ScanNet200 3D Semantic Label Benchmark
The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.
Evaluation and metricsOur evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).
This table lists the benchmark results for the ScanNet200 3D semantic label scenario.
Method | Info | avg iou | head iou | common iou | tail iou | wall | chair | floor | table | door | couch | cabinet | shelf | desk | office chair | bed | pillow | sink | picture | window | toilet | bookshelf | monitor | curtain | book | armchair | coffee table | box | refrigerator | lamp | kitchen cabinet | towel | clothes | tv | nightstand | counter | dresser | stool | cushion | plant | ceiling | bathtub | end table | dining table | keyboard | bag | backpack | toilet paper | printer | tv stand | whiteboard | blanket | shower curtain | trash can | closet | stairs | microwave | stove | shoe | computer tower | bottle | bin | ottoman | bench | board | washing machine | mirror | copier | basket | sofa chair | file cabinet | fan | laptop | shower | paper | person | paper towel dispenser | oven | blinds | rack | plate | blackboard | piano | suitcase | rail | radiator | recycling bin | container | wardrobe | soap dispenser | telephone | bucket | clock | stand | light | laundry basket | pipe | clothes dryer | guitar | toilet paper holder | seat | speaker | column | bicycle | ladder | bathroom stall | shower wall | cup | jacket | storage bin | coffee maker | dishwasher | paper towel roll | machine | mat | windowsill | bar | toaster | bulletin board | ironing board | fireplace | soap dish | kitchen counter | doorframe | toilet paper dispenser | mini fridge | fire extinguisher | ball | hat | shower curtain rod | water cooler | paper cutter | tray | shower door | pillar | ledge | toaster oven | mouse | toilet seat cover dispenser | furniture | cart | storage container | scale | tissue box | light switch | crate | power outlet | decoration | sign | projector | closet door | vacuum cleaner | candle | plunger | stuffed animal | headphones | dish rack | broom | guitar case | range hood | dustpan | hair dryer | water bottle | handicap bar | purse | vent | shower floor | water pitcher | mailbox | bowl | paper