The 3D semantic instance prediction task involves detecting and segmenting the object in an 3D scan mesh.

Evaluation and metrics

Our evaluation ranks all methods according to the average precision for each class. We report the mean average precision AP at overlap 0.25 (AP 25%), overlap 0.5 (AP 50%), and over overlaps in the range [0.5:0.95:0.05] (AP). Note that multiple predictions of the same ground truth instance are penalized as false positives.



This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
SIM3D0.617 30.952 40.629 160.539 110.426 150.768 100.302 60.681 20.425 90.473 150.511 150.701 20.717 10.821 60.467 140.774 10.559 140.914 170.448 2
Spherical Mask(CtoF)0.616 40.946 50.654 120.555 60.434 120.769 90.271 110.604 80.447 50.505 70.549 20.698 30.716 20.775 150.480 80.747 50.575 100.925 130.436 4
PointRel0.622 10.926 80.710 30.541 100.502 20.772 60.314 40.598 110.425 80.504 90.565 10.650 60.716 20.809 70.476 110.747 40.618 10.963 30.364 19
: Relation3D (PointRel): Enhancing Relation Modeling for Point Cloud Instance Segmentation.
Mask3D0.566 160.926 80.597 190.408 330.420 170.737 170.239 160.598 110.386 130.458 190.549 20.568 180.716 20.601 430.480 80.646 240.575 100.922 150.364 18
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
EV3D0.615 50.946 50.652 130.555 60.433 130.773 50.271 120.604 80.447 50.506 60.544 60.698 30.716 20.775 150.480 80.747 50.572 120.925 130.435 5
ExtMask3D0.598 60.852 160.692 70.433 300.461 70.791 30.264 130.488 350.493 20.508 50.528 140.594 120.706 60.791 90.483 60.734 90.595 40.911 190.437 3
Queryformer0.583 110.926 80.702 50.393 360.504 10.733 200.276 100.527 280.373 160.479 140.534 100.533 220.697 70.720 280.436 200.745 70.592 60.958 60.363 20
Competitor-MAFT0.618 20.866 150.724 10.628 10.484 30.803 10.300 70.509 320.496 10.539 10.547 50.703 10.668 80.708 300.463 160.708 160.595 30.959 50.418 7
IPCA-Inst0.520 220.889 130.551 290.548 90.418 180.665 320.064 340.585 140.260 310.277 360.471 240.500 230.644 90.785 100.369 240.591 330.511 210.878 310.362 22
InsSSM0.586 101.000 10.593 200.440 260.480 40.771 70.345 10.437 390.444 70.495 130.548 40.579 150.621 100.720 270.409 220.712 110.593 50.960 40.395 9
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
MAFT0.596 70.889 130.721 20.448 230.460 80.768 110.251 150.558 210.408 100.504 80.539 80.616 100.618 110.858 30.482 70.684 190.551 170.931 120.450 1
SoftGroup++0.513 230.704 350.578 240.398 350.363 290.704 230.061 350.647 50.297 280.378 250.537 90.343 260.614 120.828 50.295 330.710 140.505 250.875 330.394 10
PBNetpermissive0.573 140.926 80.575 250.619 20.472 50.736 180.239 170.487 360.383 140.459 180.506 180.533 210.585 130.767 170.404 230.717 100.559 150.969 20.381 15
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
SoftGrouppermissive0.504 250.667 420.579 220.372 410.381 220.694 250.072 310.677 30.303 240.387 230.531 120.319 300.582 140.754 190.318 290.643 250.492 260.907 210.388 13
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
TST3D0.569 150.778 240.675 90.598 30.451 100.727 210.280 90.476 380.395 110.472 160.457 270.583 130.580 150.777 120.462 180.735 80.547 190.919 160.333 27
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
DANCENET0.504 250.926 80.579 210.472 180.367 260.626 420.165 220.432 400.221 330.408 210.449 290.411 240.564 160.746 230.421 210.707 170.438 320.846 420.288 38
INS-Conv-instance0.435 340.716 340.495 440.355 430.331 310.689 270.102 270.394 470.208 360.280 340.395 350.250 380.544 170.741 240.309 310.536 470.391 410.842 470.258 45
DKNet0.532 210.815 200.624 170.517 120.377 230.749 150.107 250.509 310.304 230.437 200.475 220.581 140.539 180.775 140.339 280.640 260.506 230.901 230.385 14
