ScanNet200 3D Semantic Label Benchmark
The 3D semantic labeling task involves predicting a semantic labeling of a 3D scan mesh.
Evaluation and metricsOur evaluation ranks all methods according to the PASCAL VOC intersection-over-union metric (IoU). IoU = TP/(TP+FP+FN), where TP, FP, and FN are the numbers of true positive, false positive, and false negative pixels, respectively. Predicted labels are evaluated per-vertex over the respective 3D scan mesh; for 3D approaches that operate on other representations like grids or points, the predicted labels should be mapped onto the mesh vertices (e.g., one such example for grid to mesh vertices is provided in the evaluation helpers).
This table lists the benchmark results for the ScanNet200 3D semantic label scenario.
Method | Info | avg iou | head iou | common iou | tail iou | alarm clock | armchair | backpack | bag | ball | bar | basket | bathroom cabinet | bathroom counter | bathroom stall | bathroom stall door | bathroom vanity | bathtub | bed | bench | bicycle | bin | blackboard | blanket | blinds | board | book | bookshelf | bottle | bowl | box | broom | bucket | bulletin board | cabinet | calendar | candle | cart | case of water bottles | cd case | ceiling | ceiling light | chair | clock | closet | closet door | closet rod | closet wall | clothes | clothes dryer | coat rack | coffee kettle | coffee maker | coffee table | column | computer tower | container | copier | couch | counter | crate | cup | curtain | cushion | decoration | desk | dining table | dish rack | dishwasher | divider | door | doorframe | dresser | dumbbell | dustpan | end table | fan | file cabinet | fire alarm | fire extinguisher | fireplace | floor | folded chair | furniture | guitar | guitar case | hair dryer | handicap bar | hat | headphones | ironing board | jacket | keyboard | keyboard piano | kitchen cabinet | kitchen counter | ladder | lamp | laptop | laundry basket | laundry detergent | laundry hamper | ledge | light | light switch | luggage | machine | mailbox | mat | mattress | microwave | mini fridge | mirror | monitor | mouse | music stand | nightstand | object | office chair | ottoman | oven | paper | paper bag | paper cutter | paper towel dispenser | paper towel roll | person | piano | picture | pillar | pillow | pipe | plant | plate | plunger | poster | potted plant | power outlet | power strip | printer | projector | projector screen | purse | rack | radiator | rail | range hood | recycling bin | refrigerator | scale | seat | shelf | shoe | shower | shower curtain | shower curtain rod | shower door | shower floor | shower head | shower wall | sign | sink | soap dish | soap dispenser | sofa chair | speaker | stair rail | stairs | stand | stool | storage bin | storage container | storage organizer | stove | structure | stuffed animal | suitcase | table | telephone | tissue box | toaster | toaster oven | toilet | toilet paper | toilet paper dispenser | toilet paper holder | toilet seat cover dispenser | towel | trash bin | trash can | tray | tube | tv | tv stand | vacuum cleaner | vent | wall | wardrobe | washing machine | water bottle | water cooler | water pitcher | whiteboard | window | windowsill |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ||
AWCS | 0.305 7 | 0.508 7 | 0.225 7 | 0.142 4 | 0.463 7 | 0.063 8 | 0.195 6 | 0.000 1 | 0.000 2 | 0.000 1 | 0.467 2 | 0.551 1 | 0.504 4 | 0.773 4 | 0.764 7 | 0.142 7 | 0.029 10 | 0.000 3 | 0.626 7 | 0.100 7 | 0.000 5 | 0.360 7 | 0.179 8 | 0.507 8 | 0.137 8 | 0.006 3 | 0.300 7 | 0.000 1 | 0.000 3 | 0.172 4 | 0.364 8 | 0.512 3 | 0.000 1 | 0.056 7 | 0.000 2 | 0.865 7 | 0.093 3 | 0.634 10 | 0.000 4 | 0.071 8 | 0.396 8 | 0.296 9 | 0.876 5 | 0.000 1 | 0.000 2 | 0.373 7 | 0.436 9 | 0.063 6 | 0.749 1 | 0.877 3 | 0.721 5 | 0.131 2 | 0.124 7 | 0.804 8 | 0.000 1 | 0.000 6 | 0.515 6 | 0.010 5 | 0.452 7 | 0.252 6 | 0.578 7 | 0.417 4 | 0.179 10 | 0.484 6 | 0.171 4 | 0.337 7 | 0.606 7 | 0.000 3 | 0.115 4 | 0.937 7 | 0.142 6 | 0.000 1 | 0.008 5 | 0.000 9 | 0.157 9 | 0.484 7 | 0.402 10 | 0.501 8 | 0.339 5 | 0.553 3 | 0.529 2 | 0.478 7 | 0.000 3 | 0.000 1 | 0.404 5 | 0.001 5 | 0.022 7 | 0.077 4 | 0.000 3 | 0.894 8 | 0.219 3 | 0.628 4 | 0.093 8 | 0.305 7 | 0.886 1 | 0.233 3 | 0.000 1 | 0.603 5 | 0.112 4 | 0.023 6 | 0.000 4 | 0.000 1 | 0.000 4 | 0.741 2 | 0.664 3 | 0.097 8 | 0.253 7 | 0.782 7 | 0.264 5 | 0.523 6 | 0.154 1 | 0.707 9 | 0.000 3 | 0.411 4 | 0.000 1 | 0.000 3 | 0.000 2 | 0.332 9 | 0.000 1 | 0.000 4 | 0.000 1 | 0.602 3 | 0.595 6 | 0.185 9 | 0.656 9 | 0.159 3 | 0.000 1 | 0.355 7 | 0.424 8 | 0.154 8 | 0.729 8 | 0.516 6 | 0.220 5 | 0.620 2 | 0.084 6 | 0.000 1 | 0.707 7 | 0.651 6 | 0.173 2 | 0.014 6 | 0.381 10 | 0.582 9 | 0.000 1 | 0.619 2 | 0.049 7 | 0.000 5 | 0.000 1 | 0.702 2 | 0.000 2 | 0.000 1 | 0.302 9 | 0.489 8 | 0.317 6 | 0.334 6 | 0.392 2 | 0.922 7 | 0.254 6 | 0.533 8 | 0.394 6 | 0.129 10 | 0.613 8 | 0.000 1 | 0.000 8 | 0.820 2 | 0.649 7 | 0.749 7 | 0.000 1 | 0.782 7 | 0.282 5 | 0.863 4 | 0.000 1 | 0.288 9 | 0.006 6 | 0.220 7 | 0.633 7 | 0.542 1 | |||||||||||||||||||||||||||||
