ScanNet200 3D Semantic Label Benchmark
The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.
Evaluation and metricsOur evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).
This table lists the benchmark results for the ScanNet200 3D semantic label scenario.
Method | Info | avg iou | head iou | common iou | tail iou | wall | chair | floor | table | door | couch | cabinet | shelf | desk | office chair | bed | pillow | sink | picture | window | toilet | bookshelf | monitor | curtain | book | armchair | coffee table | box | refrigerator | lamp | kitchen cabinet | towel | clothes | tv | nightstand | counter | dresser | stool | cushion | plant | ceiling | bathtub | end table | dining table | keyboard | bag | backpack | toilet paper | printer | tv stand | whiteboard | blanket | shower curtain | trash can | closet | stairs | microwave | stove | shoe | computer tower | bottle | bin | ottoman | bench | board | washing machine | mirror | copier | basket | sofa chair | file cabinet | fan | laptop | shower | paper | person | paper towel dispenser | oven | blinds | rack | plate | blackboard | piano | suitcase | rail | radiator | recycling bin | container | wardrobe | soap dispenser | telephone | bucket | clock | stand | light | laundry basket | pipe | clothes dryer | guitar | toilet paper holder | seat | speaker | column | bicycle | ladder | bathroom stall | shower wall | cup | jacket | storage bin | coffee maker | dishwasher | paper towel roll | machine | mat | windowsill | bar | toaster | bulletin board | ironing board | fireplace | soap dish | kitchen counter | doorframe | toilet paper dispenser | mini fridge | fire extinguisher | ball | hat | shower curtain rod | water cooler | paper cutter | tray | shower door | pillar | ledge | toaster oven | mouse | toilet seat cover dispenser | furniture | cart | storage container | scale | tissue box | light switch | crate | power outlet | decoration | sign | projector | closet door | vacuum cleaner | candle | plunger | stuffed animal | headphones | dish rack | broom | guitar case | range hood | dustpan | hair dryer | water bottle | handicap bar | purse | vent | shower floor | water pitcher | mailbox | bowl | paper bag | alarm clock | music stand | projector screen | divider | laundry detergent | bathroom counter | object | bathroom vanity | closet wall | laundry hamper | bathroom stall door | ceiling light | trash bin | dumbbell | stair rail | tube | bathroom cabinet | cd case | closet rod | coffee kettle | structure | shower head | keyboard piano | case of water bottles | coat rack | storage organizer | folded chair | fire alarm | power strip | calendar | poster | potted plant | luggage | mattress |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ||