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
TopoSeg0.479 290.704 350.564 260.467 200.366 270.633 400.068 320.554 220.262 300.328 280.447 300.323 280.534 190.722 260.288 350.614 280.482 270.912 180.358 24
UniPerception0.588 80.963 30.667 100.493 150.472 60.750 140.229 180.528 270.468 40.498 120.542 70.643 70.530 200.661 370.463 150.695 180.599 20.972 10.420 6
MG-Former0.587 90.852 160.639 150.454 220.393 200.758 130.338 20.572 160.480 30.527 30.491 210.671 50.527 210.867 10.485 50.601 300.590 70.938 110.390 11
SSTNetpermissive0.506 240.738 310.549 300.497 140.316 340.693 260.178 210.377 480.198 370.330 270.463 260.576 160.515 220.857 40.494 30.637 270.457 290.943 100.290 37
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
TD3Dpermissive0.489 270.852 160.511 390.434 280.322 330.735 190.101 280.512 300.355 190.349 260.468 250.283 340.514 230.676 360.268 380.671 200.510 220.908 200.329 29
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
KmaxOneFormerNetpermissive0.581 120.745 270.692 80.551 80.458 90.798 20.264 140.531 260.369 180.513 40.531 130.632 80.494 240.798 80.567 20.648 230.558 160.950 80.362 21
PE0.396 410.667 420.467 470.446 250.243 470.624 450.022 500.577 150.106 500.219 460.340 410.239 400.487 250.475 540.225 440.541 460.350 470.818 490.273 42
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
SPFormerpermissive0.549 200.745 270.640 140.484 160.395 190.739 160.311 50.566 180.335 200.468 170.492 200.555 190.478 260.747 220.436 190.712 120.540 200.893 260.343 26
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
OneFormer3Dcopyleft0.566 160.781 230.697 60.562 50.431 140.770 80.331 30.400 450.373 170.529 20.504 190.568 170.475 270.732 250.470 120.762 20.550 180.871 340.379 16
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
Box2Mask0.433 360.741 290.463 490.433 290.283 390.625 430.103 260.298 580.125 480.260 380.424 320.322 290.472 280.701 330.363 260.711 130.309 570.882 290.272 43
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
CSC-Pretrained0.405 400.738 310.465 480.331 470.205 520.655 350.051 390.601 100.092 530.211 520.329 430.198 460.459 290.775 130.195 490.524 490.400 390.878 300.184 54
HAISpermissive0.457 320.704 350.561 270.457 210.364 280.673 290.046 430.547 230.194 380.308 310.426 310.288 330.454 300.711 290.262 390.563 410.434 340.889 280.344 25
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
DualGroup0.469 300.815 200.552 280.398 340.374 240.683 280.130 240.539 240.310 220.327 290.407 330.276 350.447 310.535 470.342 270.659 210.455 300.900 250.301 33
OccuSeg+instance0.486 280.802 220.536 320.428 310.369 250.702 240.205 190.331 530.301 250.379 240.474 230.327 270.437 320.862 20.485 40.601 310.394 400.846 440.273 41
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
RPGN0.428 370.630 500.508 410.367 420.249 460.658 340.016 540.673 40.131 460.234 430.383 380.270 360.434 330.748 210.274 370.609 290.406 370.842 460.267 44
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
Mask3D_evaluation0.382 460.593 520.520 350.390 370.314 350.600 460.018 530.287 610.151 420.281 330.387 360.169 510.429 340.654 390.172 530.578 360.384 420.670 600.278 40
DD-UNet+Group0.436 330.630 500.508 420.480 170.310 360.624 440.065 330.638 60.174 390.256 400.384 370.194 470.428 350.759 180.289 340.574 380.400 380.849 410.291 36
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
PointGroup0.407 390.639 490.496 430.415 320.243 480.645 380.021 510.570 170.114 490.211 510.359 400.217 450.428 360.660 380.256 400.562 420.341 490.860 370.291 35
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
