The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).



This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail ioualarm clockarmchairbackpackbagballbarbasketbathroom cabinetbathroom counterbathroom stallbathroom stall doorbathroom vanitybathtubbedbenchbicyclebinblackboardblanketblindsboardbookbookshelfbottlebowlboxbroombucketbulletin boardcabinetcalendarcandlecartcase of water bottlescd caseceilingceiling lightchairclockclosetcloset doorcloset rodcloset wallclothesclothes dryercoat rackcoffee kettlecoffee makercoffee tablecolumncomputer towercontainercopiercouchcountercratecupcurtaincushiondecorationdeskdining tabledish rackdishwasherdividerdoordoorframedresserdumbbelldustpanend tablefanfile cabinetfire alarmfire extinguisherfireplacefloorfolded chairfurnitureguitarguitar casehair dryerhandicap barhatheadphonesironing boardjacketkeyboardkeyboard pianokitchen cabinetkitchen counterladderlamplaptoplaundry basketlaundry detergentlaundry hamperledgelightlight switchluggagemachinemailboxmatmattressmicrowavemini fridgemirrormonitormousemusic standnightstandobjectoffice chairottomanovenpaperpaper bagpaper cutterpaper towel dispenserpaper towel rollpersonpianopicturepillarpillowpipeplantplateplungerposterpotted plantpower outletpower stripprinterprojectorprojector screenpurserackradiatorrailrange hoodrecycling binrefrigeratorscaleseatshelfshoeshowershower curtainshower curtain rodshower doorshower floorshower headshower wallsignsinksoap dishsoap dispensersofa chairspeakerstair railstairsstandstoolstorage binstorage containerstorage organizerstovestructurestuffed animalsuitcasetabletelephonetissue boxtoastertoaster oventoilettoilet papertoilet paper dispensertoilet paper holdertoilet seat cover dispensertoweltrash bintrash cantraytubetvtv standvacuum cleanerventwallwardrobewashing machinewater bottlewater coolerwater pitcherwhiteboardwindowwindowsill
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
CeCo0.340 60.551 80.247 120.181 50.475 120.057 140.142 110.000 30.000 60.000 10.387 50.463 50.499 90.924 20.774 110.213 60.257 120.000 30.546 140.100 100.006 80.615 20.177 160.534 60.246 50.000 90.400 40.000 10.338 10.006 150.484 40.609 40.000 10.083 100.000 20.873 90.089 50.661 130.000 60.048 140.560 40.408 60.892 70.000 10.000 20.586 10.616 80.000 100.692 80.900 70.721 110.162 10.228 50.860 100.000 10.000 100.575 40.083 30.550 30.347 40.624 120.410 100.360 80.740 30.109 120.321 140.660 70.000 70.121 80.939 120.143 80.000 10.400 20.003 120.190 100.564 50.652 90.615 100.421 40.304 130.579 10.547 50.000 40.000 10.296 130.000 110.030 80.096 70.000 40.916 40.037 120.551 110.171 80.376 70.865 70.286 40.000 10.633 40.102 110.027 80.011 30.000 10.000 100.474 130.742 50.133 70.311 120.824 80.242 120.503 130.068 80.828 80.000 50.429 60.000 10.063 40.000 30.781 20.000 50.000 80.000 10.665 20.633 60.450 60.818 20.000 90.000 10.429 40.532 70.226 120.825 100.510 110.377 50.709 20.079 130.000 10.753 50.683 70.102 150.063 40.401 150.620 130.000 10.619 30.000 130.000 70.000 10.595 120.000 20.000 10.345 130.564 50.411 70.603 10.384 80.945 90.266 100.643 50.367 130.304 10.663 90.000 10.010 70.726 140.767 70.898 30.000 10.784 120.435 10.861 60.000 10.447 110.000 140.257 60.656 100.377 10
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
