.341 240.860 170.291 15
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
CSC-Pretrained0.405 200.738 120.465 240.331 240.205 270.655 160.051 190.601 60.092 280.211 280.329 220.198 240.459 120.775 50.195 260.524 270.400 180.878 120.184 29
PE0.396 210.667 210.467 230.446 100.243 230.624 240.022 280.577 100.106 260.219 220.340 200.239 190.487 90.475 290.225 220.541 240.350 220.818 260.273 20
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
Dyco3Dcopyleft0.395 220.642 250.518 150.447 90.259 210.666 120.050 200.251 380.166 190.231 210.362 180.232 210.331 260.535 230.229 210.587 140.438 130.850 180.317 12
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
SSEN0.384 230.852 40.494 210.192 330.226 260.648 180.022 270.398 250.299 80.277 130.317 240.231 220.194 350.514 260.196 240.586 150.444 120.843 230.184 28
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
PCJC0.375 240.704 150.542 120.284 280.197 290.649 170.006 340.426 210.138 210.242 180.304 250.183 280.388 210.629 180.141 350.546 230.344 230.738 310.283 18
SphereSeg0.357 250.651 240.411 270.345 210.264 200.630 210.059 160.289 360.212 130.240 190.336 210.158 290.305 270.557 210.159 320.455 320.341 250.726 330.294 14
3D-MPA0.355 260.457 370.484 220.299 260.277 180.591 250.047 210.332 300.212 140.217 230.278 260.193 260.413 190.410 320.195 250.574 180.352 210.849 190.213 26
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
RWSeg0.348 270.475 340.456 260.320 250.275 190.476 300.020 300.491 200.056 350.212 260.320 230.261 170.302 280.520 240.182 280.557 210.285 340.867 160.197 27
GICN0.341 280.580 290.371 290.344 220.198 280.469 310.052 180.564 130.093 270.212 250.212 320.127 310.347 250.537 220.206 230.525 260.329 270.729 320.241 24
One_Thing_One_Clickpermissive0.326 290.472 350.361 300.232 320.183 300.555 260.000 410.498 190.038 370.195 300.226 310.362 70.168 360.469 300.251 200.553 220.335 260.846 210.117 37
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Occipital-SCS0.320 300.679 200.352 310.334 230.229 250.436 320.025 250.412 240.058 330.161 360.240 290.085 330.262 290.496 280.187 270.467 300.328 280.775 270.231 25
Sparse R-CNN0.292 310.704 150.213 410.153 350.154 320.551 270.053 170.212 390.132 220.174 330.274 270.070 350.363 230.441 310.176 290.424 350.234 360.758 290.161 33
MTML0.282 320.577 300.380 280.182 340.107 380.430 330.001 380.422 220.057 340.179 320.162 350.070 360.229 310.511 270.161 300.491 280.313 290.650 380.162 31
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
SALoss-ResNet0.262 330.667 210.335 320.067 420.123 360.427 340.022 260.280 370.058 320.216 240.211 330.039 390.142 380.519 250.106 390.338 390.310 310.721 340.138 34
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MASCpermissive0.254 340.463 360.249 400.113 360.167 310.412 360.000 400.374 280.073 290.173 340.243 280.130 300.228 320.368 340.160 310.356 370.208 370.711 350.136 35
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
3D-BoNet0.253 350.519 320.324 350.251 300.137 350.345 410.031 230.419 230.069 300.162 350.131 370.052 370.202 340.338 360.147 340.301 420.303 330.651 370.178 30
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
SPG_WSIS0.251 360.380 390.274 380.289 270.144 330.413 350.000 410.311 320.065 310.113 380.130 380.029 410.204 330.388 330.108 380.459 310.311 300.769 280.127 36
SegGroup_inspermissive0.246 370.556 310.335 330.062 440.115 370.490 290.000 410.297 350.018 410.186 310.142 360.083 340.233 300.216 400.153 330.469 290.251 350.744 300.083 40
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