ISBNetpermissive0.559 180.939 70.655 110.383 390.426 160.763 120.180 200.534 250.386 120.499 100.509 170.621 90.427 370.704 320.467 130.649 220.571 130.948 90.401 8
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
GraphCut0.552 191.000 10.611 180.438 270.392 210.714 220.139 230.598 130.327 210.389 220.510 160.598 110.427 380.754 200.463 170.761 30.588 80.903 220.329 28
AOIA0.387 440.704 350.515 380.385 380.225 510.669 300.005 610.482 370.126 470.181 560.269 520.221 440.426 390.478 530.218 450.592 320.371 430.851 380.242 47
ClickSeg_Instance0.366 480.654 460.375 530.184 580.302 370.592 480.050 410.300 570.093 520.283 320.277 490.249 390.426 400.615 420.299 320.504 500.367 440.832 480.191 52
SSEC0.465 310.667 420.578 230.502 130.362 300.641 390.035 440.605 70.291 290.323 300.451 280.296 320.417 410.677 350.245 420.501 510.506 240.900 240.366 17
3D-MPA0.355 500.457 620.484 460.299 490.277 410.591 490.047 420.332 510.212 350.217 470.278 480.193 480.413 420.410 570.195 480.574 390.352 460.849 400.213 50
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
Competitor-SPFormer0.580 130.721 330.705 40.593 40.444 110.786 40.286 80.564 190.376 150.498 110.534 110.546 200.390 430.785 110.577 10.708 150.579 90.954 70.388 12
DENet0.413 380.741 290.520 340.237 540.284 380.523 530.097 290.691 10.138 430.209 530.229 550.238 410.390 440.707 310.310 300.448 580.470 280.892 270.310 31
PCJC0.375 470.704 350.542 310.284 510.197 540.649 360.006 580.426 410.138 440.242 410.304 470.183 500.388 450.629 400.141 600.546 450.344 480.738 550.283 39
Mask-Group0.434 350.778 240.516 370.471 190.330 320.658 330.029 460.526 290.249 320.256 390.400 340.309 310.384 460.296 630.368 250.575 370.425 350.877 320.362 23
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
Sparse R-CNN0.292 560.704 350.213 660.153 600.154 570.551 520.053 370.212 640.132 450.174 580.274 500.070 590.363 470.441 560.176 520.424 600.234 610.758 530.161 58
GICN0.341 530.580 540.371 540.344 450.198 530.469 560.052 380.564 200.093 510.212 490.212 570.127 550.347 480.537 450.206 460.525 480.329 520.729 560.241 48
Dyco3Dcopyleft0.395 420.642 480.518 360.447 240.259 450.666 310.050 400.251 630.166 400.231 440.362 390.232 420.331 490.535 460.229 430.587 340.438 330.850 390.317 30
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
SphereSeg0.357 490.651 470.411 510.345 440.264 440.630 410.059 360.289 600.212 340.240 420.336 420.158 520.305 500.557 440.159 560.455 570.341 500.726 570.294 34
RWSeg0.348 520.475 590.456 500.320 480.275 420.476 550.020 520.491 340.056 600.212 500.320 440.261 370.302 510.520 480.182 510.557 430.285 590.867 350.197 51
Occipital-SCS0.320 550.679 410.352 560.334 460.229 490.436 570.025 470.412 440.058 580.161 610.240 540.085 570.262 520.496 520.187 500.467 550.328 530.775 510.231 49
OSIS0.392 430.778 240.530 330.220 560.278 400.567 500.083 300.330 540.299 260.270 370.310 460.143 530.260 530.624 410.277 360.568 400.361 450.865 360.301 32
SegGroup_inspermissive0.246 620.556 560.335 580.062 690.115 620.490 540.000 670.297 590.018 660.186 550.142 610.083 580.233 540.216 650.153 580.469 540.251 600.744 540.083 65
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
MTML0.282 570.577 550.380 520.182 590.107 630.430 580.001 640.422 420.057 590.179 570.162 600.070 600.229 550.511 510.161 540.491 520.313 540.650 630.162 56
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
MASCpermissive0.254 590.463 610.249 650.113 610.167 560.412 610.000 660.374 490.073 540.173 590.243 530.130 540.228 560.368 590.160 550.356 620.208 620.711 590.136 60
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
