The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).



This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail iouwallchairfloortabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
PonderV2 ScanNet2000.346 20.552 40.270 40.175 30.810 40.682 40.950 20.560 40.641 60.761 10.398 70.357 60.570 50.113 20.804 30.603 30.750 30.283 20.681 40.952 20.548 20.874 30.852 70.290 60.700 20.356 70.792 30.445 60.545 70.436 60.351 70.787 50.611 50.050 60.290 80.519 80.000 10.825 40.888 20.842 30.259 20.100 20.558 30.070 80.497 50.247 80.457 70.889 20.248 50.106 60.817 70.691 30.094 40.729 10.636 30.620 80.503 70.660 90.243 40.000 30.212 50.590 30.860 60.400 30.881 30.000 30.202 10.622 60.408 50.499 60.261 60.000 10.385 50.636 50.000 40.000 60.000 10.000 30.433 110.843 40.660 30.574 80.481 20.336 30.677 30.486 20.000 30.030 10.000 10.034 40.000 30.080 50.869 70.000 10.000 70.000 70.540 40.727 20.232 110.115 50.186 50.193 50.000 100.403 60.326 30.103 80.000 30.290 30.392 60.000 10.346 40.062 70.424 20.375 40.431 30.667 20.115 80.082 70.239 40.000 10.504 80.606 40.584 60.000 10.002 40.186 40.104 60.000 50.394 20.384 60.083 40.000 40.007 50.000 10.000 10.880 40.000 10.377 60.000 10.263 20.565 20.000 10.608 60.000 10.000 10.304 40.009 50.924 10.000 50.000 50.000 10.000 50.000 10.128 20.584 10.475 40.412 50.076 80.269 30.621 30.509 30.010 30.000 10.491 60.063 10.000 20.472 30.880 10.000 20.000 10.000 10.179 30.125 10.000 20.441 50.000 1
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
L3DETR-ScanNet_2000.336 40.533 70.279 20.155 40.801 60.689 20.946 30.539 60.660 40.759 20.380 80.333 80.583 10.000 90.788 50.529 60.740 40.261 60.679 60.940 70.525 70.860 60.883 30.226 70.613 60.397 30.720 80.512 40.565 60.620 10.417 30.775 80.629 30.158 20.298 60.579 70.000 10.835 10.883 30.927 10.114 70.079 40.511 60.073 70.508 30.312 30.629 30.861 40.192 100.098 90.908 10.636 70.032 110.563 110.514 90.664 30.505 60.697 50.225 60.000 30.264 10.411 70.860 60.321 70.960 10.058 20.109 80.776 10.526 30.557 20.303 50.000 10.339 60.712 30.000 40.014 40.000 10.000 30.638 70.856 30.641 40.579 70.107 110.119 90.661 50.416 30.000 30.000 40.000 10.007 110.000 30.067 70.910 30.000 10.000 70.000 70.463 50.448 40.294 100.324 10.293 10.211 40.108 50.448 50.068 110.141 30.000 30.330 20.699 10.000 10.256 50.192 30.000 90.355 50.418 40.209 110.146 70.679 10.101 110.000 10.503 90.687 10.671 40.000 10.000 60.174 50.117 20.000 50.122 40.515 20.104 20.259 20.312 10.000 10.000 10.765 70.000 10.369 80.000 10.183 30.422 80.000 10.646 20.000 10.000 10.565 10.001 80.125 110.010 30.002 40.000 10.487 10.000 10.075 100.548 20.420 50.233 100.082 60.138 90.430 80.427 70.000 80.000 10.549 30.000 20.000 20.074 60.409 100.000 20.000 10.000 10.152 50.051 20.000 20.598 30.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