OA-CNN-L_ScanNet2000.333 100.558 40.269 80.124 120.448 140.080 80.272 40.000 30.000 60.000 10.342 70.515 30.524 70.713 130.789 90.158 120.384 110.000 30.806 50.125 60.000 90.496 80.332 60.498 130.227 70.024 60.474 20.000 10.003 20.071 80.487 30.000 100.000 10.110 70.000 20.876 70.013 160.703 30.000 60.076 80.473 120.355 110.906 60.000 10.000 20.476 60.706 10.000 100.672 100.835 120.748 80.015 120.223 60.860 100.000 10.000 100.572 60.000 70.509 60.313 70.662 40.398 130.396 70.411 120.276 20.527 30.711 50.000 70.076 120.946 60.166 60.000 10.022 100.160 60.183 120.493 120.699 80.637 50.403 50.330 120.406 120.526 60.024 20.000 10.392 100.000 110.016 150.000 110.196 30.915 50.112 110.557 100.197 50.352 90.877 30.000 110.000 10.592 110.103 100.000 130.067 10.000 10.089 60.735 70.625 110.130 90.568 60.836 70.271 70.534 80.043 120.799 100.001 40.445 50.000 10.000 70.024 20.661 40.000 50.262 20.000 10.591 70.517 120.373 80.788 70.021 70.000 10.455 30.517 80.320 80.823 110.200 160.001 160.150 50.100 110.000 10.736 80.668 90.103 140.052 50.662 30.720 80.000 10.602 60.112 60.002 60.000 10.637 80.000 20.000 10.621 90.569 40.398 80.412 50.234 110.949 60.363 40.492 140.495 100.251 40.665 80.000 10.001 110.805 70.833 60.794 110.000 10.821 50.314 50.843 100.000 10.560 100.245 60.262 50.713 40.370 11
IMFSegNet0.334 80.532 120.251 100.179 60.486 90.041 150.139 120.003 10.283 30.000 10.274 140.191 140.457 130.704 140.795 70.197 90.830 50.000 30.710 80.055 150.064 40.518 60.305 90.458 160.216 110.027 50.284 120.000 10.000 30.044 110.406 90.561 60.000 10.080 110.000 20.873 90.021 140.683 80.000 60.076 80.494 100.363 90.648 150.000 10.000 20.425 90.649 40.000 100.668 120.908 60.740 100.010 130.206 70.862 90.000 10.000 100.560 80.000 70.359 120.237 110.631 110.408 110.411 40.322 140.246 40.439 90.599 120.047 40.213 60.940 100.139 110.000 10.369 50.124 90.188 110.495 100.624 100.626 70.320 130.595 40.495 70.496 100.000 40.000 10.340 110.014 60.032 60.135 50.000 40.903 80.277 60.612 80.196 60.344 110.848 130.260 50.000 10.574 120.073 150.062 40.000 40.000 10.091 50.839 30.776 30.123 110.392 80.756 120.274 50.518 110.029 150.842 30.000 50.357 120.000 10.035 60.000 30.444 110.793 20.245 40.000 10.512 150.512 140.159 140.713 120.000 90.000 10.336 120.484 110.569 20.852 80.615 60.120 110.068 100.228 70.000 10.733 90.773 10.190 40.000 90.608 50.792 40.000 10.597 70.000 130.025 20.000 10.573 160.000 20.000 10.508 100.555 70.363 90.139 110.610 20.947 80.305 60.594 90.527 80.009 160.633 120.000 10.060 30.820 50.604 140.799 90.000 10.799 100.034 140.784 120.000 10.618 60.424 10.134 150.646 120.214 14
GSTran0.334 90.533 110.250 110.179 70.487 80.041 150.139 120.003 10.273 40.000 10.273 150.189 150.465 120.704 140.794 80.198 80.831 40.000 30.712 70.055 150.063 50.518 60.306 80.459 150.217 90.028 40.282 130.000 10.000 30.044 110.405 100.558 70.000 10.080 110.000 20.873 90.020 150.684 70.000 60.075 110.496 90.363 90.651 140.000 10.000 20.425 90.648 50.000 100.669 110.914 50.741 90.009 140.200 80.864 80.000 10.000 100.560 80.000 70.357 130.233 120.633 100.408 110.411 40.320 150.242 50.440 80.598 130.047 40.205 70.940 100.139 110.000 10.372 40.138 80.191 90.495 100.618 120.624 80.321 110.595 40.496 60.499 80.000 40.000 10.340 110.014 60.032 60.136 40.000 40.903 80.279 50.601 90.198 40.345 100.849 110.260 50.000 10.573 130.072 160.060 50.000 40.000 10.089 60.838 