PTv3 ScanNet200 | 0.393 1 | 0.592 1 | 0.330 1 | 0.216 1 | 0.851 1 | 0.687 2 | 0.971 1 | 0.586 1 | 0.755 1 | 0.752 3 | 0.505 1 | 0.404 4 | 0.575 1 | 0.000 9 | 0.848 1 | 0.616 1 | 0.761 1 | 0.349 1 | 0.738 1 | 0.978 1 | 0.546 3 | 0.860 6 | 0.926 1 | 0.346 1 | 0.654 3 | 0.384 3 | 0.828 1 | 0.523 3 | 0.699 1 | 0.583 2 | 0.387 4 | 0.822 1 | 0.688 1 | 0.118 3 | 0.474 1 | 0.603 4 | 0.000 1 | 0.832 1 | 0.903 1 | 0.753 6 | 0.140 6 | 0.000 6 | 0.650 1 | 0.109 2 | 0.520 1 | 0.457 1 | 0.497 5 | 0.871 3 | 0.281 1 | 0.192 2 | 0.887 1 | 0.748 1 | 0.168 1 | 0.727 2 | 0.733 1 | 0.740 1 | 0.644 1 | 0.714 3 | 0.190 6 | 0.000 3 | 0.256 1 | 0.449 5 | 0.914 1 | 0.514 1 | 0.759 8 | 0.337 1 | 0.172 3 | 0.692 2 | 0.617 1 | 0.636 1 | 0.325 3 | 0.000 1 | 0.641 1 | 0.782 1 | 0.000 4 | 0.065 2 | 0.000 1 | 0.000 3 | 0.842 1 | 0.903 1 | 0.661 1 | 0.662 2 | 0.612 1 | 0.405 2 | 0.731 1 | 0.566 1 | 0.000 3 | 0.000 4 | 0.000 1 | 0.017 9 | 0.301 1 | 0.088 4 | 0.941 1 | 0.000 1 | 0.077 2 | 0.000 7 | 0.717 2 | 0.790 1 | 0.310 9 | 0.026 10 | 0.264 1 | 0.349 1 | 0.220 2 | 0.397 6 | 0.366 1 | 0.115 6 | 0.000 3 | 0.337 1 | 0.463 3 | 0.000 1 | 0.531 1 | 0.218 1 | 0.593 1 | 0.455 1 | 0.469 1 | 0.708 1 | 0.210 1 | 0.592 1 | 0.108 10 | 0.000 1 | 0.728 1 | 0.682 1 | 0.671 4 | 0.000 1 | 0.000 6 | 0.407 1 | 0.136 1 | 0.022 2 | 0.575 1 | 0.436 3 | 0.259 1 | 0.428 1 | 0.048 1 | 0.000 1 | 0.000 1 | 0.879 5 | 0.000 1 | 0.480 1 | 0.000 1 | 0.133 3 | 0.597 1 | 0.000 1 | 0.690 1 | 0.000 1 | 0.000 1 | 0.009 9 | 0.000 8 | 0.921 2 | 0.000 4 | 0.151 1 | 0.000 1 | 0.000 4 | 0.000 1 | 0.109 6 | 0.494 7 | 0.622 2 | 0.394 6 | 0.073 8 | 0.141 7 | 0.798 1 | 0.528 2 | 0.026 1 | 0.000 1 | 0.551 2 | 0.000 2 | 0.000 2 | 0.134 5 | 0.717 4 | 0.000 2 | 0.000 1 | 0.000 1 | 0.188 2 | 0.000 3 | 0.000 2 | 0.791 1 | 0.000 1 | |||||||||||||||||||||||||||||
OctFormer ScanNet200 | ![]() | 0.326 6 | 0.539 6 | 0.265 5 | 0.131 5 | 0.806 5 | 0.670 6 | 0.943 5 | 0.535 6 | 0.662 2 | 0.705 9 | 0.423 5 | 0.407 3 | 0.505 7 | 0.003 7 | 0.765 6 | 0.582 4 | 0.686 8 | 0.227 9 | 0.680 5 | 0.943 5 | 0.601 1 | 0.854 7 | 0.892 2 | 0.335 2 | 0.417 10 | 0.357 5 | 0.724 7 | 0.453 4 | 0.632 4 | 0.596 1 | 0.432 2 | 0.783 6 | 0.512 10 | 0.021 8 | 0.244 8 | 0.637 1 | 0.000 1 | 0.787 5 | 0.873 5 | 0.743 8 | 0.000 10 | 0.000 6 | 0.534 5 | 0.110 1 | 0.499 3 | 0.289 4 | 0.626 3 | 0.620 8 | 0.168 10 | 0.204 1 | 0.849 3 | 0.679 4 | 0.117 2 | 0.633 6 | 0.684 2 | 0.650 4 | 0.552 2 | 0.684 6 | 0.312 2 | 0.000 3 | 0.175 5 | 0.429 6 | 0.865 3 | 0.413 2 | 0.837 5 | 0.000 2 | 0.145 5 | 0.626 4 | 0.451 3 | 0.487 6 | 0.513 1 | 0.000 1 | 0.529 4 | 0.613 6 | 0.000 