Minkowski 34Dpermissive0.253 100.463 100.154 110.102 100.771 100.650 100.932 90.483 100.571 100.710 90.331 100.250 100.492 90.044 40.703 100.419 110.606 110.227 100.621 100.865 110.531 50.771 110.813 80.291 50.484 90.242 100.612 110.282 110.440 110.351 90.299 90.622 100.593 80.027 80.293 70.310 110.000 10.757 80.858 90.737 100.150 50.164 10.368 110.084 40.381 110.142 110.357 90.720 70.214 80.092 100.724 100.596 110.056 90.655 40.525 80.581 110.352 110.594 100.056 110.000 30.014 110.224 100.772 90.205 110.720 100.000 30.159 40.531 100.163 110.294 100.136 110.000 10.169 100.589 90.000 40.000 60.000 10.002 10.663 50.466 110.265 110.582 60.337 70.016 100.559 90.084 110.000 30.000 40.000 10.036 30.000 30.125 30.670 100.000 10.102 10.071 50.164 90.406 50.386 40.046 100.068 110.159 90.117 30.284 100.111 100.094 100.000 30.000 110.197 110.000 10.044 90.013 90.002 80.228 110.307 110.588 60.025 110.545 30.134 90.000 10.655 30.302 90.282 110.000 10.060 10.000 60.035 110.000 50.000 60.097 110.000 60.000 40.005 60.000 10.000 10.096 110.000 10.334 100.000 10.000 70.274 100.000 10.513 110.000 10.000 10.280 50.194 40.897 70.000 50.000 50.000 10.000 50.000 10.108 70.279 110.189 100.141 110.059 100.272 20.307 110.445 40.003 60.000 10.353 100.000 20.026 10.000 70.581 90.001 10.000 10.000 10.093 110.002 30.000 20.000 60.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
PTv3 ScanNet2000.393 10.592 10.330 10.216 10.851 10.687 30.971 10.586 10.755 10.752 40.505 10.404 40.575 20.000 90.848 10.616 10.761 10.349 10.738 10.978 10.546 30.860 60.926 10.346 10.654 30.384 40.828 10.523 30.699 10.583 30.387 50.822 10.688 10.118 40.474 10.603 40.000 10.832 20.903 10.753 70.140 60.000 70.650 10.109 20.520 10.457 10.497 60.871 30.281 10.192 20.887 20.748 10.168 10.727 20.733 10.740 10.644 10.714 30.190 70.000 30.256 20.449 50.914 10.514 10.759 90.337 10.172 30.692 30.617 10.636 10.325 30.000 10.641 10.782 10.000 40.065 20.000 10.000 30.842 10.903 10.661 10.662 20.612 10.405 20.731 10.566 10.000 30.000 40.000 10.017 90.301 10.088 40.941 10.000 10.077 20.000 70.717 20.790 10.310 90.026 110.264 20.349 10.220 20.397 70.366 10.115 70.000 30.337 10.463 40.000 10.531 10.218 10.593 10.455 10.469 10.708 10.210 10.592 20.108 100.000 10.728 10.682 20.671 40.000 10.000 60.407 10.136 10.022 20.575 10.436 40.259 10.428 10.048 20.000 10.000 10.879 50.000 10.480 10.000 10.133 40.597 10.000 10.690 10.000 10.000 10.009 100.000 90.921 20.000 50.151 10.000 10.000 50.000 10.109 60.494 80.622 20.394 60.073 90.141 70.798 10.528 20.026 10.000 10.551 20.000 20.000 20.134 50.717 40.000 20.000 10.000 10.188 20.000 40.000 20.791 10.000 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024