40.775 40.125 100.381 100.752 130.274 50.517 120.032 140.841 40.000 50.354 130.000 10.047 50.000 30.439 120.787 30.252 30.000 10.512 150.507 150.158 150.717 110.000 90.000 10.337 110.483 120.570 10.853 70.614 70.121 100.070 90.229 60.000 10.732 100.773 10.193 30.000 90.606 60.791 50.000 10.593 90.000 130.010 50.000 10.574 150.000 20.000 10.507 110.554 80.361 100.136 120.608 30.948 70.304 70.593 100.533 70.011 150.634 110.000 10.060 30.821 40.613 120.797 100.000 10.799 100.036 130.782 130.000 10.609 70.423 20.133 160.647 110.213 15
DITR0.449 10.629 10.392 10.289 10.650 10.168 10.862 10.000 30.313 20.000 10.580 10.568 10.564 30.766 70.867 10.238 50.949 10.000 30.866 20.300 10.000 90.664 10.482 10.508 110.317 10.420 10.551 10.000 10.000 30.486 10.519 10.662 30.000 10.385 10.000 20.901 30.079 80.727 10.000 60.160 20.606 30.417 40.967 20.000 10.000 20.498 50.596 100.130 20.728 30.998 10.805 10.000 160.314 10.934 20.000 10.278 40.636 10.000 70.403 110.367 10.741 20.484 10.500 21.000 10.113 110.828 10.815 10.000 70.733 10.969 40.374 20.000 10.579 11.000 10.230 50.617 40.983 10.729 10.423 30.855 10.508 50.622 20.018 30.000 10.591 30.034 40.028 90.066 100.869 10.904 70.334 20.651 50.716 10.514 20.871 60.315 20.000 10.664 30.128 30.014 100.000 40.000 10.392 20.851 20.817 10.153 30.823 10.991 10.318 30.680 10.134 20.913 10.157 10.448 40.000 10.000 70.000 30.826 10.978 10.091 50.000 10.660 40.647 30.571 20.804 40.001 80.000 10.480 20.700 10.421 50.947 10.433 140.411 30.148 60.262 40.000 10.849 10.709 50.138 100.150 10.714 20.889 10.000 10.698 10.222 30.000 70.000 10.720 20.000 20.000 10.805 10.600 10.642 20.268 90.904 10.982 20.477 10.632 60.718 20.139 90.776 20.000 10.178 10.886 10.962 10.839 80.000 10.851 20.043 120.869 30.000 10.710 10.315 50.348 20.753 20.397 8
BFANet ScanNet200permissive0.360 40.553 60.293 40.193 40.483 100.096 50.266 50.000 30.000 60.000 10.298 120.255 110.661 10.810 50.810 30.194 100.785 60.000 30.000 160.161 50.000 90.494 90.382 20.574 30.258 40.000 90.372 80.000 10.000 30.043 130.436 70.000 100.000 10.239 20.000 20.901 30.105 10.689 40.025 30.128 30.614 20.436 10.493 160.000 10.000 20.526 40.546 120.109 50.651 140.953 40.753 60.101 50.143 120.897 40.000 10.431 10.469 140.000 70.522 50.337 50.661 60.459 30.409 60.666 50.102 130.508 50.757 40.000 70.060 130.970 30.497 10.000 10.376 30.511 30.262 40.688 20.921 20.617 90.321 110.590 60.491 80.556 40.000 40.000 10.481 40.093 10.043 20.284 20.000 40.875 140.135 90.669 40.124 120.394 60.849 110.298 30.000 10.476 160.088 120.042 70.000 40.000 10.254 30.653 100.741 60.215 10.573 50.852 50.266 90.654 20.056 110.835 50.000 50.492 10.000 10.000 70.000 30.612 80.000 50.000 80.000 10.616 50.469 160.460 50.698 130.516 20.000 10.378 70.563 40.476 40.863 50.574 90.330 60.000 110.282 30.000 10.760 40.710 40.233 10.000 90.641 40.814 20.000 10.585 100.053 100.000 70.000 10.629 90.000 20.000 10.678 30.528 120.534 40.129 130.596 40.973 40.264 110.772 20.526 90.139 90.707 40.000 10.000 120.764 130.591 150.848 60.000 10.827 40.338 30.806 110.000 10.568 90.151 90.358 10.659 90.510 4