PPT-SpUNet-F.T. | 0.332 5 | 0.556 3 | 0.270 2 | 0.123 7 | 0.519 2 | 0.091 3 | 0.349 2 | 0.000 1 | 0.000 2 | 0.000 1 | 0.339 6 | 0.383 7 | 0.498 6 | 0.833 3 | 0.807 2 | 0.241 2 | 0.584 3 | 0.000 3 | 0.755 4 | 0.124 4 | 0.000 5 | 0.608 2 | 0.330 4 | 0.530 6 | 0.314 1 | 0.000 4 | 0.374 4 | 0.000 1 | 0.000 3 | 0.197 2 | 0.459 4 | 0.000 5 | 0.000 1 | 0.117 2 | 0.000 2 | 0.876 3 | 0.095 1 | 0.682 3 | 0.000 4 | 0.086 5 | 0.518 3 | 0.433 1 | 0.930 2 | 0.000 1 | 0.000 2 | 0.563 3 | 0.542 7 | 0.077 4 | 0.715 2 | 0.858 4 | 0.756 2 | 0.008 10 | 0.171 6 | 0.874 3 | 0.000 1 | 0.039 2 | 0.550 5 | 0.000 6 | 0.545 4 | 0.256 5 | 0.657 4 | 0.453 2 | 0.351 4 | 0.449 7 | 0.213 3 | 0.392 5 | 0.611 6 | 0.000 3 | 0.037 8 | 0.946 3 | 0.138 7 | 0.000 1 | 0.000 6 | 0.063 5 | 0.308 2 | 0.537 4 | 0.796 2 | 0.673 2 | 0.323 7 | 0.392 5 | 0.400 7 | 0.509 4 | 0.000 3 | 0.000 1 | 0.649 1 | 0.000 6 | 0.023 6 | 0.000 5 | 0.000 3 | 0.914 5 | 0.002 9 | 0.506 9 | 0.163 6 | 0.359 5 | 0.872 4 | 0.000 5 | 0.000 1 | 0.623 3 | 0.112 4 | 0.001 8 | 0.000 4 | 0.000 1 | 0.021 3 | 0.753 1 | 0.565 9 | 0.150 1 | 0.579 2 | 0.806 6 | 0.267 4 | 0.616 1 | 0.042 9 | 0.783 6 | 0.000 3 | 0.374 7 | 0.000 1 | 0.000 3 | 0.000 2 | 0.620 4 | 0.000 1 | 0.000 4 | 0.000 1 | 0.572 8 | 0.634 2 | 0.350 6 | 0.792 3 | 0.000 5 | 0.000 1 | 0.376 5 | 0.535 3 | 0.378 2 | 0.855 2 | 0.672 2 | 0.074 6 | 0.000 6 | 0.185 3 | 0.000 1 | 0.727 5 | 0.660 5 | 0.076 10 | 0.000 7 | 0.432 6 | 0.646 5 | 0.000 1 | 0.594 6 | 0.006 8 | 0.000 5 | 0.000 1 | 0.658 3 | 0.000 2 | 0.000 1 | 0.661 1 | 0.549 5 | 0.300 7 | 0.291 7 | 0.045 7 | 0.942 6 | 0.304 3 | 0.600 5 | 0.572 3 | 0.135 9 | 0.695 2 | 0.000 1 | 0.008 5 | 0.793 4 | 0.942 1 | 0.899 2 | 0.000 1 | 0.816 3 | 0.181 6 | 0.897 2 | 0.000 1 | 0.679 2 | 0.223 3 | 0.264 2 | 0.691 3 | 0.345 8 | |||||||||||||||||||||||||||||
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
PTv3 ScanNet200 | 0.393 1 | 0.592 1 | 0.330 1 | 0.216 1 | 0.520 1 | 0.109 2 | 0.108 10 | 0.000 1 | 0.337 1 | 0.000 1 | 0.310 9 | 0.394 6 | 0.494 7 | 0.753 6 | 0.848 1 | 0.256 1 | 0.717 2 | 0.000 3 | 0.842 1 | 0.192 2 | 0.065 2 | 0.449 5 | 0.346 1 | 0.546 3 | 0.190 6 | 0.000 4 | 0.384 3 | 0.000 1 | 0.000 3 | 0.218 1 | 0.505 1 | 0.791 1 | 0.000 1 | 0.136 1 | 0.000 2 | 0.903 1 | 0.073 8 | 0.687 2 | 0.000 4 | 0.168 1 | 0.551 2 | 0.387 4 | 0.941 1 | 0.000 1 | 0.000 2 | 0.397 6 | 0.654 3 | 0.000 7 | 0.714 3 | 0.759 8 | 0.752 3 | 0.118 3 | 0.264 1 | 0.926 1 | 0.000 1 | 0.048 1 | 0.575 1 | 0.000 6 | 0.597 1 | 0.366 1 | 0.755 1 | 0.469 1 | 0.474 1 | 0.798 1 | 0.140 6 | 0.617 1 | 0.692 2 | 0.000 3 | 0.592 1 | 0.971 1 | 0.188 2 | 0.000 1 | 0.133 3 | 0.593 1 | 0.349 1 | 0.650 1 | 0.717 4 | 0.699 1 | 0.455 1 | 0.790 1 | 0.523 3 | 0.636 1 | 0.301 1 | 0.000 1 | 0.622 2 | 0.000 6 | 0.017 9 | 0.259 1 | 0.000 3 | 0.921 2 | 0.337 1 | 0.733 1 | 0.210 1 | 0.514 1 | 0.860 6 | 0.407 1 | 0.000 1 | 0.688 1 | 0.109 6 | 0.000 9 | 0.000 4 | 0.000 1 | 0.151 1 | 0.671 4 | 0.782 1 | 0.115 6 | 0.641 1 | 0.903 1 | 0.349 1 | 0.616 1 | 0.088 4 | 0.832 1 | 0.000 3 | 0.480 1 | 0.000 1 | 0.428 1 | 0.000 2 | 0.497 5 | 0.000 1 | 0.000 4 | 0.000 1 | 0.662 2 | 0.690 1 | 0.612 1 | 0.828 1 | 