PanopticFusion-inst0.214 380.250 430.330 340.275 290.103 390.228 470.000 410.345 290.024 390.088 400.203 340.186 270.167 370.367 350.125 360.221 450.112 470.666 360.162 32
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
UNet-backbone0.161 390.519 320.259 390.084 380.059 410.325 430.002 360.093 440.009 430.077 420.064 410.045 380.044 450.161 420.045 410.331 400.180 390.566 390.033 48
3D-SISpermissive0.161 390.407 380.155 450.068 410.043 450.346 400.001 370.134 410.005 440.088 390.106 400.037 400.135 400.321 370.028 440.339 380.116 460.466 420.093 39
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
R-PointNet0.158 410.356 400.173 430.113 370.140 340.359 370.012 320.023 460.039 360.134 370.123 390.008 450.089 410.149 430.117 370.221 440.128 440.563 400.094 38
Region-18class0.146 420.175 470.321 360.080 390.062 400.357 380.000 410.307 330.002 450.066 430.044 430.000 490.018 470.036 470.054 400.447 340.133 420.472 410.060 43
SemRegionNet-20cls0.121 430.296 420.203 420.071 400.058 420.349 390.000 410.150 400.019 400.054 440.034 450.017 440.052 430.042 460.013 470.209 460.183 380.371 430.057 44
Hier3Dcopyleft0.117 440.222 450.161 440.054 460.027 460.289 440.000 410.124 420.001 470.079 410.061 420.027 420.141 390.240 390.005 480.310 410.129 430.153 480.081 41
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
3D-BEVIS0.117 440.250 430.308 370.020 480.009 490.269 460.006 350.008 470.029 380.037 470.014 480.003 470.036 460.147 440.042 420.381 360.118 450.362 440.069 42
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
tmp0.113 460.333 410.151 460.056 450.053 430.344 420.000 410.105 430.016 420.049 450.035 440.020 430.053 420.048 450.013 460.183 470.173 400.344 450.054 45
ASIS0.085 470.037 480.080 480.066 430.047 440.282 450.000 410.052 450.002 460.047 460.026 460.001 480.046 440.194 410.031 430.264 430.140 410.167 470.047 47
Sgpn_scannet0.049 480.023 490.134 470.031 470.013 480.144 480.006 330.008 480.000 480.028 480.017 470.003 460.009 490.000 480.021 450.122 480.095 480.175 460.054 46
MaskRCNN 2d->3d Proj0.022 490.185 460.000 490.000 490.015 470.000 490.000 390.006 490.000 480.010 490.006 490.107 320.012 480.000 480.002 490.027 490.004 490.022 490.001 49


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 180.648 30.463 30.549 20.742 60.676 20.628 20.961 10.420 20.379 50.684 60.381 130.732 20.723 30.599 20.827 110.851 20.634 5
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 10.512 10.422 140.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 20.481 20.451 100.769 30.656 30.567 30.931 30.395 40.390 40.700 30.534 30.689 80.770 20.574 30.865 60.831 30.675 4
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
RFBNet0.592 70.616 90.758 50.659 50.581 90.330 80.469 90.655 130.543 120.524 70.924 40.355 100.336 90.572 120.479 70.671 110.648 70.480 90.814 140.814 50.614 8
CMX0.613 40.681 70.725 80.502 110.634 50.297 150.478 80.830 20.651 40.537 60.924 40.375 50.315 100.686 50.451 100.714 40.543 170.504 50.894 40.823 40.688 3
DCRedNet0.583 90.682 60.723 90.542 100.510 150.310 120.451 100.668 110.549 110.520 80.920 60.375 50.446 20.528 150.417 110.670 120.577 140.478 100.862 70.806 70.628 7
AdapNet++copyleft0.503 160.613 100.722 100.418 140.358 210.337 60.370 180.479 190.443 170.368 190.907 70.207 180.213 200.464 190.525 40.618 170.657 60.450 140.788 150.721 180.408 20
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
MCA-Net0.595 60.533 150.756 60.746 40.590 80.334 70.506 50.670 100.587 70.500 100.905 80.366 80.352 70.601 90.506 50.669 130.648 70.501 60.839 100.769 100.516 16
FuseNetpermissive0.535 150.570 140.681 150.182 170.512 140.290 160.431 130.659 120.504 150.495 120.903 90.308 140.428 30.523 160.365 140.676 90.621 100.470 110.762 170.779 90.541 12