bag | alarm clock | music stand | projector screen | divider | laundry detergent | bathroom counter | object | bathroom vanity | closet wall | laundry hamper | bathroom stall door | ceiling light | trash bin | dumbbell | stair rail | tube | bathroom cabinet | cd case | closet rod | coffee kettle | structure | shower head | keyboard piano | case of water bottles | coat rack | storage organizer | folded chair | fire alarm | power strip | calendar | poster | potted plant | luggage | mattress |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ||
OA-CNN-L_ScanNet200 | 0.333 2 | 0.558 1 | 0.269 2 | 0.124 4 | 0.821 1 | 0.703 1 | 0.946 1 | 0.569 1 | 0.662 1 | 0.748 2 | 0.487 1 | 0.455 1 | 0.572 2 | 0.000 8 | 0.789 2 | 0.534 3 | 0.736 2 | 0.271 1 | 0.713 1 | 0.949 1 | 0.498 7 | 0.877 2 | 0.860 3 | 0.332 2 | 0.706 1 | 0.474 1 | 0.788 3 | 0.406 4 | 0.637 2 | 0.495 3 | 0.355 4 | 0.805 2 | 0.592 6 | 0.015 7 | 0.396 1 | 0.602 4 | 0.000 1 | 0.799 2 | 0.876 1 | 0.713 8 | 0.276 1 | 0.000 5 | 0.493 4 | 0.080 4 | 0.448 6 | 0.363 1 | 0.661 2 | 0.833 2 | 0.262 2 | 0.125 2 | 0.823 4 | 0.665 3 | 0.076 4 | 0.720 1 | 0.557 3 | 0.637 4 | 0.517 4 | 0.672 6 | 0.227 4 | 0.000 3 | 0.158 4 | 0.496 3 | 0.843 5 | 0.352 4 | 0.835 5 | 0.000 1 | 0.103 6 | 0.711 1 | 0.527 1 | 0.526 2 | 0.320 3 | 0.000 1 | 0.568 2 | 0.625 3 | 0.067 1 | 0.000 4 | 0.000 1 | 0.001 2 | 0.806 2 | 0.836 2 | 0.621 3 | 0.591 3 | 0.373 3 | 0.314 2 | 0.668 2 | 0.398 2 | 0.003 2 | 0.000 3 | 0.000 1 | 0.016 8 | 0.024 1 | 0.043 6 | 0.906 2 | 0.000 1 | 0.052 3 | 0.000 7 | 0.384 3 | 0.330 5 | 0.342 5 | 0.100 4 | 0.223 2 | 0.183 4 | 0.112 3 | 0.476 4 | 0.313 2 | 0.130 5 | 0.196 2 | 0.112 3 | 0.370 5 | 0.000 1 | 0.234 3 | 0.071 4 | 0.160 1 | 0.403 2 | 0.398 5 | 0.492 7 | 0.197 1 | 0.076 5 | 0.272 3 | 0.000 1 | 0.200 8 | 0.560 2 | 0.735 3 | 0.000 1 | 0.000 5 | 0.000 3 | 0.110 2 | 0.002 3 | 0.021 2 | 0.412 3 | 0.000 3 | 0.000 2 | 0.000 4 | 0.000 1 | 0.000 1 | 0.794 4 | 0.000 1 | 0.445 1 | 0.000 1 | 0.022 2 | 0.509 3 | 0.000 1 | 0.517 7 | 0.000 1 | 0.000 1 | 0.001 8 | 0.245 2 | 0.915 2 | 0.024 2 | 0.089 1 | 0.000 1 | 0.262 1 | 0.000 1 | 0.103 6 | 0.524 2 | 0.392 4 | 0.515 2 | 0.013 8 | 0.251 3 | 0.411 6 | 0.662 1 | 0.001 5 | 0.000 1 | 0.473 4 | 0.000 1 | 0.000 2 | 0.150 3 | 0.699 3 | 0.000 2 | 0.000 1 | 0.000 1 | 0.166 2 | 0.000 2 | 0.024 1 | 0.000 3 | 0.000 1 | |||||||||||||||||||||||||||||
