Results for TST3D
Submission data
Full name | Two-scale Superpoint with Twin-attention for 3D Instance Segmentation |
Description | MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation |
Input Data Types | Uses Color,Uses Geometry Uses 3D |
Programming language(s) | Python |
Hardware | NVIDIA A100 |
Submission creation date | 27 Sep, 2023 |
Last edited | 25 Jul, 2024 |
3D semantic instance results
Info | avg ap 50% | bathtub | bed | bookshelf | cabinet | chair | counter | curtain | desk | door | otherfurniture | picture | refrigerator | shower curtain | sink | sofa | table | toilet | window |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.795 | 1.000 | 0.929 | 0.918 | 0.709 | 0.884 | 0.596 | 0.704 | 0.769 | 0.734 | 0.644 | 0.699 | 0.751 | 1.000 | 0.794 | 0.876 | 0.757 | 0.997 | 0.550 |