0.575 1 | 0.000 1 | 0.404 4 | 0.644 1 | 0.325 3 | 0.887 1 | 0.728 1 | 0.009 9 | 0.134 5 | 0.026 10 | 0.000 1 | 0.761 1 | 0.731 1 | 0.172 3 | 0.077 2 | 0.528 2 | 0.727 2 | 0.000 1 | 0.603 4 | 0.220 2 | 0.022 2 | 0.000 1 | 0.740 1 | 0.000 2 | 0.000 1 | 0.661 1 | 0.586 1 | 0.566 1 | 0.436 3 | 0.531 1 | 0.978 1 | 0.457 1 | 0.708 1 | 0.583 2 | 0.141 7 | 0.748 1 | 0.000 1 | 0.026 1 | 0.822 1 | 0.871 3 | 0.879 5 | 0.000 1 | 0.851 1 | 0.405 2 | 0.914 1 | 0.000 1 | 0.682 1 | 0.000 8 | 0.281 1 | 0.738 1 | 0.463 3 | |||||||||||||||||||||||||||||
LGround | ![]() | 0.272 8 | 0.485 8 | 0.184 8 | 0.106 8 | 0.476 5 | 0.077 6 | 0.218 5 | 0.000 1 | 0.000 2 | 0.000 1 | 0.547 1 | 0.295 8 | 0.540 2 | 0.746 7 | 0.745 8 | 0.058 9 | 0.112 9 | 0.005 1 | 0.658 6 | 0.077 10 | 0.000 5 | 0.322 8 | 0.178 9 | 0.512 7 | 0.190 6 | 0.199 1 | 0.277 8 | 0.000 1 | 0.000 3 | 0.173 3 | 0.399 6 | 0.000 5 | 0.000 1 | 0.039 9 | 0.000 2 | 0.858 8 | 0.085 5 | 0.676 5 | 0.002 2 | 0.103 3 | 0.498 4 | 0.323 7 | 0.703 8 | 0.000 1 | 0.000 2 | 0.296 8 | 0.549 6 | 0.216 1 | 0.702 4 | 0.768 7 | 0.718 7 | 0.028 6 | 0.092 9 | 0.786 9 | 0.000 1 | 0.000 6 | 0.453 9 | 0.022 4 | 0.251 10 | 0.252 6 | 0.572 8 | 0.348 8 | 0.321 5 | 0.514 4 | 0.063 8 | 0.279 9 | 0.552 8 | 0.000 3 | 0.019 9 | 0.932 8 | 0.132 9 | 0.000 1 | 0.000 6 | 0.000 9 | 0.156 10 | 0.457 8 | 0.623 7 | 0.518 7 | 0.265 9 | 0.358 6 | 0.381 8 | 0.395 8 | 0.000 3 | 0.000 1 | 0.127 10 | 0.012 3 | 0.051 1 | 0.000 5 | 0.000 3 | 0.886 9 | 0.014 7 | 0.437 10 | 0.179 3 | 0.244 8 | 0.826 8 | 0.000 5 | 0.000 1 | 0.599 6 | 0.136 1 | 0.085 3 | 0.000 4 | 0.000 1 | 0.000 4 | 0.565 6 | 0.612 7 | 0.143 2 | 0.207 8 | 0.566 8 | 0.232 8 | 0.446 8 | 0.127 2 | 0.708 8 | 0.000 3 | 0.384 5 | 0.000 1 | 0.000 3 | 0.000 2 | 0.402 7 | 0.000 1 | 0.059 2 | 0.000 1 | 0.525 10 | 0.566 7 | 0.229 8 | 0.659 8 | 0.000 5 | 0.000 1 | 0.265 8 | 0.446 7 | 0.147 9 | 0.720 10 | 0.597 5 | 0.066 7 | 0.000 6 | 0.187 2 | 0.000 1 | 0.726 6 | 0.467 10 | 0.134 7 | 0.000 7 | 0.413 8 | 0.629 7 | 0.000 1 | 0.363 9 | 0.055 6 | 0.022 2 | 0.000 1 | 0.626 6 | 0.000 2 | 0.000 1 | 0.323 8 | 0.479 10 | 0.154 9 | 0.117 8 | 0.028 9 | 0.901 8 | 0.243 8 | 0.415 10 | 0.295 10 | 0.143 6 | 0.610 9 | 0.000 1 | 0.000 8 | 0.777 7 | 0.397 10 | 0.324 9 | 0.000 1 | 0.778 8 | 0.179 7 | 0.702 9 | 0.000 1 | 0.274 10 | 0.404 1 | 0.233 6 | 0.622 8 | 0.398 4 | ||||||||||||||||||||||||||||