4 | 0.033 3 | 0.000 1 | 0.000 3 | 0.828 2 | 0.871 2 | 0.622 4 | 0.587 5 | 0.411 4 | 0.137 8 | 0.645 7 | 0.343 5 | 0.000 3 | 0.000 4 | 0.000 1 | 0.022 7 | 0.000 3 | 0.026 10 | 0.829 7 | 0.000 1 | 0.022 5 | 0.089 3 | 0.842 1 | 0.253 9 | 0.318 8 | 0.296 1 | 0.178 5 | 0.291 3 | 0.224 1 | 0.584 2 | 0.200 8 | 0.132 4 | 0.000 3 | 0.128 4 | 0.227 9 | 0.000 1 | 0.230 6 | 0.047 7 | 0.149 4 | 0.331 6 | 0.412 5 | 0.618 4 | 0.164 5 | 0.102 5 | 0.522 1 | 0.000 1 | 0.655 3 | 0.378 6 | 0.469 8 | 0.000 1 | 0.000 6 | 0.000 5 | 0.105 4 | 0.000 5 | 0.000 5 | 0.483 2 | 0.000 5 | 0.000 3 | 0.028 3 | 0.000 1 | 0.000 1 | 0.906 1 | 0.000 1 | 0.339 8 | 0.000 1 | 0.000 6 | 0.457 6 | 0.000 1 | 0.612 4 | 0.000 1 | 0.000 1 | 0.408 1 | 0.000 8 | 0.900 6 | 0.000 4 | 0.000 4 | 0.000 1 | 0.029 3 | 0.000 1 | 0.074 10 | 0.455 8 | 0.479 3 | 0.427 4 | 0.079 6 | 0.140 8 | 0.496 5 | 0.414 7 | 0.022 2 | 0.000 1 | 0.471 7 | 0.000 2 | 0.000 2 | 0.000 6 | 0.722 3 | 0.000 2 | 0.000 1 | 0.000 1 | 0.138 7 | 0.000 3 | 0.000 2 | 0.000 5 | 0.000 1 | ||||||||||||||||||||||||||||
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PonderV2 ScanNet200 | 0.346 2 | 0.552 4 | 0.270 3 | 0.175 3 | 0.810 4 | 0.682 3 | 0.950 2 | 0.560 4 | 0.641 5 | 0.761 1 | 0.398 7 | 0.357 6 | 0.570 4 | 0.113 2 | 0.804 3 | 0.603 3 | 0.750 3 | 0.283 2 | 0.681 4 | 0.952 2 | 0.548 2 | 0.874 3 | 0.852 6 | 0.290 6 | 0.700 2 | 0.356 6 | 0.792 3 | 0.445 5 | 0.545 6 | 0.436 5 | 0.351 6 | 0.787 5 | 0.611 4 | 0.050 5 | 0.290 7 | 0.519 7 | 0.000 1 | 0.825 3 | 0.888 2 | 0.842 2 | 0.259 2 | 0.100 2 | 0.558 3 | 0.070 7 | 0.497 4 | 0.247 7 | 0.457 6 | 0.889 2 | 0.248 5 | 0.106 6 | 0.817 6 | 0.691 3 | 0.094 4 | 0.729 1 | 0.636 3 | 0.620 7 | 0.503 6 | 0.660 8 | 0.243 4 | 0.000 3 | 0.212 4 | 0.590 3 | 0.860 6 | 0.400 3 | 0.881 2 | 0.000 2 | 0.202 1 | 0.622 5 | 0.408 4 | 0.499 5 | 0.261 5 | 0.000 1 | 0.385 5 | 0.636 4 | 0.000 4 | 0.000 5 | 0.000 1 | 0.000 3 | 0.433 10 | 0.843 3 | 0.660 3 | 0.574 7 | 0.481 2 | 0.336 3 | 0.677 3 | 0.486 2 | 0.000 3 | 0.030 1 | 0.000 1 | 0.034 4 | 0.000 3 | 0.080 5 | 0.869 6 | 0.000 1 | 0.000 7 | 0.000 7 | 0.540 4 | 0.727 2 | 0.232 10 | 0.115 4 | 0.186 4 | 0.193 4 | 0.000 9 | 0.403 5 | 0.326 3 | 0.103 7 | 0.000 3 | 0.290 2 | 0.392 5 | 0.000 1 | 0.346 4 | 0.062 6 | 0.424 2 | 0.375 4 | 0.431 3 | 0.667 2 | 0.115 7 | 0.082 6 | 0.239 4 | 0.000 1 | 0.504 8 | 0.606 3 | 0.584 5 | 0.000 1 | 0.002 4 | 0.186 4 | 0.104 5 | 0.000 5 | 0.394 2 | 0.384 5 | 0.083 3 | 0.000 3 | 0.007 4 | 0.000 1 | 0.000 1 | 0.880 4 | 0.000 1 | 0.377 6 | 0.000 1 | 0.263 2 | 0.565 2 | 0.000 1 | 0.608 5 | 0.000 1 | 0.000 1 | 0.304 3 | 0.009 5 | 0.924 1 | 0.000 4 | 0.000 4 | 0.000 1 | 0.000 4 | 0.000 1 | 0.128 2 | 0.584 1 | 0.475 4 | 0.412 5 | 0.076 7 | 0.269 3 | 0.621 3 | 0.509 3 | 0.010 3 | 0.000 1 | 0.491 5 | 0.063 1 | 0.000 2 | 0.472 3 | 0.880 1 | 0.000 2 | 0.000 1 | 0.000 1 | 0.179 3 | 0.125 1 | 0.000 2 | 0.441 4 | 0.000 1 | |||||||||||||||||||||||||||||