ALS-MinkowskiNetcopyleft0.414 20.610 20.322 30.271 20.542 20.153 20.159 100.000 30.000 60.000 10.404 40.503 40.532 60.672 160.804 50.285 10.888 20.000 30.900 10.226 20.087 20.598 40.342 40.671 10.217 90.087 30.449 30.000 10.000 30.253 20.477 51.000 10.000 10.118 40.000 20.905 10.071 120.710 20.076 10.047 150.665 10.376 80.981 10.000 10.000 20.466 70.632 70.113 40.769 10.956 30.795 20.031 80.314 10.936 10.000 10.390 20.601 20.000 70.458 70.366 20.719 30.440 50.564 10.699 40.314 10.464 60.784 20.200 10.283 50.973 10.142 90.000 10.250 70.285 50.220 60.718 10.752 50.723 20.460 10.248 150.475 90.463 130.000 40.000 10.446 70.021 50.025 100.285 10.000 40.972 10.149 80.769 10.230 20.535 10.879 20.252 70.000 10.693 10.129 20.000 130.000 40.000 10.447 10.958 10.662 90.159 20.598 30.780 110.344 20.646 30.106 50.893 20.135 20.455 30.000 10.194 30.259 10.726 30.475 40.000 80.000 10.741 10.865 10.571 20.817 30.445 30.000 10.506 10.630 30.230 110.916 20.728 10.635 11.000 10.252 50.000 10.804 20.697 60.137 110.043 60.717 10.807 30.000 10.510 130.245 10.000 70.000 10.709 30.000 20.000 10.703 20.572 30.646 10.223 100.531 50.984 10.397 30.813 10.798 10.135 120.800 10.000 10.097 20.832 20.752 80.842 70.000 10.852 10.149 90.846 90.000 10.666 50.359 40.252 70.777 10.690 2
PonderV2 ScanNet2000.346 50.552 70.270 70.175 80.497 70.070 110.239 60.000 30.000 60.000 10.232 160.412 70.584 20.842 30.804 50.212 70.540 90.000 30.433 150.106 90.000 90.590 50.290 110.548 40.243 60.000 90.356 100.000 10.000 30.062 90.398 120.441 90.000 10.104 90.000 20.888 50.076 100.682 90.030 20.094 60.491 110.351 120.869 90.000 10.063 10.403 110.700 20.000 100.660 130.881 80.761 30.050 70.186 90.852 120.000 10.007 80.570 70.100 20.565 20.326 60.641 90.431 60.290 130.621 60.259 30.408 100.622 90.125 20.082 110.950 50.179 50.000 10.263 60.424 40.193 80.558 60.880 30.545 120.375 60.727 30.445 110.499 80.000 40.000 10.475 60.002 90.034 50.083 80.000 40.924 20.290 40.636 60.115 130.400 50.874 40.186 90.000 10.611 70.128 30.113 20.000 40.000 10.000 100.584 110.636 100.103 130.385 90.843 60.283 40.603 60.080 70.825 90.000 50.377 90.000 10.000 70.000 30.457 100.000 50.000 80.000 10.574 110.608 80.481 40.792 50.394 40.000 10.357 90.503 100.261 100.817 120.504 120.304 70.472 40.115 100.000 10.750 60.677 80.202 20.000 90.509 80.729 60.000 10.519 120.000 130.000 70.000 10.620 110.000 20.000 10.660 60.560 60.486 50.384 60.346 90.952 50.247 130.667 40.436 110.269 30.691 60.000 10.010 70.787 90.889 30.880 40.000 10.810 70.336 40.860 70.000 10.606 80.009 100.248 80.681 60.392 9
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
PTv3 ScanNet2000.393 30.592 30.330 20.216 30.520 30.109 40.108 150.000 30.337 10.000 10.310 110.394 80.494 110.753 90.848 20.256 30.717 70.000 30.842 30.192 40.065 30.449 100.346 30.546 50.190 120.000 90.384 60.000 10.000 30.218 30.505 20.791 20.000 10.136 30.000 20.903 20.073 110.687 60.000 60.168 10.551 50.387 70.941 30.000 10.000 20.397 120.654 30.000 100.714 50.759 140.752 70.118 40.264 40.926 30.000 10.048 50.575 40.000 70.597 10.366 20.755 10.469 20.474 30.798 20.140 90.617 20.692 60.000 70.592 30.971 20.188 40.000 10.133 90.593 20.349 10.650 30.717 70.699 30.455 20.790 20.523 30.636 10.301 10.000 10.622 20.000 110.017 140.259 30.000 40.921 30.337 10.733 20.210 30.514 20.860 80.407 10.000 10.688 20.109 80.000 130.000 40.000 10.151 40.671 80.782 20.115 120.641 20.903 20.349 10.616 40.088 60.832 70.000 50.480 20.000 10.428 10.000 30.497 90.000 50.000 80.000 10.662 30.690 20.612 10.828 10.575 10.000 10.404 60.644 20.325 70.887 40.728 10.009 150.134 70.026 160.000 10.761 30.731 30.172 60.077 30.528 70.727 70.000 10.603 50.220 40.022 30.000 10.740 10.000 20.000 10.661 40.586 20.566 30.436 40.531 50.978 30.457 20.708 30.583 50.141 70.748 30.000 10.026 50.822 30.871 40.879 50.000 10.851 20.405 20.914 10.000 10.682 30.000 140.281 30.738 30.463 6