OA-CNN-L_ScanNet2000.333 50.558 20.269 50.124 70.821 20.703 10.946 30.569 20.662 20.748 50.487 20.455 10.572 40.000 90.789 40.534 50.736 50.271 30.713 20.949 30.498 100.877 20.860 50.332 30.706 10.474 10.788 50.406 70.637 30.495 50.355 60.805 30.592 90.015 100.396 20.602 50.000 10.799 50.876 40.713 110.276 10.000 70.493 70.080 50.448 90.363 20.661 20.833 50.262 30.125 30.823 60.665 50.076 60.720 30.557 50.637 60.517 50.672 80.227 50.000 30.158 70.496 40.843 80.352 60.835 70.000 30.103 90.711 20.527 20.526 40.320 40.000 10.568 30.625 60.067 10.000 60.000 10.001 20.806 30.836 50.621 60.591 40.373 50.314 40.668 40.398 50.003 20.000 40.000 10.016 100.024 20.043 90.906 40.000 10.052 40.000 70.384 60.330 80.342 50.100 60.223 40.183 70.112 40.476 40.313 40.130 60.196 20.112 60.370 80.000 10.234 60.071 60.160 30.403 30.398 80.492 90.197 20.076 80.272 30.000 10.200 110.560 50.735 30.000 10.000 60.000 60.110 40.002 40.021 50.412 50.000 60.000 40.000 70.000 10.000 10.794 60.000 10.445 20.000 10.022 50.509 50.000 10.517 100.000 10.000 10.001 110.245 20.915 40.024 20.089 20.000 10.262 20.000 10.103 80.524 40.392 70.515 20.013 110.251 40.411 90.662 10.001 70.000 10.473 70.000 20.000 20.150 40.699 50.000 20.000 10.000 10.166 40.000 40.024 10.000 60.000 1
PPT-SpUNet-F.T.0.332 60.556 30.270 30.123 80.816 30.682 40.946 30.549 50.657 50.756 30.459 40.376 50.550 60.001 80.807 20.616 10.727 60.267 40.691 30.942 60.530 60.872 40.874 40.330 40.542 80.374 50.792 30.400 80.673 20.572 40.433 10.793 40.623 40.008 110.351 40.594 60.000 10.783 70.876 40.833 40.213 30.000 70.537 40.091 30.519 20.304 40.620 50.942 10.264 20.124 40.855 30.695 20.086 50.646 50.506 100.658 40.535 30.715 20.314 10.000 30.241 30.608 20.897 20.359 50.858 50.000 30.076 110.611 70.392 60.509 50.378 20.000 10.579 20.565 100.000 40.000 60.000 10.000 30.755 40.806 70.661 10.572 90.350 60.181 60.660 60.300 80.000 30.000 40.000 10.023 60.000 30.042 100.930 20.000 10.000 70.077 40.584 30.392 60.339 60.185 40.171 70.308 20.006 90.563 30.256 50.150 10.000 30.002 100.345 90.000 10.045 80.197 20.063 50.323 80.453 20.600 50.163 60.037 90.349 20.000 10.672 20.679 30.753 10.000 10.000 60.000 60.117 20.000 50.000 60.291 80.000 60.000 40.039 30.000 10.000 10.899 20.000 10.374 70.000 10.000 70.545 40.000 10.634 30.000 10.000 10.074 70.223 30.914 50.000 50.021 30.000 10.000 50.000 10.112 40.498 70.649 10.383 70.095 10.135 100.449 70.432 60.008 50.000 10.518 40.000 20.000 20.000 70.796 20.000 20.000 10.000 10.138 80.000 40.000 20.000 60.000 1
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OctFormer ScanNet200permissive0.326 70.539 60.265 60.131 60.806 50.670 70.943 60.535 70.662 20.705 100.423 50.407 30.505 80.003 70.765 70.582 40.686 90.227 100.680 50.943 50.601 10.854 80.892 20.335 20.417 110.357 60.724 70.453 50.632 40.596 20.432 20.783 60.512 110.021 90.244 90.637 10.000 10.787 60.873 60.743 90.000 110.000 70.534 50.110 10.499 40.289 50.626 40.620 90.168 110.204 10.849 40.679 40.117 20.633 60.684 20.650 50.552 20.684 70.312 20.000 30.175 60.429 60.865 30.413 20.837 60.000 30.145 50.626 50.451 40.487 70.513 10.000 10.529 40.613 70.000 40.033 30.000 10.000 30.828 20.871 20.622 50.587 50.411 40.137 80.645 80.343 60.000 30.000 40.000 10.022 70.000 30.026 110.829 80.000 10.022 50.089 30.842 10.253 100.318 80.296 20.178 60.291 