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OA-CNN-L_ScanNet200 | 0.333 4 | 0.558 2 | 0.269 4 | 0.124 6 | 0.821 2 | 0.703 1 | 0.946 3 | 0.569 2 | 0.662 2 | 0.748 4 | 0.487 2 | 0.455 1 | 0.572 3 | 0.000 9 | 0.789 4 | 0.534 5 | 0.736 4 | 0.271 3 | 0.713 2 | 0.949 3 | 0.498 9 | 0.877 2 | 0.860 4 | 0.332 3 | 0.706 1 | 0.474 1 | 0.788 5 | 0.406 6 | 0.637 3 | 0.495 4 | 0.355 5 | 0.805 3 | 0.592 8 | 0.015 9 | 0.396 2 | 0.602 5 | 0.000 1 | 0.799 4 | 0.876 3 | 0.713 10 | 0.276 1 | 0.000 6 | 0.493 6 | 0.080 5 | 0.448 8 | 0.363 2 | 0.661 2 | 0.833 4 | 0.262 3 | 0.125 3 | 0.823 5 | 0.665 5 | 0.076 6 | 0.720 3 | 0.557 5 | 0.637 5 | 0.517 5 | 0.672 7 | 0.227 5 | 0.000 3 | 0.158 6 | 0.496 4 | 0.843 7 | 0.352 6 | 0.835 6 | 0.000 2 | 0.103 8 | 0.711 1 | 0.527 2 | 0.526 3 | 0.320 4 | 0.000 1 | 0.568 3 | 0.625 5 | 0.067 1 | 0.000 5 | 0.000 1 | 0.001 2 | 0.806 3 | 0.836 4 | 0.621 5 | 0.591 4 | 0.373 5 | 0.314 4 | 0.668 4 | 0.398 4 | 0.003 2 | 0.000 4 | 0.000 1 | 0.016 10 | 0.024 2 | 0.043 8 | 0.906 3 | 0.000 1 | 0.052 4 | 0.000 7 | 0.384 5 | 0.330 7 | 0.342 5 | 0.100 5 | 0.223 3 | 0.183 6 | 0.112 4 | 0.476 4 | 0.313 4 | 0.130 5 | 0.196 2 | 0.112 5 | 0.370 7 | 0.000 1 | 0.234 5 | 0.071 5 | 0.160 3 | 0.403 3 | 0.398 7 | 0.492 9 | 0.197 2 | 0.076 7 | 0.272 3 | 0.000 1 | 0.200 10 | 0.560 4 | 0.735 3 | 0.000 1 | 0.000 6 | 0.000 5 | 0.110 3 | 0.002 4 | 0.021 4 | 0.412 4 | 0.000 5 | 0.000 3 | 0.000 6 | 0.000 1 | 0.000 1 | 0.794 6 | 0.000 1 | 0.445 2 | 0.000 1 | 0.022 4 | 0.509 5 | 0.000 1 | 0.517 9 | 0.000 1 | 0.000 1 | 0.001 10 | 0.245 2 | 0.915 4 | 0.024 2 | 0.089 2 | 0.000 1 | 0.262 1 | 0.000 1 | 0.103 8 | 0.524 3 | 0.392 6 | 0.515 2 | 0.013 10 | 0.251 4 | 0.411 8 | 0.662 1 | 0.001 7 | 0.000 1 | 0.473 6 | 0.000 2 | 0.000 2 | 0.150 4 | 0.699 5 | 0.000 2 | 0.000 1 | 0.000 1 | 0.166 4 | 0.000 3 | 0.024 1 | 0.000 5 | 0.000 1 | |||||||||||||||||||||||||||||
CeCo | 0.340 3 | 0.551 5 | 0.247 6 | 0.181 2 | 0.784 6 | 0.661 7 | 0.939 6 | 0.564 3 | 0.624 6 | 0.721 5 | 0.484 3 | 0.429 2 | 0.575 1 | 0.027 5 | 0.774 5 | 0.503 7 | 0.753 2 | 0.242 6 | 0.656 6 | 0.945 4 | 0.534 4 | 0.865 5 | 0.860 4 | 0.177 10 | 0.616 5 | 0.400 2 | 0.818 2 | 0.579 1 | 0.615 5 | 0.367 7 | 0.408 3 | 0.726 8 | 0.633 2 | 0.162 1 | 0.360 3 | 0.619 2 | 0.000 1 | 0.828 2 | 0.873 5 | 0.924 1 | 0.109 7 | 0.083 3 | 0.564 2 | 0.057 10 | 0.475 6 | 0.266 5 | 0.781 1 | 0.767 5 | 0.257 4 | 0.100 7 | 0.825 4 | 0.663 6 | 0.048 10 | 0.620 