PPT-SpUNet-F.T. | 0.332 3 | 0.556 2 | 0.270 1 | 0.123 5 | 0.816 2 | 0.682 2 | 0.946 1 | 0.549 3 | 0.657 3 | 0.756 1 | 0.459 3 | 0.376 4 | 0.550 3 | 0.001 7 | 0.807 1 | 0.616 1 | 0.727 3 | 0.267 2 | 0.691 2 | 0.942 4 | 0.530 4 | 0.872 3 | 0.874 2 | 0.330 3 | 0.542 5 | 0.374 3 | 0.792 2 | 0.400 5 | 0.673 1 | 0.572 2 | 0.433 1 | 0.793 3 | 0.623 2 | 0.008 8 | 0.351 3 | 0.594 5 | 0.000 1 | 0.783 4 | 0.876 1 | 0.833 2 | 0.213 2 | 0.000 5 | 0.537 2 | 0.091 2 | 0.519 1 | 0.304 2 | 0.620 4 | 0.942 1 | 0.264 1 | 0.124 3 | 0.855 1 | 0.695 1 | 0.086 3 | 0.646 3 | 0.506 7 | 0.658 2 | 0.535 2 | 0.715 2 | 0.314 1 | 0.000 3 | 0.241 1 | 0.608 2 | 0.897 1 | 0.359 3 | 0.858 3 | 0.000 1 | 0.076 8 | 0.611 4 | 0.392 3 | 0.509 3 | 0.378 2 | 0.000 1 | 0.579 1 | 0.565 7 | 0.000 4 | 0.000 4 | 0.000 1 | 0.000 3 | 0.755 3 | 0.806 4 | 0.661 1 | 0.572 6 | 0.350 4 | 0.181 4 | 0.660 3 | 0.300 5 | 0.000 3 | 0.000 3 | 0.000 1 | 0.023 5 | 0.000 2 | 0.042 7 | 0.930 1 | 0.000 1 | 0.000 6 | 0.077 4 | 0.584 2 | 0.392 3 | 0.339 6 | 0.185 3 | 0.171 4 | 0.308 1 | 0.006 7 | 0.563 3 | 0.256 3 | 0.150 1 | 0.000 3 | 0.002 7 | 0.345 6 | 0.000 1 | 0.045 5 | 0.197 1 | 0.063 3 | 0.323 5 | 0.453 1 | 0.600 3 | 0.163 5 | 0.037 6 | 0.349 2 | 0.000 1 | 0.672 1 | 0.679 1 | 0.753 1 | 0.000 1 | 0.000 5 | 0.000 3 | 0.117 1 | 0.000 4 | 0.000 3 | 0.291 5 | 0.000 3 | 0.000 2 | 0.039 1 | 0.000 1 | 0.000 1 | 0.899 2 | 0.000 1 | 0.374 5 | 0.000 1 | 0.000 4 | 0.545 2 | 0.000 1 | 0.634 1 | 0.000 1 | 0.000 1 | 0.074 5 | 0.223 3 | 0.914 3 | 0.000 4 | 0.021 2 | 0.000 1 | 0.000 4 | 0.000 1 | 0.112 3 | 0.498 5 | 0.649 1 | 0.383 5 | 0.095 1 | 0.135 7 | 0.449 5 | 0.432 4 | 0.008 3 | 0.000 1 | 0.518 2 | 0.000 1 | 0.000 2 | 0.000 4 | 0.796 1 | 0.000 2 | 0.000 1 | 0.000 1 | 0.138 5 | 0.000 2 | 0.000 2 | 0.000 3 | 0.000 1 | |||||||||||||||||||||||||||||
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