30.224 10.584 20.200 80.132 50.000 30.128 50.227 100.000 10.230 70.047 80.149 40.331 70.412 60.618 40.164 50.102 60.522 10.000 10.655 30.378 70.469 90.000 10.000 60.000 60.105 50.000 50.000 60.483 30.000 60.000 40.028 40.000 10.000 10.906 10.000 10.339 90.000 10.000 70.457 60.000 10.612 50.000 10.000 10.408 20.000 90.900 60.000 50.000 50.000 10.029 40.000 10.074 110.455 90.479 30.427 40.079 70.140 80.496 50.414 80.022 20.000 10.471 80.000 20.000 20.000 70.722 30.000 20.000 10.000 10.138 80.000 40.000 20.000 60.000 1
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CeCo0.340 30.551 50.247 70.181 20.784 70.661 80.939 70.564 30.624 70.721 60.484 30.429 20.575 20.027 50.774 60.503 80.753 20.242 70.656 70.945 40.534 40.865 50.860 50.177 110.616 50.400 20.818 20.579 10.615 50.367 80.408 40.726 90.633 20.162 10.360 30.619 20.000 10.828 30.873 60.924 20.109 80.083 30.564 20.057 110.475 70.266 60.781 10.767 60.257 40.100 70.825 50.663 60.048 100.620 80.551 60.595 90.532 40.692 60.246 30.000 30.213 40.615 10.861 50.376 40.900 20.000 30.102 100.660 40.321 90.547 30.226 70.000 10.311 70.742 20.011 30.006 50.000 10.000 30.546 100.824 60.345 80.665 10.450 30.435 10.683 20.411 40.338 10.000 40.000 10.030 50.000 30.068 60.892 50.000 10.063 30.000 70.257 70.304 90.387 30.079 80.228 30.190 60.000 100.586 10.347 20.133 40.000 30.037 70.377 70.000 10.384 30.006 100.003 70.421 20.410 70.643 30.171 40.121 40.142 80.000 10.510 70.447 60.474 80.000 10.000 60.286 20.083 70.000 50.000 60.603 10.096 30.063 30.000 70.000 10.000 10.898 30.000 10.429 30.000 10.400 10.550 30.000 10.633 40.000 10.000 10.377 30.000 90.916 30.000 50.000 50.000 10.000 50.000 10.102 90.499 60.296 80.463 30.089 40.304 10.740 20.401 100.010 30.000 10.560 10.000 20.000 20.709 10.652 60.000 20.000 10.000 10.143 60.000 40.000 20.609 20.000 1
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
AWCS0.305 80.508 80.225 80.142 50.782 80.634 110.937 80.489 90.578 80.721 60.364 90.355 70.515 70.023 60.764 80.523 70.707 80.264 50.633 80.922 80.507 90.886 10.804 90.179 90.436 100.300 80.656 100.529 20.501 90.394 70.296 100.820 20.603 60.131 30.179 110.619 20.000 10.707 100.865 80.773 50.171 40.010 60.484 80.063 90.463 80.254 70.332 100.649 80.220 70.100 70.729 90.613 90.071 80.582 90.628 40.702 20.424 90.749 10.137 90.000 30.142 80.360 80.863 40.305 80.877 40.000 30.173 20.606 80.337 80.478 80.154 90.000 10.253 80.664 40.000 40.000 60.000 10.000 30.626 80.782 80.302 100.602 30.185 90.282 50.651 70.317 70.000 30.000 40.000 10.022 70.000 30.154 10.876 60.000 10.014 60.063 60.029 110.553 30.467 20.084 70.124 80.157 100.049 80.373 80.252 60.097 90.000 30.219 40.542 20.000 10.392 20.172 50.000 90.339 60.417 50.533 80.093 90.115 50.195 60.000 10.516 60.288 100.741 20.000 10.001 50.233 30.056 80.000 50.159 30.334 70.077 50.000 40.000 70.000 10.000 10.749 80.000 10.411 40.000 10.008 60.452 70.000 10.595 70.000 10.000 10.220 60.006 60.894 80.006 40.000 50.000 10.000 50.000 10.112 40.504 50.404 60.551 10.093 30.129 110.484 60.381 110.000 80.000 10.396 90.000 20.000 20.620 20.402 110.000 20.000 10.000 10.142 70.000 40.000 20.512 40.000 1