8 | 0.551 6 | 0.595 8 | 0.532 4 | 0.692 5 | 0.246 3 | 0.000 3 | 0.213 3 | 0.615 1 | 0.861 5 | 0.376 4 | 0.900 1 | 0.000 2 | 0.102 9 | 0.660 3 | 0.321 8 | 0.547 2 | 0.226 6 | 0.000 1 | 0.311 6 | 0.742 2 | 0.011 3 | 0.006 4 | 0.000 1 | 0.000 3 | 0.546 9 | 0.824 5 | 0.345 7 | 0.665 1 | 0.450 3 | 0.435 1 | 0.683 2 | 0.411 3 | 0.338 1 | 0.000 4 | 0.000 1 | 0.030 5 | 0.000 3 | 0.068 6 | 0.892 4 | 0.000 1 | 0.063 3 | 0.000 7 | 0.257 6 | 0.304 8 | 0.387 3 | 0.079 7 | 0.228 2 | 0.190 5 | 0.000 9 | 0.586 1 | 0.347 2 | 0.133 3 | 0.000 3 | 0.037 6 | 0.377 6 | 0.000 1 | 0.384 3 | 0.006 9 | 0.003 7 | 0.421 2 | 0.410 6 | 0.643 3 | 0.171 4 | 0.121 3 | 0.142 8 | 0.000 1 | 0.510 7 | 0.447 5 | 0.474 7 | 0.000 1 | 0.000 6 | 0.286 2 | 0.083 6 | 0.000 5 | 0.000 5 | 0.603 1 | 0.096 2 | 0.063 2 | 0.000 6 | 0.000 1 | 0.000 1 | 0.898 3 | 0.000 1 | 0.429 3 | 0.000 1 | 0.400 1 | 0.550 3 | 0.000 1 | 0.633 3 | 0.000 1 | 0.000 1 | 0.377 2 | 0.000 8 | 0.916 3 | 0.000 4 | 0.000 4 | 0.000 1 | 0.000 4 | 0.000 1 | 0.102 9 | 0.499 5 | 0.296 7 | 0.463 3 | 0.089 4 | 0.304 1 | 0.740 2 | 0.401 9 | 0.010 3 | 0.000 1 | 0.560 1 | 0.000 2 | 0.000 2 | 0.709 1 | 0.652 6 | 0.000 2 | 0.000 1 | 0.000 1 | 0.143 5 | 0.000 3 | 0.000 2 | 0.609 2 | 0.000 1 | |||||||||||||||||||||||||||||
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PPT-SpUNet-F.T. | 0.332 5 | 0.556 3 | 0.270 2 | 0.123 7 | 0.816 3 | 0.682 3 | 0.946 3 | 0.549 5 | 0.657 4 | 0.756 2 | 0.459 4 | 0.376 5 | 0.550 5 | 0.001 8 | 0.807 2 | 0.616 1 | 0.727 5 | 0.267 4 | 0.691 3 | 0.942 6 | 0.530 6 | 0.872 4 | 0.874 3 | 0.330 4 | 0.542 7 | 0.374 4 | 0.792 3 | 0.400 7 | 0.673 2 | 0.572 3 | 0.433 1 | 0.793 4 | 0.623 3 | 0.008 10 | 0.351 4 | 0.594 6 | 0.000 1 | 0.783 6 | 0.876 3 | 0.833 3 | 0.213 3 | 0.000 6 | 0.537 4 | 0.091 3 | 0.519 2 | 0.304 3 | 0.620 4 | 0.942 1 | 0.264 2 | 0.124 4 | 0.855 2 | 0.695 2 | 0.086 5 | 0.646 5 | 0.506 9 | 0.658 3 | 0.535 3 | 0.715 2 | 0.314 1 | 0.000 3 | 0.241 2 | 0.608 2 | 0.897 2 | 0.359 5 | 0.858 4 | 0.000 2 | 0.076 10 | 0.611 6 | 0.392 5 | 0.509 4 | 0.378 2 | 0.000 1 | 0.579 2 | 0.565 9 | 0.000 4 | 0.000 5 | 0.000 1 | 0.000 3 | 0.755 4 | 0.806 6 | 0.661 1 | 0.572 8 | 0.350 6 | 0.181 6 | 0.660 5 | 0.300 7 | 0.000 3 | 0.000 4 | 0.000 1 | 0.023 6 | 0.000 3 | 0.042 9 | 0.930 2 | 0.000 1 | 0.000 7 | 0.077 4 | 0.584 3 | 0.392 5 | 0.339 6 | 0.185 3 | 0.171 6 | 0.308 2 | 0.006 8 | 0.563 3 | 0.256 5 | 0.150 1 | 0.000 3 | 0.002 9 | 0.345 8 | 0.000 1 | 0.045 7 | 0.197 2 | 0.063 5 | 0.323 7 | 0.453 2 | 0.600 5 | 0.163 6 | 0.037 8 | 0.349 2 | 0.000 1 | 0.672 2 | 0.679 2 | 0.753 1 | 0.000 1 | 0.000 6 | 0.000 5 | 0.117 2 | 0.000 5 | 0.000 5 | 0.291 7 | 0.000 5 | 0.000 3 | 0.039 2 | 0.000 1 | 