LGround | ![]() | 0.272 6 | 0.485 6 | 0.184 6 | 0.106 6 | 0.778 6 | 0.676 3 | 0.932 6 | 0.479 8 | 0.572 6 | 0.718 5 | 0.399 5 | 0.265 6 | 0.453 7 | 0.085 2 | 0.745 6 | 0.446 6 | 0.726 4 | 0.232 6 | 0.622 6 | 0.901 6 | 0.512 5 | 0.826 6 | 0.786 7 | 0.178 7 | 0.549 4 | 0.277 6 | 0.659 6 | 0.381 6 | 0.518 5 | 0.295 8 | 0.323 5 | 0.777 5 | 0.599 4 | 0.028 4 | 0.321 4 | 0.363 7 | 0.000 1 | 0.708 6 | 0.858 6 | 0.746 5 | 0.063 6 | 0.022 3 | 0.457 6 | 0.077 5 | 0.476 3 | 0.243 6 | 0.402 5 | 0.397 8 | 0.233 4 | 0.077 8 | 0.720 8 | 0.610 7 | 0.103 2 | 0.629 5 | 0.437 8 | 0.626 5 | 0.446 5 | 0.702 3 | 0.190 5 | 0.005 1 | 0.058 7 | 0.322 6 | 0.702 7 | 0.244 6 | 0.768 6 | 0.000 1 | 0.134 5 | 0.552 6 | 0.279 7 | 0.395 6 | 0.147 7 | 0.000 1 | 0.207 6 | 0.612 5 | 0.000 4 | 0.000 4 | 0.000 1 | 0.000 3 | 0.658 5 | 0.566 6 | 0.323 6 | 0.525 8 | 0.229 6 | 0.179 5 | 0.467 8 | 0.154 7 | 0.000 3 | 0.002 1 | 0.000 1 | 0.051 1 | 0.000 2 | 0.127 2 | 0.703 6 | 0.000 1 | 0.000 6 | 0.216 1 | 0.112 7 | 0.358 4 | 0.547 1 | 0.187 2 | 0.092 7 | 0.156 8 | 0.055 5 | 0.296 6 | 0.252 4 | 0.143 2 | 0.000 3 | 0.014 5 | 0.398 3 | 0.000 1 | 0.028 7 | 0.173 2 | 0.000 7 | 0.265 7 | 0.348 6 | 0.415 8 | 0.179 2 | 0.019 7 | 0.218 4 | 0.000 1 | 0.597 4 | 0.274 8 | 0.565 4 | 0.000 1 | 0.012 3 | 0.000 3 | 0.039 7 | 0.022 2 | 0.000 3 | 0.117 6 | 0.000 3 | 0.000 2 | 0.000 4 | 0.000 1 | 0.000 1 | 0.324 7 | 0.000 1 | 0.384 4 | 0.000 1 | 0.000 4 | 0.251 8 | 0.000 1 | 0.566 5 | 0.000 1 | 0.000 1 | 0.066 6 | 0.404 1 | 0.886 7 | 0.199 1 | 0.000 3 | 0.000 1 | 0.059 2 | 0.000 1 | 0.136 1 | 0.540 1 | 0.127 8 | 0.295 6 | 0.085 5 | 0.143 5 | 0.514 2 | 0.413 6 | 0.000 6 | 0.000 1 | 0.498 3 | 0.000 1 | 0.000 2 | 0.000 4 | 0.623 5 | 0.000 2 | 0.000 1 | 0.000 1 | 0.132 7 | 0.000 2 | 0.000 2 | 0.000 3 | 0.000 1 | ||||||||||||||||||||||||||||
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OctFormer ScanNet200 | ![]() | 0.326 4 | 0.539 4 | 0.265 3 | 0.131 3 | 0.806 3 | 0.670 4 | 0.943 3 | 0.535 4 | 0.662 1 | 0.705 7 | 0.423 4 | 0.407 3 | 0.505 5 | 0.003 6 | 0.765 4 | 0.582 2 | 0.686 6 | 0.227 7 | 0.680 3 | 0.943 3 | 0.601 1 | 0.854 5 | 0.892 1 | 0.335 1 | 0.417 8 | 0.357 4 | 0.724 5 | 0.453 3 | 0.632 3 | 0.596 1 | 0.432 2 | 0.783 4 | 0.512 8 | 0.021 6 | 0.244 6 | 0.637 1 | 0.000 1 | 0.787 3 | 0.873 3 | 0.743 6 | 0.000 8 | 0.000 5 | 0.534 3 | 0.110 1 | 0.499 2 | 0.289 