NeuralBF0.353 510.593 520.511 400.375 400.264 430.597 470.008 560.332 520.160 410.229 450.274 510.000 740.206 570.678 340.155 570.485 530.422 360.816 500.254 46
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
SPG_WSIS0.251 610.380 640.274 630.289 500.144 580.413 600.000 670.311 550.065 560.113 630.130 630.029 660.204 580.388 580.108 630.459 560.311 550.769 520.127 61
3D-BoNet0.253 600.519 570.324 600.251 530.137 600.345 660.031 450.419 430.069 550.162 600.131 620.052 610.202 590.338 610.147 590.301 670.303 580.651 620.178 55
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
SSEN0.384 450.852 160.494 450.192 570.226 500.648 370.022 490.398 460.299 270.277 350.317 450.231 430.194 600.514 500.196 470.586 350.444 310.843 450.184 53
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
One_Thing_One_Clickpermissive0.326 540.472 600.361 550.232 550.183 550.555 510.000 670.498 330.038 620.195 540.226 560.362 250.168 610.469 550.251 410.553 440.335 510.846 430.117 62
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PanopticFusion-inst0.214 630.250 690.330 590.275 520.103 640.228 720.000 670.345 500.024 640.088 650.203 590.186 490.167 620.367 600.125 610.221 700.112 720.666 610.162 57
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
SALoss-ResNet0.262 580.667 420.335 570.067 670.123 610.427 590.022 480.280 620.058 570.216 480.211 580.039 630.142 630.519 490.106 640.338 640.310 560.721 580.138 59
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
Hier3Dcopyleft0.117 690.222 710.161 700.054 710.027 720.289 690.000 670.124 670.001 730.079 660.061 670.027 670.141 640.240 640.005 740.310 660.129 680.153 740.081 66
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
3D-SISpermissive0.161 640.407 630.155 710.068 660.043 700.346 650.001 630.134 660.005 690.088 640.106 650.037 640.135 650.321 620.028 700.339 630.116 710.466 670.093 64
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
R-PointNet0.158 660.356 650.173 690.113 620.140 590.359 620.012 550.023 720.039 610.134 620.123 640.008 700.089 660.149 680.117 620.221 690.128 690.563 650.094 63
tmp0.113 710.333 660.151 720.056 700.053 680.344 670.000 670.105 680.016 670.049 710.035 700.020 680.053 670.048 710.013 720.183 730.173 650.344 710.054 71
SemRegionNet-20cls0.121 680.296 670.203 670.071 650.058 670.349 640.000 670.150 650.019 650.054 700.034 710.017 690.052 680.042 720.013 730.209 710.183 630.371 680.057 70
ASIS0.085 730.037 740.080 740.066 680.047 690.282 700.000 670.052 700.002 720.047 720.026 720.001 730.046 690.194 660.031 690.264 680.140 660.167 730.047 73
UNet-backbone0.161 640.519 570.259 640.084 630.059 660.325 680.002 620.093 690.009 680.077 670.064 660.045 620.044 700.161 670.045 660.331 650.180 640.566 640.033 74
3D-BEVIS0.117 690.250 690.308 620.020 730.009 750.269 710.006 590.008 730.029 630.037 730.014 740.003 720.036 710.147 690.042 680.381 610.118 700.362 690.069 68
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Region-18class0.146 670.175 730.321 610.080 640.062 650.357 630.000 670.307 560.002 710.066 680.044 680.000 740.018 720.036 730.054 650.447 590.133 670.472 660.060 69
Sem_Recon_ins0.098 720.295 680.187 680.015 740.036 710.213 730.005 600.038 710.003 700.056 690.037 690.036 650.015 730.051 700.044 670.209 720.098 730.354 700.071 67
MaskRCNN 2d->3d Proj0.022 750.185 720.000 750.000 750.015 730.000 750.000 650.006 750.000 740.010 750.006 750.107 560.012 740.000 740.002 750.027 750.004 750.022 750.001 75
Sgpn_scannet0.049 740.023 750.134 730.031 720.013 740.144 740.006 570.008 740.000 740.028 740.017 730.003 710.009 750.000 740.021 710.122 740.095 740.175 720.054 72