Results for GraphCut
Submission data
Full name | Learning Superpoint Graph Cut for 3D Instance Segmentation |
Input Data Types | Uses Color,Uses Geometry Uses 3D |
Programming language(s) | python, c++, cuda |
Hardware | TITAN RTX, Core i5, 24GB Memory |
Submission creation date | 17 May, 2022 |
Last edited | 19 May, 2022 |
3D semantic instance results
Info | avg ap 50% | bathtub | bed | bookshelf | cabinet | chair | counter | curtain | desk | door | otherfurniture | picture | refrigerator | shower curtain | sink | sofa | table | toilet | window |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.732 | 1.000 | 0.788 | 0.724 | 0.642 | 0.859 | 0.248 | 0.787 | 0.618 | 0.596 | 0.653 | 0.722 | 0.583 | 1.000 | 0.766 | 0.861 | 0.825 | 1.000 | 0.504 |