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CeCo | 0.340 3 | 0.551 5 | 0.247 6 | 0.181 2 | 0.475 6 | 0.057 10 | 0.142 8 | 0.000 1 | 0.000 2 | 0.000 1 | 0.387 3 | 0.463 3 | 0.499 5 | 0.924 1 | 0.774 5 | 0.213 3 | 0.257 6 | 0.000 3 | 0.546 9 | 0.100 7 | 0.006 4 | 0.615 1 | 0.177 10 | 0.534 4 | 0.246 3 | 0.000 4 | 0.400 2 | 0.000 1 | 0.338 1 | 0.006 9 | 0.484 3 | 0.609 2 | 0.000 1 | 0.083 6 | 0.000 2 | 0.873 5 | 0.089 4 | 0.661 7 | 0.000 4 | 0.048 10 | 0.560 1 | 0.408 3 | 0.892 4 | 0.000 1 | 0.000 2 | 0.586 1 | 0.616 5 | 0.000 7 | 0.692 5 | 0.900 1 | 0.721 5 | 0.162 1 | 0.228 2 | 0.860 4 | 0.000 1 | 0.000 6 | 0.575 1 | 0.083 3 | 0.550 3 | 0.347 2 | 0.624 6 | 0.410 6 | 0.360 3 | 0.740 2 | 0.109 7 | 0.321 8 | 0.660 3 | 0.000 3 | 0.121 3 | 0.939 6 | 0.143 5 | 0.000 1 | 0.400 1 | 0.003 7 | 0.190 5 | 0.564 2 | 0.652 6 | 0.615 5 | 0.421 2 | 0.304 8 | 0.579 1 | 0.547 2 | 0.000 3 | 0.000 1 | 0.296 7 | 0.000 6 | 0.030 5 | 0.096 2 | 0.000 3 | 0.916 3 | 0.037 6 | 0.551 6 | 0.171 4 | 0.376 4 | 0.865 5 | 0.286 2 | 0.000 1 | 0.633 2 | 0.102 9 | 0.027 5 | 0.011 3 | 0.000 1 | 0.000 4 | 0.474 7 | 0.742 2 | 0.133 3 | 0.311 6 | 0.824 5 | 0.242 6 | 0.503 7 | 0.068 6 | 0.828 2 | 0.000 3 | 0.429 3 | 0.000 1 | 0.063 2 | 0.000 2 | 0.781 1 | 0.000 1 | 0.000 4 | 0.000 1 | 0.665 1 | 0.633 3 | 0.450 3 | 0.818 2 | 0.000 5 | 0.000 1 | 0.429 2 | 0.532 4 | 0.226 6 | 0.825 4 | 0.510 7 | 0.377 2 | 0.709 1 | 0.079 7 | 0.000 1 | 0.753 2 | 0.683 2 | 0.102 9 | 0.063 3 | 0.401 9 | 0.620 8 | 0.000 1 | 0.619 2 | 0.000 9 | 0.000 5 | 0.000 1 | 0.595 8 | 0.000 2 | 0.000 1 | 0.345 7 | 0.564 3 | 0.411 3 | 0.603 1 | 0.384 3 | 0.945 4 | 0.266 5 | 0.643 3 | 0.367 7 | 0.304 1 | 0.663 6 | 0.000 1 | 0.010 3 | 0.726 8 | 0.767 5 | 0.898 3 | 0.000 1 | 0.784 6 | 0.435 1 | 0.861 5 | 0.000 1 | 0.447 5 | 0.000 8 | 0.257 4 | 0.656 6 | 0.377 6 | |||||||||||||||||||||||||||||
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OctFormer ScanNet200 | ![]() | 0.326 6 | 0.539 6 | 0.265 5 | 0.131 5 | 0.499 3 | 0.110 1 | 0.522 1 | 0.000 1 | 0.000 2 | 0.000 1 | 0.318 8 | 0.427 4 | 0.455 8 | 0.743 8 | 0.765 6 | 0.175 5 | 0.842 1 | 0.000 3 | 0.828 2 | 0.204 1 | 0.033 3 | 0.429 6 | 0.335 2 | 0.601 1 | 0.312 2 | 0.000 4 | 0.357 5 | 0.000 1 | 0.000 3 | 0.047 7 | 0.423 5 | 0.000 5 | 0.000 1 | 0.105 4 | 0.000 2 | 0.873 5 | 0.079 6 | 0.670 6 | 0.000 4 | 0.117 2 | 0.471 7 | 0.432 2 | 0.829 7 | 0.000 1 | 0.000 2 | 0.584 2 | 0.417 10 | 0.089 3 | 0.684 6 | 0.837 5 | 0.705 9 | 0.021 8 | 0.178 5 | 0.892 2 | 0.000 1 | 0.028 3 | 0.505 7 | 0.000 6 | 0.457 6 | 0.200 8 | 0.662 2 | 0.412 5 | 0.244 8 | 0.496 5 | 0.000 10 | 0.451 3 | 0.626 4 | 0.000 3 | 0.102 5 | 0.943 5 | 0.138 7 | 0.000 1 | 0.000 6 | 0.149 4 | 0.291 3 | 0.534 5 | 0.722 3 | 0.632 4 | 0.331 6 | 0.253 9 | 0.453 4 | 0.487 6 | 0.000 3 | 0.000 1 | 0.479 3 | 0.000 6 | 0.022 7 | 0.000 5 | 0.000 3 | 0.900 6 | 0.128 4 | 0.684 2 | 0.164 5 | 0.413 2 | 0.854 7 | 0.000 5 | 0.000 1 | 0.512 10 | 0.074 10 | 0.003 7 | 0.000 4 | 0.000 1 | 0.000 4 | 0.469 8 | 0.613 6 | 0.132 4 | 0.529 4 | 0.871 2 | 0.227 9 | 0.582 4 | 0.026 10 | 0.787 5 | 0.000 3 | 0.339 8 | 0.000 1 | 0.000 3 | 0.000 2 | 0.626 3 | 0.000 1 | 0.029 3 | 0.000 1 | 0.587 5 | 0.612 4 | 0.411 4 | 0.724 7 | 0.000 5 | 0.000 1 | 0.407 3 | 0.552 2 | 0.513 1 | 0.849 3 | 0.655 3 | 0.408 1 | 0.000 6 | 0.296 1 | 0.000 1 | 0.686 8 | 0.645 7 | 0.145 5 | 0.022 5 | 0.414 7 | 0.633 6 | 0.000 1 | 0.637 1 | 0.224 1 | 0.000 5 | 0.000 1 | 0.650 4 | 0.000 2 | 0.000 1 | 0.622 4 | 0.535 6 | 0.343 5 | 0.483 2 | 0.230 6 | 0.943 5 | 0.289 4 | 0.618 4 | 0.596 1 | 0.140 8 | 0.679 4 | 0.000 1 | 0.022 2 | 0.783 6 | 0.620 8 | 0.906 1 | 0.000 1 | 0.806 5 | 0.137 8 | 0.865 3 | 0.000 1 | 0.378 6 | 0.000 8 | 0.168 10 | 0.680 5 | 0.227 9 | ||||||||||||||||||||||||||||
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
OA-CNN-L_ScanNet200 | 0.333 4 | 0.558 2 | 0.269 4 | 0.124 6 | 0.448 8 | 0.080 5 | 0.272 3 | 0.000 1 | 0.000 2 | 0.000 1 | 0.342 5 | 0.515 2 | 0.524 3 | 0.713 10 | 0.789 4 | 0.158 6 | 0.384 5 | 0.000 3 | 0.806 3 | 0.125 3 | 0.000 5 | 0.496 4 | 0.332 3 | 0.498 9 | 0.227 5 | 0.024 2 | 0.474 1 | 0.000 1 | 0.003 2 | 0.071 5 | 0.487 2 | 0.000 5 | 0.000 1 | 0.110 3 | 0.000 2 | 0.876 3 | 0.013 10 | 0.703 1 | 0.000 4 | 0.076 6 | 0.473 6 | 0.355 5 | 0.906 3 | 0.000 1 | 0.000 2 | 0.476 4 | 0.706 1 | 0.000 7 | 0.672 7 | 0.835 6 | 0.748 4 | 0.015 9 | 0.223 3 | 0.860 4 | 0.000 1 | 0.000 6 | 0.572 3 | 0.000 6 | 0.509 5 | 0.313 4 | 0.662 2 | 0.398 7 | 0.396 2 | 0.411 8 | 0.276 1 | 0.527 2 | 0.711 1 | 0.000 3 | 0.076 7 | 0.946 3 | 0.166 4 | 0.000 1 | 0.022 4 | 0.160 3 | 0.183 6 | 0.493 6 | 0.699 5 | 0.637 3 | 0.403 3 | 0.330 7 | 0.406 6 | 0.526 3 | 0.024 2 | 0.000 1 | 0.392 6 | 0.000 6 | 0.016 10 | 0.000 5 | 0.196 2 | 0.915 4 | 0.112 5 | 0.557 5 | 0.197 2 | 0.352 6 | 0.877 2 | 0.000 5 | 0.000 1 | 0.592 8 | 0.103 8 | 0.000 9 | 0.067 1 | 0.000 1 | 0.089 2 | 0.735 3 | 0.625 5 | 0.130 5 | 0.568 3 | 0.836 4 | 0.271 3 | 0.534 5 | 0.043 8 | 0.799 4 | 0.001 2 | 0.445 2 | 0.000 1 | 0.000 3 | 0.024 1 | 0.661 2 | 0.000 1 | 0.262 1 | 0.000 1 | 0.591 4 | 0.517 9 | 0.373 5 | 0.788 5 | 0.021 4 | 0.000 1 | 0.455 1 | 0.517 5 | 0.320 4 | 0.823 5 | 0.200 10 | 0.001 10 | 0.150 4 | 0.100 5 | 0.000 1 | 0.736 4 | 0.668 4 | 0.103 8 | 0.052 4 | 0.662 1 | 0.720 3 | 0.000 1 | 0.602 5 | 0.112 4 | 0.002 4 | 0.000 1 | 0.637 5 | 0.000 2 | 0.000 1 | 0.621 5 | 0.569 2 | 0.398 4 | 0.412 4 | 0.234 5 | 0.949 3 | 0.363 2 | 0.492 9 | 0.495 4 | 0.251 4 | 0.665 5 | 0.000 1 | 0.001 7 | 0.805 3 | 0.833 4 | 0.794 6 | 0.000 1 | 0.821 2 | 0.314 4 | 0.843 7 | 0.000 1 | 0.560 4 | 0.245 2 | 0.262 3 | 0.713 2 | 0.370 7 | |||||||||||||||||||||||||||||