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
L3DETR-ScanNet_2000.336 70.533 100.279 50.155 90.508 50.073 100.101 160.000 30.058 50.000 10.294 130.233 130.548 40.927 10.788 100.264 20.463 100.000 30.638 110.098 120.014 70.411 120.226 120.525 90.225 80.010 70.397 50.000 10.000 30.192 50.380 130.598 50.000 10.117 50.000 20.883 60.082 70.689 40.000 60.032 160.549 60.417 40.910 50.000 10.000 20.448 80.613 90.000 100.697 70.960 20.759 40.158 20.293 30.883 60.000 10.312 30.583 30.079 40.422 100.068 160.660 70.418 70.298 110.430 110.114 100.526 40.776 30.051 30.679 20.946 60.152 70.000 10.183 80.000 140.211 70.511 90.409 150.565 110.355 70.448 80.512 40.557 30.000 40.000 10.420 80.000 110.007 160.104 60.000 40.125 160.330 30.514 140.146 110.321 120.860 80.174 100.000 10.629 50.075 130.000 130.000 40.000 10.002 90.671 80.712 70.141 60.339 110.856 40.261 110.529 90.067 90.835 50.000 50.369 110.000 10.259 20.000 30.629 50.000 50.487 10.000 10.579 100.646 40.107 160.720 100.122 60.000 10.333 130.505 90.303 90.908 30.503 130.565 20.074 80.324 10.000 10.740 70.661 100.109 130.000 90.427 120.563 160.000 10.579 110.108 70.000 70.000 10.664 50.000 20.000 10.641 70.539 100.416 60.515 20.256 100.940 120.312 50.209 160.620 30.138 110.636 100.000 10.000 120.775 120.861 50.765 120.000 10.801 90.119 110.860 70.000 10.687 20.001 130.192 130.679 80.699 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
PPT-SpUNet-F.T.0.332 110.556 50.270 60.123 130.519 40.091 60.349 30.000 30.000 60.000 10.339 80.383 90.498 100.833 40.807 40.241 40.584 80.000 30.755 60.124 70.000 90.608 30.330 70.530 80.314 20.000 90.374 70.000 10.000 30.197 40.459 60.000 100.000 10.117 50.000 20.876 70.095 20.682 90.000 60.086 70.518 70.433 20.930 40.000 10.000 20.563 30.542 130.077 70.715 40.858 100.756 50.008 150.171 110.874 70.000 10.039 60.550 100.000 70.545 40.256 80.657 80.453 40.351 90.449 100.213 60.392 110.611 100.000 70.037 140.946 60.138 130.000 10.000 120.063 100.308 20.537 70.796 40.673 40.323 100.392 100.400 130.509 70.000 40.000 10.649 10.000 110.023 110.000 110.000 40.914 60.002 150.506 150.163 100.359 80.872 50.000 110.000 10.623 60.112 60.001 120.000 40.000 10.021 80.753 50.565 150.150 40.579 40.806 90.267 80.616 40.042 130.783 120.000 50.374 100.000 10.000 70.000 30.620 70.000 50.000 80.000 10.572 120.634 50.350 90.792 50.000 90.000 10.376 80.535 60.378 60.855 60.672 30.074 120.000 110.185 90.000 10.727 110.660 110.076 160.000 90.432 110.646 100.000 10.594 80.006 120.000 70.000 10.658 60.000 20.000 10.661 40.549 90.300 130.291 80.045 130.942 110.304 70.600 80.572 60.135 120.695 50.000 10.008 90.793 80.942 20.899 20.000 10.816 60.181 70.897 20.000 10.679 40.223 70.264 40.691 50.345 12