0.000 1 | 0.899 2 | 0.000 1 | 0.374 7 | 0.000 1 | 0.000 6 | 0.545 4 | 0.000 1 | 0.634 2 | 0.000 1 | 0.000 1 | 0.074 6 | 0.223 3 | 0.914 5 | 0.000 4 | 0.021 3 | 0.000 1 | 0.000 4 | 0.000 1 | 0.112 4 | 0.498 6 | 0.649 1 | 0.383 7 | 0.095 1 | 0.135 9 | 0.449 7 | 0.432 6 | 0.008 5 | 0.000 1 | 0.518 3 | 0.000 2 | 0.000 2 | 0.000 6 | 0.796 2 | 0.000 2 | 0.000 1 | 0.000 1 | 0.138 7 | 0.000 3 | 0.000 2 | 0.000 5 | 0.000 1 | |||||||||||||||||||||||||||||
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
AWCS | 0.305 7 | 0.508 7 | 0.225 7 | 0.142 4 | 0.782 7 | 0.634 10 | 0.937 7 | 0.489 8 | 0.578 7 | 0.721 5 | 0.364 8 | 0.355 7 | 0.515 6 | 0.023 6 | 0.764 7 | 0.523 6 | 0.707 7 | 0.264 5 | 0.633 7 | 0.922 7 | 0.507 8 | 0.886 1 | 0.804 8 | 0.179 8 | 0.436 9 | 0.300 7 | 0.656 9 | 0.529 2 | 0.501 8 | 0.394 6 | 0.296 9 | 0.820 2 | 0.603 5 | 0.131 2 | 0.179 10 | 0.619 2 | 0.000 1 | 0.707 9 | 0.865 7 | 0.773 4 | 0.171 4 | 0.010 5 | 0.484 7 | 0.063 8 | 0.463 7 | 0.254 6 | 0.332 9 | 0.649 7 | 0.220 7 | 0.100 7 | 0.729 8 | 0.613 8 | 0.071 8 | 0.582 9 | 0.628 4 | 0.702 2 | 0.424 8 | 0.749 1 | 0.137 8 | 0.000 3 | 0.142 7 | 0.360 7 | 0.863 4 | 0.305 7 | 0.877 3 | 0.000 2 | 0.173 2 | 0.606 7 | 0.337 7 | 0.478 7 | 0.154 8 | 0.000 1 | 0.253 7 | 0.664 3 | 0.000 4 | 0.000 5 | 0.000 1 | 0.000 3 | 0.626 7 | 0.782 7 | 0.302 9 | 0.602 3 | 0.185 9 | 0.282 5 | 0.651 6 | 0.317 6 | 0.000 3 | 0.000 4 | 0.000 1 | 0.022 7 | 0.000 3 | 0.154 1 | 0.876 5 | 0.000 1 | 0.014 6 | 0.063 6 | 0.029 10 | 0.553 3 | 0.467 2 | 0.084 6 | 0.124 7 | 0.157 9 | 0.049 7 | 0.373 7 | 0.252 6 | 0.097 8 | 0.000 3 | 0.219 3 | 0.542 1 | 0.000 1 | 0.392 2 | 0.172 4 | 0.000 9 | 0.339 5 | 0.417 4 | 0.533 8 | 0.093 8 | 0.115 4 | 0.195 6 | 0.000 1 | 0.516 6 | 0.288 9 | 0.741 2 | 0.000 1 | 0.001 5 | 0.233 3 | 0.056 7 | 0.000 5 | 0.159 3 | 0.334 6 | 0.077 4 | 0.000 3 | 0.000 6 | 0.000 1 | 0.000 1 | 0.749 7 | 0.000 1 | 0.411 4 | 0.000 1 | 0.008 5 | 0.452 7 | 0.000 1 | 0.595 6 | 0.000 1 | 0.000 1 | 0.220 5 | 0.006 6 | 0.894 8 | 0.006 3 | 0.000 4 | 0.000 1 | 0.000 4 | 0.000 1 | 0.112 4 | 0.504 4 | 0.404 5 | 0.551 1 | 0.093 3 | 0.129 10 | 0.484 6 | 0.381 10 | 0.000 8 | 0.000 1 | 0.396 8 | 0.000 2 | 0.000 2 | 0.620 2 | 0.402 10 | 0.000 2 | 0.000 1 | 0.000 1 | 0.142 6 | 0.000 3 | 0.000 2 | 0.512 3 | 0.000 1 | |||||||||||||||||||||||||||||