PonderV2 ScanNet200 | 0.346 2 | 0.552 4 | 0.270 3 | 0.175 3 | 0.497 4 | 0.070 7 | 0.239 4 | 0.000 1 | 0.000 2 | 0.000 1 | 0.232 10 | 0.412 5 | 0.584 1 | 0.842 2 | 0.804 3 | 0.212 4 | 0.540 4 | 0.000 3 | 0.433 10 | 0.106 6 | 0.000 5 | 0.590 3 | 0.290 6 | 0.548 2 | 0.243 4 | 0.000 4 | 0.356 6 | 0.000 1 | 0.000 3 | 0.062 6 | 0.398 7 | 0.441 4 | 0.000 1 | 0.104 5 | 0.000 2 | 0.888 2 | 0.076 7 | 0.682 3 | 0.030 1 | 0.094 4 | 0.491 5 | 0.351 6 | 0.869 6 | 0.000 1 | 0.063 1 | 0.403 5 | 0.700 2 | 0.000 7 | 0.660 8 | 0.881 2 | 0.761 1 | 0.050 5 | 0.186 4 | 0.852 6 | 0.000 1 | 0.007 4 | 0.570 4 | 0.100 2 | 0.565 2 | 0.326 3 | 0.641 5 | 0.431 3 | 0.290 7 | 0.621 3 | 0.259 2 | 0.408 4 | 0.622 5 | 0.125 1 | 0.082 6 | 0.950 2 | 0.179 3 | 0.000 1 | 0.263 2 | 0.424 2 | 0.193 4 | 0.558 3 | 0.880 1 | 0.545 6 | 0.375 4 | 0.727 2 | 0.445 5 | 0.499 5 | 0.000 3 | 0.000 1 | 0.475 4 | 0.002 4 | 0.034 4 | 0.083 3 | 0.000 3 | 0.924 1 | 0.290 2 | 0.636 3 | 0.115 7 | 0.400 3 | 0.874 3 | 0.186 4 | 0.000 1 | 0.611 4 | 0.128 2 | 0.113 2 | 0.000 4 | 0.000 1 | 0.000 4 | 0.584 5 | 0.636 4 | 0.103 7 | 0.385 5 | 0.843 3 | 0.283 2 | 0.603 3 | 0.080 5 | 0.825 3 | 0.000 3 | 0.377 6 | 0.000 1 | 0.000 3 | 0.000 2 | 0.457 6 | 0.000 1 | 0.000 4 | 0.000 1 | 0.574 7 | 0.608 5 | 0.481 2 | 0.792 3 | 0.394 2 | 0.000 1 | 0.357 6 | 0.503 6 | 0.261 5 | 0.817 6 | 0.504 8 | 0.304 3 | 0.472 3 | 0.115 4 | 0.000 1 | 0.750 3 | 0.677 3 | 0.202 1 | 0.000 7 | 0.509 3 | 0.729 1 | 0.000 1 | 0.519 7 | 0.000 9 | 0.000 5 | 0.000 1 | 0.620 7 | 0.000 2 | 0.000 1 | 0.660 3 | 0.560 4 | 0.486 2 | 0.384 5 | 0.346 4 | 0.952 2 | 0.247 7 | 0.667 2 | 0.436 5 | 0.269 3 | 0.691 3 | 0.000 1 | 0.010 3 | 0.787 5 | 0.889 2 | 0.880 4 | 0.000 1 | 0.810 4 | 0.336 3 | 0.860 6 | 0.000 1 | 0.606 3 | 0.009 5 | 0.248 5 | 0.681 4 | 0.392 5 | |||||||||||||||||||||||||||||
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Minkowski 34D | ![]() | 0.253 9 | 0.463 9 | 0.154 10 | 0.102 9 | 0.381 10 | 0.084 4 | 0.134 9 | 0.000 1 | 0.000 2 | 0.000 1 | 0.386 4 | 0.141 10 | 0.279 10 | 0.737 9 | 0.703 9 | 0.014 10 | 0.164 8 | 0.000 3 | 0.663 5 | 0.092 9 | 0.000 5 | 0.224 9 | 0.291 5 | 0.531 5 | 0.056 10 | 0.000 4 | 0.242 9 | 0.000 1 | 0.000 3 | 0.013 8 | 0.331 9 | 0.000 5 | 0.000 1 | 0.035 10 | 0.001 1 | 0.858 8 | 0.059 9 | 0.650 9 | 0.000 4 | 0.056 9 | 0.353 9 | 0.299 8 | 0.670 9 | 0.000 1 | 0.000 2 | 0.284 9 | 0.484 8 | 0.071 5 | 0.594 9 | 0.720 9 | 0.710 8 | 0.027 7 | 0.068 10 | 0.813 7 | 0.000 1 | 0.005 5 | 0.492 8 | 0.164 1 | 0.274 9 | 0.111 10 | 0.571 9 | 0.307 10 | 0.293 6 | 0.307 10 | 0.150 5 | 0.163 10 | 0.531 9 | 0.002 2 | 0.545 2 | 0.932 8 | 0.093 10 | 0.000 1 | 0.000 6 | 0.002 8 | 0.159 8 | 0.368 10 | 0.581 9 | 0.440 10 | 0.228 10 | 0.406 4 | 0.282 10 | 0.294 9 | 0.000 3 | 0.000 1 | 0.189 9 | 0.060 1 | 0.036 3 | 0.000 5 | 0.000 3 | 0.897 7 | 0.000 10 | 0.525 8 | 0.025 10 | 0.205 10 | 0.771 10 | 0.000 5 | 0.000 1 | 0.593 7 | 0.108 7 | 0.044 4 | 0.000 4 | 0.000 1 | 0.000 4 | 0.282 10 | 