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormer ScanNet200permissive0.326 120.539 90.265 90.131 110.499 60.110 30.522 20.000 30.000 60.000 10.318 100.427 60.455 140.743 110.765 120.175 110.842 30.000 30.828 40.204 30.033 60.429 110.335 50.601 20.312 30.000 90.357 90.000 10.000 30.047 100.423 80.000 100.000 10.105 80.000 20.873 90.079 80.670 120.000 60.117 40.471 130.432 30.829 100.000 10.000 20.584 20.417 160.089 60.684 90.837 110.705 150.021 110.178 100.892 50.000 10.028 70.505 120.000 70.457 80.200 130.662 40.412 90.244 140.496 80.000 160.451 70.626 80.000 70.102 100.943 90.138 130.000 10.000 120.149 70.291 30.534 80.722 60.632 60.331 90.253 140.453 100.487 110.000 40.000 10.479 50.000 110.022 120.000 110.000 40.900 100.128 100.684 30.164 90.413 40.854 100.000 110.000 10.512 150.074 140.003 110.000 40.000 10.000 100.469 140.613 120.132 80.529 70.871 30.227 150.582 70.026 160.787 110.000 50.339 140.000 10.000 70.000 30.626 60.000 50.029 70.000 10.587 80.612 70.411 70.724 90.000 90.000 10.407 50.552 50.513 30.849 90.655 40.408 40.000 110.296 20.000 10.686 140.645 130.145 80.022 70.414 130.633 110.000 10.637 20.224 20.000 70.000 10.650 70.000 20.000 10.622 80.535 110.343 110.483 30.230 120.943 100.289 90.618 70.596 40.140 80.679 70.000 10.022 60.783 100.620 110.906 10.000 10.806 80.137 100.865 40.000 10.378 120.000 140.168 140.680 70.227 13
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
AWCS0.305 130.508 130.225 130.142 100.463 130.063 120.195 80.000 30.000 60.000 10.467 30.551 20.504 80.773 60.764 130.142 130.029 160.000 30.626 120.100 100.000 90.360 130.179 140.507 120.137 140.006 80.300 110.000 10.000 30.172 70.364 140.512 80.000 10.056 130.000 20.865 130.093 40.634 160.000 60.071 120.396 140.296 150.876 80.000 10.000 20.373 130.436 150.063 90.749 20.877 90.721 110.131 30.124 130.804 140.000 10.000 100.515 110.010 60.452 90.252 90.578 130.417 80.179 160.484 90.171 70.337 130.606 110.000 70.115 90.937 130.142 90.000 10.008 110.000 140.157 150.484 130.402 160.501 140.339 80.553 70.529 20.478 120.000 40.000 10.404 90.001 100.022 120.077 90.000 40.894 120.219 70.628 70.093 140.305 130.886 10.233 80.000 10.603 80.112 60.023 90.000 40.000 10.000 100.741 60.664 80.097 140.253 130.782 100.264 100.523 100.154 10.707 150.000 50.411 70.000 10.000 70.000 30.332 150.000 50.000 80.000 10.602 60.595 90.185 120.656 150.159 50.000 10.355 100.424 140.154 140.729 140.516 100.220 90.620 30.084 120.000 10.707 130.651 120.173 50.014 80.381 160.582 140.000 10.619 30.049 110.000 70.000 10.702 40.000 20.000 10.302 150.489 140.317 120.334 70.392 70.922 130.254 120.533 130.394 120.129 140.613 140.000 10.000 120.820 50.649 100.749 130.000 10.782 130.282 60.863 50.000 10.288 150.006 110.220 100.633 130.542 3
LGroundpermissive0.272 140.485 140.184 140.106 140.476 110.077 90.218 70.000 30.000 60.000 10.547 20.295 100.540 50.746 100.745 140.058 150.112 150.005 10.658 100.077 140.000 90.322 140.178 150.512 100.190 120.199 20.277 140.000 10.000 30.173 60.399 110.000 100.000 10.039 150.000 20.858 140.085 60.676 110.002 40.103 50.498 80.323 130.703 110.000 10.000 20.296 140.549 110.216 10.702 60.768 130.718 130.028 90.092 150.786 150.000 10.000 100.453 150.022 50.251 160.252 90.572 140.348 140.321 100.514 70.063 140.279 150.552 140.000 70.019 150.932 140.132 150.000 10.000 120.000 140.156 160.457 140.623 110.518 130.265 150.358 110.381 140.395 140.000 40.000 10.127 160.012 80.051 10.000 110.000 40.886 130.014 130.437 160.179 70.244 140.826 140.000 110.000 10.599 90.136 10.085 30.000 40.000 10.000 100.565 120.612 130.143 50.207 140.566 140.232 140.446 140.127 30.708 140.000 50.384 80.000 10.000 70.000 30.402 130.000 50.059 60.000 10.525 140.566 100.229 110.659 140.000 90.000 10.265 140.446 130.147 150.720 160.597 80.066 130.000 110.187 80.000 10.726 120.467 160.134 120.000 90.413 140.629 120.000 10.363 150.055 90.022 30.000 10.626 100.000 20.000 10.323 140.479 160.154 150.117 140.028 150.901 140.243 140.415 150.295 160.143 60.610 150.000 10.000 120.777 110.397 160.324 150.000 10.778 140.179 80.702 150.000 10.274 160.404 30.233 90.622 140.398 7