LGround | ![]() | 0.272 8 | 0.485 8 | 0.184 8 | 0.106 8 | 0.778 8 | 0.676 5 | 0.932 8 | 0.479 10 | 0.572 8 | 0.718 7 | 0.399 6 | 0.265 8 | 0.453 9 | 0.085 3 | 0.745 8 | 0.446 8 | 0.726 6 | 0.232 8 | 0.622 8 | 0.901 8 | 0.512 7 | 0.826 8 | 0.786 9 | 0.178 9 | 0.549 6 | 0.277 8 | 0.659 8 | 0.381 8 | 0.518 7 | 0.295 10 | 0.323 7 | 0.777 7 | 0.599 6 | 0.028 6 | 0.321 5 | 0.363 9 | 0.000 1 | 0.708 8 | 0.858 8 | 0.746 7 | 0.063 8 | 0.022 4 | 0.457 8 | 0.077 6 | 0.476 5 | 0.243 8 | 0.402 7 | 0.397 10 | 0.233 6 | 0.077 10 | 0.720 10 | 0.610 9 | 0.103 3 | 0.629 7 | 0.437 10 | 0.626 6 | 0.446 7 | 0.702 4 | 0.190 6 | 0.005 1 | 0.058 9 | 0.322 8 | 0.702 9 | 0.244 8 | 0.768 7 | 0.000 2 | 0.134 7 | 0.552 8 | 0.279 9 | 0.395 8 | 0.147 9 | 0.000 1 | 0.207 8 | 0.612 7 | 0.000 4 | 0.000 5 | 0.000 1 | 0.000 3 | 0.658 6 | 0.566 8 | 0.323 8 | 0.525 10 | 0.229 8 | 0.179 7 | 0.467 10 | 0.154 9 | 0.000 3 | 0.002 2 | 0.000 1 | 0.051 1 | 0.000 3 | 0.127 2 | 0.703 8 | 0.000 1 | 0.000 7 | 0.216 1 | 0.112 9 | 0.358 6 | 0.547 1 | 0.187 2 | 0.092 9 | 0.156 10 | 0.055 6 | 0.296 8 | 0.252 6 | 0.143 2 | 0.000 3 | 0.014 7 | 0.398 4 | 0.000 1 | 0.028 9 | 0.173 3 | 0.000 9 | 0.265 9 | 0.348 8 | 0.415 10 | 0.179 3 | 0.019 9 | 0.218 5 | 0.000 1 | 0.597 5 | 0.274 10 | 0.565 6 | 0.000 1 | 0.012 3 | 0.000 5 | 0.039 9 | 0.022 2 | 0.000 5 | 0.117 8 | 0.000 5 | 0.000 3 | 0.000 6 | 0.000 1 | 0.000 1 | 0.324 9 | 0.000 1 | 0.384 5 | 0.000 1 | 0.000 6 | 0.251 10 | 0.000 1 | 0.566 7 | 0.000 1 | 0.000 1 | 0.066 7 | 0.404 1 | 0.886 9 | 0.199 1 | 0.000 4 | 0.000 1 | 0.059 2 | 0.000 1 | 0.136 1 | 0.540 2 | 0.127 10 | 0.295 8 | 0.085 5 | 0.143 6 | 0.514 4 | 0.413 8 | 0.000 8 | 0.000 1 | 0.498 4 | 0.000 2 | 0.000 2 | 0.000 6 | 0.623 7 | 0.000 2 | 0.000 1 | 0.000 1 | 0.132 9 | 0.000 3 | 0.000 2 | 0.000 5 | 0.000 1 | ||||||||||||||||||||||||||||
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CSC-Pretrain | ![]() | 0.249 10 | 0.455 10 | 0.171 9 | 0.079 10 | 0.766 10 | 0.659 8 | 0.930 10 | 0.494 7 | 0.542 10 | 0.700 10 | 0.314 10 | 0.215 10 | 0.430 10 | 0.121 1 | 0.697 10 | 0.441 9 | 0.683 9 | 0.235 7 | 0.609 10 | 0.895 9 | 0.476 10 | 0.816 9 | 0.770 10 | 0.186 7 | 0.634 4 | 0.216 10 | 0.734 6 | 0.340 9 | 0.471 9 | 0.307 9 | 0.293 10 | 0.591 10 | 0.542 9 | 0.076 4 | 0.205 9 | 0.464 8 | 0.000 1 | 0.484 10 | 0.832 10 | 0.766 5 | 0.052 9 | 0.000 6 | 0.413 9 | 0.059 9 | 0.418 9 | 0.222 9 | 0.318 10 | 0.609 9 | 0.206 9 | 0.112 5 | 0.743 7 | 0.625 7 | 0.076 6 | 0.579 10 | 0.548 7 | 0.590 9 | 0.371 9 | 0.552 10 | 0.081 9 | 0.003 2 | 0.142 7 | 0.201 10 | 0.638 10 | 0.233 9 | 0.686 10 | 0.000 2 | 0.142 6 | 0.444 10 | 0.375 6 | 0.247 10 | 0.198 7 | 0.000 1 | 0.128 10 | 0.454 10 | 0.019 2 | 0.097 1 | 0.000 1 | 0.000 3 | 0.553 8 | 0.557 9 | 0.373 6 | 0.545 9 | 0.164 10 | 0.014 10 | 0.547 9 | 0.174 8 | 0.000 3 | 0.002 2 | 0.000 1 | 0.037 2 | 0.000 3 | 0.063 7 | 0.664 10 | 0.000 1 | 0.000 7 | 0.130 2 | 0.170 7 | 0.152 10 | 0.335 7 | 0.079 7 | 0.110 8 | 0.175 7 | 0.098 5 | 0.175 10 | 0.166 9 | 0.045 10 | 0.207 1 | 0.014 7 | 0.465 2 | 