0.589 8 | 0.094 9 | 0.169 9 | 0.466 10 | 0.227 9 | 0.419 10 | 0.125 3 | 0.757 7 | 0.002 1 | 0.334 9 | 0.000 1 | 0.000 3 | 0.000 2 | 0.357 8 | 0.000 1 | 0.000 4 | 0.000 1 | 0.582 6 | 0.513 10 | 0.337 7 | 0.612 10 | 0.000 5 | 0.000 1 | 0.250 9 | 0.352 10 | 0.136 10 | 0.724 9 | 0.655 3 | 0.280 4 | 0.000 6 | 0.046 9 | 0.000 1 | 0.606 10 | 0.559 8 | 0.159 4 | 0.102 1 | 0.445 4 | 0.655 4 | 0.000 1 | 0.310 10 | 0.117 3 | 0.000 5 | 0.000 1 | 0.581 10 | 0.026 1 | 0.000 1 | 0.265 10 | 0.483 9 | 0.084 10 | 0.097 10 | 0.044 8 | 0.865 10 | 0.142 10 | 0.588 6 | 0.351 8 | 0.272 2 | 0.596 10 | 0.000 1 | 0.003 6 | 0.622 9 | 0.720 6 | 0.096 10 | 0.000 1 | 0.771 9 | 0.016 9 | 0.772 8 | 0.000 1 | 0.302 8 | 0.194 4 | 0.214 8 | 0.621 9 | 0.197 10 | ||||||||||||||||||||||||||||
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
CSC-Pretrain | ![]() | 0.249 10 | 0.455 10 | 0.171 9 | 0.079 10 | 0.418 9 | 0.059 9 | 0.186 7 | 0.000 1 | 0.000 2 | 0.000 1 | 0.335 7 | 0.250 9 | 0.316 9 | 0.766 5 | 0.697 10 | 0.142 7 | 0.170 7 | 0.003 2 | 0.553 8 | 0.112 5 | 0.097 1 | 0.201 10 | 0.186 7 | 0.476 10 | 0.081 9 | 0.000 4 | 0.216 10 | 0.000 1 | 0.000 3 | 0.001 10 | 0.314 10 | 0.000 5 | 0.000 1 | 0.055 8 | 0.000 2 | 0.832 10 | 0.094 2 | 0.659 8 | 0.002 2 | 0.076 6 | 0.310 10 | 0.293 10 | 0.664 10 | 0.000 1 | 0.000 2 | 0.175 10 | 0.634 4 | 0.130 2 | 0.552 10 | 0.686 10 | 0.700 10 | 0.076 4 | 0.110 8 | 0.770 10 | 0.000 1 | 0.000 6 | 0.430 10 | 0.000 6 | 0.319 8 | 0.166 9 | 0.542 10 | 0.327 9 | 0.205 9 | 0.332 9 | 0.052 9 | 0.375 6 | 0.444 10 | 0.000 3 | 0.012 10 | 0.930 10 | 0.203 1 | 0.000 1 | 0.000 6 | 0.046 6 | 0.175 7 | 0.413 9 | 0.592 8 | 0.471 9 | 0.299 8 | 0.152 10 | 0.340 9 | 0.247 10 | 0.000 3 | 0.000 1 | 0.225 8 | 0.058 2 | 0.037 2 | 0.000 5 | 0.207 1 | 0.862 10 | 0.014 7 | 0.548 7 | 0.033 9 | 0.233 9 | 0.816 9 | 0.000 5 | 0.000 1 | 0.542 9 | 0.123 3 | 0.121 1 | 0.019 2 | 0.000 1 | 0.000 4 | 0.463 9 | 0.454 10 | 0.045 10 | 0.128 10 | 0.557 9 | 0.235 7 | 0.441 9 | 0.063 7 | 0.484 10 | 0.000 3 | 0.308 10 | 0.000 1 | 0.000 3 | 0.000 2 | 0.318 10 | 0.000 1 | 0.000 4 | 0.000 1 | 0.545 9 | 0.543 8 | 0.164 10 | 0.734 6 | 0.000 5 | 0.000 1 | 0.215 10 | 0.371 9 | 0.198 7 | 0.743 7 | 0.205 9 | 0.062 8 | 0.000 6 | 0.079 7 | 0.000 1 | 0.683 9 | 0.547 9 | 0.142 6 | 0.000 7 | 0.441 5 | 0.579 10 | 0.000 1 | 0.464 8 | 0.098 5 | 0.041 1 | 0.000 1 | 0.590 9 | 0.000 2 | 0.000 1 | 0.373 6 | 0.494 7 | 0.174 8 | 0.105 9 | 0.001 10 | 0.895 9 | 0.222 9 | 0.537 7 | 0.307 9 | 0.180 5 | 0.625 7 | 0.000 1 | 0.000 8 | 0.591 10 | 0.609 9 | 0.398 8 | 0.000 1 | 0.766 10 | 0.014 10 | 0.638 10 | 0.000 1 | 0.377 7 | 0.004 7 | 0.206 9 | 0.609 10 | 0.465 2 | ||||||||||||||||||||||||||||
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021 |