3 | 0.626 3 | 0.620 6 | 0.168 8 | 0.204 1 | 0.849 2 | 0.679 2 | 0.117 1 | 0.633 4 | 0.684 1 | 0.650 3 | 0.552 1 | 0.684 5 | 0.312 2 | 0.000 3 | 0.175 3 | 0.429 4 | 0.865 2 | 0.413 1 | 0.837 4 | 0.000 1 | 0.145 3 | 0.626 3 | 0.451 2 | 0.487 4 | 0.513 1 | 0.000 1 | 0.529 3 | 0.613 4 | 0.000 4 | 0.033 2 | 0.000 1 | 0.000 3 | 0.828 1 | 0.871 1 | 0.622 2 | 0.587 4 | 0.411 2 | 0.137 6 | 0.645 5 | 0.343 3 | 0.000 3 | 0.000 3 | 0.000 1 | 0.022 6 | 0.000 2 | 0.026 8 | 0.829 5 | 0.000 1 | 0.022 4 | 0.089 3 | 0.842 1 | 0.253 7 | 0.318 8 | 0.296 1 | 0.178 3 | 0.291 2 | 0.224 1 | 0.584 2 | 0.200 6 | 0.132 4 | 0.000 3 | 0.128 2 | 0.227 7 | 0.000 1 | 0.230 4 | 0.047 5 | 0.149 2 | 0.331 4 | 0.412 3 | 0.618 2 | 0.164 4 | 0.102 4 | 0.522 1 | 0.000 1 | 0.655 2 | 0.378 4 | 0.469 6 | 0.000 1 | 0.000 5 | 0.000 3 | 0.105 3 | 0.000 4 | 0.000 3 | 0.483 2 | 0.000 3 | 0.000 2 | 0.028 2 | 0.000 1 | 0.000 1 | 0.906 1 | 0.000 1 | 0.339 6 | 0.000 1 | 0.000 4 | 0.457 4 | 0.000 1 | 0.612 3 | 0.000 1 | 0.000 1 | 0.408 1 | 0.000 7 | 0.900 4 | 0.000 4 | 0.000 3 | 0.000 1 | 0.029 3 | 0.000 1 | 0.074 8 | 0.455 6 | 0.479 2 | 0.427 4 | 0.079 6 | 0.140 6 | 0.496 3 | 0.414 5 | 0.022 1 | 0.000 1 | 0.471 5 | 0.000 1 | 0.000 2 | 0.000 4 | 0.722 2 | 0.000 2 | 0.000 1 | 0.000 1 | 0.138 5 | 0.000 2 | 0.000 2 | 0.000 3 | 0.000 1 | ||||||||||||||||||||||||||||
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CeCo | 0.340 1 | 0.551 3 | 0.247 4 | 0.181 1 | 0.784 4 | 0.661 5 | 0.939 4 | 0.564 2 | 0.624 4 | 0.721 3 | 0.484 2 | 0.429 2 | 0.575 1 | 0.027 4 | 0.774 3 | 0.503 5 | 0.753 1 | 0.242 4 | 0.656 4 | 0.945 2 | 0.534 2 | 0.865 4 | 0.860 3 | 0.177 8 | 0.616 3 | 0.400 2 | 0.818 1 | 0.579 1 | 0.615 4 | 0.367 5 | 0.408 3 | 0.726 6 | 0.633 1 | 0.162 1 | 0.360 2 | 0.619 2 | 0.000 1 | 0.828 1 | 0.873 3 | 0.924 1 | 0.109 5 | 0.083 2 | 0.564 1 | 0.057 8 | 0.475 4 | 0.266 4 | 0.781 1 | 0.767 3 | 0.257 3 | 0.100 5 | 0.825 3 | 0.663 4 | 0.048 8 | 0.620 6 | 0.551 4 | 0.595 6 | 0.532 3 | 0.692 4 | 0.246 3 | 0.000 3 | 0.213 2 | 0.615 1 | 0.861 4 | 0.376 2 | 0.900 1 | 0.000 1 | 0.102 7 | 0.660 2 | 0.321 6 | 0.547 1 | 0.226 4 | 0.000 1 | 0.311 4 | 0.742 1 | 0.011 3 | 0.006 3 | 0.000 1 | 0.000 3 | 0.546 8 | 0.824 3 | 0.345 5 | 0.665 1 | 0.450 1 | 0.435 1 | 0.683 1 | 0.411 1 | 0.338 1 | 0.000 3 | 0.000 1 | 0.030 4 | 0.000 2 | 0.068 4 | 0.892 3 | 0.000 1 | 0.063 2 | 0.000 7 | 0.257 4 | 0.304 6 | 0.387 3 | 0.079 6 | 0.228 1 | 0.190 3 | 0.000 8 | 0.586 1 | 0.347 1 | 0.133 3 | 0.000 3 | 0.037 4 | 0.377 4 | 0.000 1 | 0.384 2 | 0.006 7 | 0.003 5 | 0.421 1 | 0.410 4 | 0.643 1 | 0.171 3 | 0.121 2 | 0.142 7 | 0.000 1 | 0.510 6 | 0.447 3 | 0.474 5 | 0.000 1 | 0.000 5 | 0.286 1 | 0.083 4 | 0.000 4 | 0.000 3 | 0.603 1 | 0.096 1 | 0.063 1 | 0.000 4 | 0.000 1 | 0.000 1 | 0.898 3 | 0.000 1 | 0.429 2 | 0.000 1 | 0.400 1 | 0.550 1 | 0.000 1 | 0.633 2 | 0.000 1 | 0.000 1 | 0.377 2 | 0.000 7 | 0.916 1 | 0.000 4 | 0.000 3 | 0.000 1 | 0.000 4 | 0.000 1 | 0.102 7 | 0.499 4 | 0.296 5 | 0.463 3 | 0.089 4 | 0.304 1 | 0.740 1 | 0.401 7 | 0.010 2 | 0.000 1 | 0.560 1 | 0.000 1 | 0.000 2 | 0.709 1 | 0.652 4 | 0.000 2 | 0.000 1 | 0.000 1 | 0.143 3 | 0.000 2 | 0.000 2 | 0.609 1 | 0.000 1 | |||||||||||||||||||||||||||||
: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CSC-Pretrain | ![]() | 0.249 8 | 0.455 8 | 0.171 7 | 0.079 8 | 0.766 8 | 0.659 6 | 0.930 8 | 0.494 5 | 0.542 8 | 0.700 8 | 0.314 8 | 0.215 8 | 0.430 8 | 0.121 1 | 0.697 8 | 0.441 7 | 0.683 7 | 0.235 5 | 0.609 8 | 0.895 7 | 0.476 8 | 0.816 7 | 0.770 8 | 0.186 5 | 0.634 2 | 0.216 8 | 0.734 4 | 0.340 7 | 0.471 7 | 0.307 7 | 0.293 8 | 0.591 8 | 0.542 7 | 0.076 3 | 0.205 7 | 0.464 6 | 0.000 1 | 0.484 8 | 0.832 8 | 0.766 4 | 0.052 7 | 0.000 5 | 0.413 7 | 0.059 7 | 0.418 7 | 0.222 7 | 0.318 8 | 0.609 7 | 0.206 7 | 0.112 4 | 0.743 5 | 0.625 5 | 0.076 4 | 0.579 8 | 0.548 5 | 0.590 7 | 0.371 7 | 0.552 8 | 0.081 7 | 0.003 2 | 0.142 5 | 0.201 8 | 0.638 8 | 0.233 7 | 0.686 8 | 0.000 1 | 0.142 4 | 0.444 8 | 0.375 4 | 0.247 8 | 0.198 5 | 0.000 1 | 0.128 8 | 0.454 8 | 0.019 2 | 0.097 1 | 0.000 1 | 0.000 3 | 0.553 7 | 0.557 7 | 0.373 4 | 0.545 7 | 0.164 8 | 0.014 8 | 0.547 7 | 0.174 6 | 0.000 3 | 0.002 1 | 0.000 1 | 0.037 2 | 0.000 2 | 0.063 5 | 0.664 8 | 0.000 1 | 0.000 6 | 0.130 2 | 0.170 5 | 0.152 8 | 0.335 7 | 0.079 6 | 0.110 6 | 0.175 5 | 0.098 4 | 0.175 8 | 0.166 7 | 0.045 8 | 0.207 1 | 0.014 5 | 0.465 2 | 0.000 1 | 0.001 8 | 0.001 8 | 