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
CSC-Pretrainpermissive0.249 160.455 160.171 150.079 160.418 150.059 130.186 90.000 30.000 60.000 10.335 90.250 120.316 150.766 70.697 160.142 130.170 130.003 20.553 130.112 80.097 10.201 160.186 130.476 140.081 150.000 90.216 160.000 10.000 30.001 160.314 160.000 100.000 10.055 140.000 20.832 160.094 30.659 140.002 40.076 80.310 160.293 160.664 130.000 10.000 20.175 160.634 60.130 20.552 160.686 160.700 160.076 60.110 140.770 160.000 10.000 100.430 160.000 70.319 140.166 140.542 160.327 150.205 150.332 130.052 150.375 120.444 160.000 70.012 160.930 160.203 30.000 10.000 120.046 110.175 130.413 150.592 130.471 150.299 140.152 160.340 150.247 160.000 40.000 10.225 140.058 30.037 30.000 110.207 20.862 150.014 130.548 120.033 150.233 150.816 150.000 110.000 10.542 140.123 50.121 10.019 20.000 10.000 100.463 150.454 160.045 160.128 160.557 150.235 130.441 150.063 100.484 160.000 50.308 160.000 10.000 70.000 30.318 160.000 50.000 80.000 10.545 130.543 110.164 130.734 80.000 90.000 10.215 160.371 150.198 130.743 130.205 150.062 140.000 110.079 130.000 10.683 150.547 150.142 90.000 90.441 100.579 150.000 10.464 140.098 80.041 10.000 10.590 130.000 20.000 10.373 120.494 130.174 140.105 150.001 160.895 150.222 150.537 120.307 150.180 50.625 130.000 10.000 120.591 160.609 130.398 140.000 10.766 160.014 160.638 160.000 10.377 130.004 120.206 120.609 160.465 5
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
Minkowski 34Dpermissive0.253 150.463 150.154 160.102 150.381 160.084 70.134 140.000 30.000 60.000 10.386 60.141 160.279 160.737 120.703 150.014 160.164 140.000 30.663 90.092 130.000 90.224 150.291 100.531 70.056 160.000 90.242 150.000 10.000 30.013 140.331 150.000 100.000 10.035 160.001 10.858 140.059 130.650 150.000 60.056 130.353 150.299 140.670 120.000 10.000 20.284 150.484 140.071 80.594 150.720 150.710 140.027 100.068 160.813 130.000 10.005 90.492 130.164 10.274 150.111 150.571 150.307 160.293 120.307 160.150 80.163 160.531 150.002 60.545 40.932 140.093 160.000 10.000 120.002 130.159 140.368 160.581 140.440 160.228 160.406 90.282 160.294 150.000 40.000 10.189 150.060 20.036 40.000 110.000 40.897 110.000 160.525 130.025 160.205 160.771 160.000 110.000 10.593 100.108 90.044 60.000 40.000 10.000 100.282 160.589 140.094 150.169 150.466 160.227 150.419 160.125 40.757 130.002 30.334 150.000 10.000 70.000 30.357 140.000 50.000 80.000 10.582 90.513 130.337 100.612 160.000 90.000 10.250 150.352 160.136 160.724 150.655 40.280 80.000 110.046 150.000 10.606 160.559 140.159 70.102 20.445 90.655 90.000 10.310 160.117 50.000 70.000 10.581 140.026 10.000 10.265 160.483 150.084 160.097 160.044 140.865 160.142 160.588 110.351 140.272 20.596 160.000 10.003 100.622 150.720 90.096 160.000 10.771 150.016 150.772 140.000 10.302 140.194 80.214 110.621 150.197 16
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019