LGroundpermissive0.272 90.485 90.184 90.106 90.778 90.676 60.932 90.479 110.572 90.718 80.399 60.265 90.453 100.085 30.745 90.446 90.726 70.232 90.622 90.901 90.512 80.826 90.786 100.178 100.549 70.277 90.659 90.381 90.518 80.295 110.323 80.777 70.599 70.028 70.321 50.363 100.000 10.708 90.858 90.746 80.063 90.022 50.457 90.077 60.476 60.243 90.402 80.397 110.233 60.077 110.720 110.610 100.103 30.629 70.437 110.626 70.446 80.702 40.190 70.005 10.058 100.322 90.702 100.244 90.768 80.000 30.134 70.552 90.279 100.395 90.147 100.000 10.207 90.612 80.000 40.000 60.000 10.000 30.658 60.566 90.323 90.525 110.229 80.179 70.467 110.154 100.000 30.002 20.000 10.051 10.000 30.127 20.703 90.000 10.000 70.216 10.112 100.358 70.547 10.187 30.092 100.156 110.055 70.296 90.252 60.143 20.000 30.014 80.398 50.000 10.028 100.173 40.000 90.265 100.348 90.415 100.179 30.019 100.218 50.000 10.597 50.274 110.565 70.000 10.012 30.000 60.039 100.022 20.000 60.117 90.000 60.000 40.000 70.000 10.000 10.324 100.000 10.384 50.000 10.000 70.251 110.000 10.566 80.000 10.000 10.066 80.404 10.886 90.199 10.000 50.000 10.059 30.000 10.136 10.540 30.127 110.295 80.085 50.143 60.514 40.413 90.000 80.000 10.498 50.000 20.000 20.000 70.623 70.000 20.000 10.000 10.132 100.000 40.000 20.000 60.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
CSC-Pretrainpermissive0.249 110.455 110.171 100.079 110.766 110.659 90.930 110.494 80.542 110.700 110.314 110.215 110.430 110.121 10.697 110.441 100.683 100.235 80.609 110.895 100.476 110.816 100.770 110.186 80.634 40.216 110.734 60.340 100.471 100.307 100.293 110.591 110.542 100.076 50.205 100.464 90.000 10.484 110.832 110.766 60.052 100.000 70.413 100.059 100.418 100.222 100.318 110.609 100.206 90.112 50.743 80.625 80.076 60.579 100.548 70.590 100.371 100.552 110.081 100.003 20.142 80.201 110.638 110.233 100.686 110.000 30.142 60.444 110.375 70.247 110.198 80.000 10.128 110.454 110.019 20.097 10.000 10.000 30.553 90.557 100.373 70.545 100.164 100.014 110.547 100.174 90.000 30.002 20.000 10.037 20.000 30.063 80.664 110.000 10.000 70.130 20.170 80.152 110.335 70.079 80.110 90.175 80.098 60.175 110.166 90.045 110.207 10.014 80.465 30.000 10.001 110.001 110.046 60.299 90.327 100.537 70.033 100.012 110.186 70.000 10.205 100.377 80.463 100.000 10.058 20.000 60.055 90.041 10.000 60.105 100.000 60.000 40.000 70.000 10.000 10.398 90.000 10.308 110.000 10.000 70.319 90.000 10.543 90.000 10.000 10.062 90.004 70.862 100.000 50.000 50.000 10.000 50.000 10.123 30.316 100.225 90.250 90.094 20.180 50.332 100.441 50.000 80.000 10.310 110.000 20.000 20.000 70.592 80.000 20.000 10.000 10.203 10.000 40.000 20.000 60.000 1
Ji Hou, Benjamin Graham, Matthias Nie├čner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021