0.046 4 | 0.299 6 | 0.327 7 | 0.537 5 | 0.033 7 | 0.012 8 | 0.186 6 | 0.000 1 | 0.205 7 | 0.377 5 | 0.463 7 | 0.000 1 | 0.058 2 | 0.000 3 | 0.055 6 | 0.041 1 | 0.000 3 | 0.105 7 | 0.000 3 | 0.000 2 | 0.000 4 | 0.000 1 | 0.000 1 | 0.398 6 | 0.000 1 | 0.308 8 | 0.000 1 | 0.000 4 | 0.319 6 | 0.000 1 | 0.543 6 | 0.000 1 | 0.000 1 | 0.062 7 | 0.004 6 | 0.862 8 | 0.000 4 | 0.000 3 | 0.000 1 | 0.000 4 | 0.000 1 | 0.123 2 | 0.316 7 | 0.225 6 | 0.250 7 | 0.094 2 | 0.180 4 | 0.332 7 | 0.441 3 | 0.000 6 | 0.000 1 | 0.310 8 | 0.000 1 | 0.000 2 | 0.000 4 | 0.592 6 | 0.000 2 | 0.000 1 | 0.000 1 | 0.203 1 | 0.000 2 | 0.000 2 | 0.000 3 | 0.000 1 | ||||||||||||||||||||||||||||
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Minkowski 34D | ![]() | 0.253 7 | 0.463 7 | 0.154 8 | 0.102 7 | 0.771 7 | 0.650 7 | 0.932 6 | 0.483 7 | 0.571 7 | 0.710 6 | 0.331 7 | 0.250 7 | 0.492 6 | 0.044 3 | 0.703 7 | 0.419 8 | 0.606 8 | 0.227 7 | 0.621 7 | 0.865 8 | 0.531 3 | 0.771 8 | 0.813 5 | 0.291 4 | 0.484 6 | 0.242 7 | 0.612 8 | 0.282 8 | 0.440 8 | 0.351 6 | 0.299 6 | 0.622 7 | 0.593 5 | 0.027 5 | 0.293 5 | 0.310 8 | 0.000 1 | 0.757 5 | 0.858 6 | 0.737 7 | 0.150 4 | 0.164 1 | 0.368 8 | 0.084 3 | 0.381 8 | 0.142 8 | 0.357 6 | 0.720 4 | 0.214 6 | 0.092 7 | 0.724 7 | 0.596 8 | 0.056 7 | 0.655 2 | 0.525 6 | 0.581 8 | 0.352 8 | 0.594 7 | 0.056 8 | 0.000 3 | 0.014 8 | 0.224 7 | 0.772 6 | 0.205 8 | 0.720 7 | 0.000 1 | 0.159 2 | 0.531 7 | 0.163 8 | 0.294 7 | 0.136 8 | 0.000 1 | 0.169 7 | 0.589 6 | 0.000 4 | 0.000 4 | 0.000 1 | 0.002 1 | 0.663 4 | 0.466 8 | 0.265 8 | 0.582 5 | 0.337 5 | 0.016 7 | 0.559 6 | 0.084 8 | 0.000 3 | 0.000 3 | 0.000 1 | 0.036 3 | 0.000 2 | 0.125 3 | 0.670 7 | 0.000 1 | 0.102 1 | 0.071 5 | 0.164 6 | 0.406 2 | 0.386 4 | 0.046 8 | 0.068 8 | 0.159 6 | 0.117 2 | 0.284 7 | 0.111 8 | 0.094 7 | 0.000 3 | 0.000 8 | 0.197 8 | 0.000 1 | 0.044 6 | 0.013 6 | 0.002 6 | 0.228 8 | 0.307 8 | 0.588 4 | 0.025 8 | 0.545 1 | 0.134 8 | 0.000 1 | 0.655 2 | 0.302 6 | 0.282 8 | 0.000 1 | 0.060 1 | 0.000 3 | 0.035 8 | 0.000 4 | 0.000 3 | 0.097 8 | 0.000 3 | 0.000 2 | 0.005 3 | 0.000 1 | 0.000 1 | 0.096 8 | 0.000 1 | 0.334 7 | 0.000 1 | 0.000 4 | 0.274 7 | 0.000 1 | 0.513 8 | 0.000 1 | 0.000 1 | 0.280 3 | 0.194 4 | 0.897 5 | 0.000 4 | 0.000 3 | 0.000 1 | 0.000 4 | 0.000 1 | 0.108 5 | 0.279 8 | 0.189 7 | 0.141 8 | 0.059 7 | 0.272 2 | 0.307 8 | 0.445 2 | 0.003 4 | 0.000 1 | 0.353 7 | 0.000 1 | 0.026 1 | 0.000 4 | 0.581 7 | 0.001 1 | 0.000 1 | 0.000 1 | 0.093 8 | 0.002 1 | 0.000 2 | 0.000 3 | 0.000 1 | ||||||||||||||||||||||||||||
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AWCS | 0.305 5 | 0.508 5 | 0.225 5 | 0.142 2 | 0.782 5 | 0.634 8 | 0.937 5 | 0.489 6 | 0.578 5 | 0.721 3 | 0.364 6 | 0.355 5 | 0.515 4 | 0.023 5 | 0.764 5 | 0.523 4 | 0.707 5 | 0.264 3 | 0.633 5 | 0.922 5 | 0.507 6 | 0.886 1 | 0.804 6 | 0.179 6 | 0.436 7 | 0.300 5 | 0.656 7 | 0.529 2 | 0.501 6 | 0.394 4 | 0.296 7 | 0.820 1 | 0.603 3 | 0.131 2 | 0.179 8 | 0.619 2 | 0.000 1 | 0.707 7 | 0.865 5 | 0.773 3 | 0.171 3 | 0.010 4 | 0.484 5 | 0.063 6 | 0.463 5 | 0.254 5 | 0.332 7 | 0.649 5 | 0.220 5 | 0.100 5 | 0.729 6 | 0.613 6 | 0.071 6 | 0.582 7 | 0.628 2 | 0.702 1 | 0.424 6 | 0.749 1 | 0.137 6 | 0.000 3 | 0.142 5 | 0.360 5 | 0.863 3 | 0.305 5 | 0.877 2 | 0.000 1 | 0.173 1 | 0.606 5 | 0.337 5 | 0.478 5 | 0.154 6 | 0.000 1 | 0.253 5 | 0.664 2 | 0.000 4 | 0.000 4 | 0.000 1 | 0.000 3 | 0.626 6 | 0.782 5 | 0.302 7 | 0.602 2 | 0.185 7 | 0.282 3 | 0.651 4 | 0.317 4 | 0.000 3 | 0.000 3 | 0.000 1 | 0.022 6 | 0.000 2 | 0.154 1 | 0.876 4 | 0.000 1 | 0.014 5 | 0.063 6 | 0.029 8 | 0.553 1 | 0.467 2 | 0.084 5 | 0.124 5 | 0.157 7 | 0.049 6 | 0.373 5 | 0.252 4 | 0.097 6 | 0.000 3 | 0.219 1 | 0.542 1 | 0.000 1 | 0.392 1 | 0.172 3 | 0.000 7 | 0.339 3 | 0.417 2 | 0.533 6 | 0.093 6 | 0.115 3 | 0.195 5 | 0.000 1 | 0.516 5 | 0.288 7 | 0.741 2 | 0.000 1 | 0.001 4 | 0.233 2 | 0.056 5 | 0.000 4 | 0.159 1 | 0.334 4 | 0.077 2 | 0.000 2 | 0.000 4 | 0.000 1 | 0.000 1 | 0.749 5 | 0.000 1 | 0.411 3 | 0.000 1 | 0.008 3 | 0.452 5 | 0.000 1 | 0.595 4 | 0.000 1 | 0.000 1 | 0.220 4 | 0.006 5 | 0.894 6 | 0.006 3 | 0.000 3 | 0.000 1 | 0.000 4 | 0.000 1 | 0.112 3 | 0.504 3 | 0.404 3 | 0.551 1 | 0.093 3 | 0.129 8 | 0.484 4 | 0.381 8 | 0.000 6 | 0.000 1 | 0.396 6 | 0.000 1 | 0.000 2 | 0.620 2 | 0.402 8 | 0.000 2 | 0.000 1 | 0.000 1 | 0.142 4 | 0.000 2 | 0.000 2 | 0.512 2 | 0.000 1 | |||||||||||||||||||||||||||||