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
MIX6D_RVC0.582 100.695 40.687 130.225 160.632 60.328 100.550 10.748 50.623 50.494 130.890 100.350 110.254 180.688 40.454 80.716 30.597 130.489 80.881 50.768 110.575 10
SSMAcopyleft0.577 110.695 40.716 110.439 130.563 110.314 110.444 120.719 80.551 100.503 90.887 110.346 120.348 80.603 80.353 150.709 50.600 110.457 120.901 20.786 80.599 9
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
FAN_NV_RVC0.586 80.510 160.764 40.079 210.620 70.330 80.494 60.753 40.573 80.556 40.884 120.405 30.303 120.718 20.452 90.672 100.658 50.509 40.898 30.813 60.727 2
segfomer with 6d0.542 140.594 120.687 130.146 190.579 100.308 130.515 40.703 90.472 160.498 110.868 130.369 70.282 130.589 110.390 120.701 70.556 160.416 170.860 80.759 130.539 14
SN_RN152pyrx8_RVCcopyleft0.546 120.572 130.663 160.638 70.518 130.298 140.366 190.633 160.510 140.446 160.864 140.296 150.267 150.542 140.346 160.704 60.575 150.431 150.853 90.766 120.630 6
MSeg1080_RVCpermissive0.485 180.505 170.709 120.092 200.427 180.241 180.411 150.654 140.385 210.457 150.861 150.053 210.279 140.503 170.481 60.645 140.626 90.365 190.748 190.725 170.529 15
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
DMMF_3d0.605 50.651 80.744 70.782 30.637 40.387 40.536 30.732 70.590 60.540 50.856 160.359 90.306 110.596 100.539 20.627 160.706 40.497 70.785 160.757 140.476 17
3DMV (2d proj)0.498 170.481 190.612 180.579 90.456 170.343 50.384 160.623 170.525 130.381 180.845 170.254 170.264 170.557 130.182 190.581 190.598 120.429 160.760 180.661 200.446 19
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
UDSSEG_RVC0.545 130.610 110.661 170.588 80.556 120.268 170.482 70.642 150.572 90.475 140.836 180.312 130.367 60.630 70.189 180.639 150.495 190.452 130.826 120.756 150.541 12
ScanNet (2d proj)permissive0.330 210.293 200.521 200.657 60.361 200.161 200.250 200.004 210.440 180.183 210.836 180.125 200.060 210.319 210.132 200.417 200.412 200.344 200.541 210.427 210.109 21
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ILC-PSPNet0.475 190.490 180.581 190.289 150.507 160.067 210.379 170.610 180.417 190.435 170.822 200.278 160.267 150.503 170.228 170.616 180.533 180.375 180.820 130.729 160.560 11
Enet (reimpl)0.376 200.264 210.452 210.452 120.365 190.181 190.143 210.456 200.409 200.346 200.769 210.164 190.218 190.359 200.123 210.403 210.381 210.313 210.571 200.685 190.472 18
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
DMMF0.003 220.000 220.005 220.000 220.000 220.037 220.001 220.000 220.001 220.005 220.003 220.000 220.000 220.000 220.000 220.000 220.002 220.001 220.000 220.006 220.000 22


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
UniDet_RVC0.205 10.381 10.323 10.037 10.226 10.177 10.063 10.277 10.120 10.067 10.131 10.074 20.317 10.080 10.235 10.289 10.141 10.678 10.080 1
MaskRCNN_ScanNetpermissive0.119 20.129 20.212 20.002 20.112 20.148 20.014 20.205 20.044 20.066 20.078 20.095 10.142 20.030 20.128 20.139 20.080 20.459 20.057 2
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
multi-taskpermissive0.700 10.500 11.000 10.882 20.500 21.000 11.000 10.500 21.000 11.000 10.778 10.000 20.938 10.000 2
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.691 20.500 10.938 20.824 31.000 11.000 10.500 21.000 10.857 20.500 20.556 30.000 20.812 20.500 1
SE-ResNeXt-SSMA0.498 30.000 40.812 30.941 10.500 20.500 30.500 20.500 20.429 40.500 20.667 20.500 10.625 30.000 2
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.353 40.250 30.812 30.529 40.500 20.500 30.000 40.500 20.571 30.000 40.556 30.000 20.375 40.000 2