0.000 1 | 0.001 10 | 0.001 10 | 0.046 6 | 0.299 8 | 0.327 9 | 0.537 7 | 0.033 9 | 0.012 10 | 0.186 7 | 0.000 1 | 0.205 9 | 0.377 7 | 0.463 9 | 0.000 1 | 0.058 2 | 0.000 5 | 0.055 8 | 0.041 1 | 0.000 5 | 0.105 9 | 0.000 5 | 0.000 3 | 0.000 6 | 0.000 1 | 0.000 1 | 0.398 8 | 0.000 1 | 0.308 10 | 0.000 1 | 0.000 6 | 0.319 8 | 0.000 1 | 0.543 8 | 0.000 1 | 0.000 1 | 0.062 8 | 0.004 7 | 0.862 10 | 0.000 4 | 0.000 4 | 0.000 1 | 0.000 4 | 0.000 1 | 0.123 3 | 0.316 9 | 0.225 8 | 0.250 9 | 0.094 2 | 0.180 5 | 0.332 9 | 0.441 5 | 0.000 8 | 0.000 1 | 0.310 10 | 0.000 2 | 0.000 2 | 0.000 6 | 0.592 8 | 0.000 2 | 0.000 1 | 0.000 1 | 0.203 1 | 0.000 3 | 0.000 2 | 0.000 5 | 0.000 1 | ||||||||||||||||||||||||||||
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Minkowski 34D | ![]() | 0.253 9 | 0.463 9 | 0.154 10 | 0.102 9 | 0.771 9 | 0.650 9 | 0.932 8 | 0.483 9 | 0.571 9 | 0.710 8 | 0.331 9 | 0.250 9 | 0.492 8 | 0.044 4 | 0.703 9 | 0.419 10 | 0.606 10 | 0.227 9 | 0.621 9 | 0.865 10 | 0.531 5 | 0.771 10 | 0.813 7 | 0.291 5 | 0.484 8 | 0.242 9 | 0.612 10 | 0.282 10 | 0.440 10 | 0.351 8 | 0.299 8 | 0.622 9 | 0.593 7 | 0.027 7 | 0.293 6 | 0.310 10 | 0.000 1 | 0.757 7 | 0.858 8 | 0.737 9 | 0.150 5 | 0.164 1 | 0.368 10 | 0.084 4 | 0.381 10 | 0.142 10 | 0.357 8 | 0.720 6 | 0.214 8 | 0.092 9 | 0.724 9 | 0.596 10 | 0.056 9 | 0.655 4 | 0.525 8 | 0.581 10 | 0.352 10 | 0.594 9 | 0.056 10 | 0.000 3 | 0.014 10 | 0.224 9 | 0.772 8 | 0.205 10 | 0.720 9 | 0.000 2 | 0.159 4 | 0.531 9 | 0.163 10 | 0.294 9 | 0.136 10 | 0.000 1 | 0.169 9 | 0.589 8 | 0.000 4 | 0.000 5 | 0.000 1 | 0.002 1 | 0.663 5 | 0.466 10 | 0.265 10 | 0.582 6 | 0.337 7 | 0.016 9 | 0.559 8 | 0.084 10 | 0.000 3 | 0.000 4 | 0.000 1 | 0.036 3 | 0.000 3 | 0.125 3 | 0.670 9 | 0.000 1 | 0.102 1 | 0.071 5 | 0.164 8 | 0.406 4 | 0.386 4 | 0.046 9 | 0.068 10 | 0.159 8 | 0.117 3 | 0.284 9 | 0.111 10 | 0.094 9 | 0.000 3 | 0.000 10 | 0.197 10 | 0.000 1 | 0.044 8 | 0.013 8 | 0.002 8 | 0.228 10 | 0.307 10 | 0.588 6 | 0.025 10 | 0.545 2 | 0.134 9 | 0.000 1 | 0.655 3 | 0.302 8 | 0.282 10 | 0.000 1 | 0.060 1 | 0.000 5 | 0.035 10 | 0.000 5 | 0.000 5 | 0.097 10 | 0.000 5 | 0.000 3 | 0.005 5 | 0.000 1 | 0.000 1 | 0.096 10 | 0.000 1 | 0.334 9 | 0.000 1 | 0.000 6 | 0.274 9 | 0.000 1 | 0.513 10 | 0.000 1 | 0.000 1 | 0.280 4 | 0.194 4 | 0.897 7 | 0.000 4 | 0.000 4 | 0.000 1 | 0.000 4 | 0.000 1 | 0.108 7 | 0.279 10 | 0.189 9 | 0.141 10 | 0.059 9 | 0.272 2 | 0.307 10 | 0.445 4 | 0.003 6 | 0.000 1 | 0.353 9 | 0.000 2 | 0.026 1 | 0.000 6 | 0.581 9 | 0.001 1 | 0.000 1 | 0.000 1 | 0.093 10 | 0.002 2 | 0.000 2 | 0.000 5 | 0.000 1 | ||||||||||||||||||||||||||||
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019 |