
ScanRefer Benchmark
This table lists the benchmark results for the ScanRefer Localization Benchmark scenario.
Unique | Unique | Multiple | Multiple | Overall | Overall | ||
---|---|---|---|---|---|---|---|
Method | Info | acc@0.25IoU | acc@0.5IoU | acc@0.25IoU | acc@0.5IoU | acc@0.25IoU | acc@0.5IoU |
![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ||
3DVLP-baseline | 0.7766 31 | 0.6373 22 | 0.4572 15 | 0.3469 13 | 0.5288 21 | 0.4120 13 | |
TransformerVG | 0.7502 42 | 0.5977 29 | 0.3712 43 | 0.2628 44 | 0.4562 40 | 0.3379 44 | |
ConcreteNet | 0.8607 3 | 0.7923 3 | 0.4746 8 | 0.4091 3 | 0.5612 7 | 0.4950 3 | |
Ozan Unal, Christos Sakaridis, Suman Saha, Luc Van Gool: Four Ways to Improve Verbo-visual Fusion for Dense 3D Visual Grounding. ECCV 2024 | |||||||
scanrefer2 | 0.6340 56 | 0.4353 55 | 0.3193 58 | 0.1947 54 | 0.3898 57 | 0.2486 54 | |
CSA-M3LM | 0.8137 9 | 0.6241 25 | 0.4544 20 | 0.3317 18 | 0.5349 13 | 0.3972 17 | |
ScanRefer_vanilla | 0.6488 53 | 0.4056 58 | 0.3052 60 | 0.1782 57 | 0.3823 59 | 0.2292 58 | |
HAM | 0.7799 28 | 0.6373 22 | 0.4148 32 | 0.3324 17 | 0.4967 32 | 0.4007 16 | |
Jiaming Chen, Weixin Luo, Ran Song, Xiaolin Wei, Lin Ma, Wei Zhang: Learning Point-Language Hierarchical Alignment for 3D Visual Grounding. | |||||||
SPANet | 0.5614 59 | 0.4641 53 | 0.2800 61 | 0.2071 52 | 0.3431 62 | 0.2647 52 | |
henet | 0.7110 48 | 0.5180 50 | 0.3936 34 | 0.2472 48 | 0.4590 38 | 0.3030 49 | |
grounding | 0.7298 46 | 0.5458 47 | 0.3822 39 | 0.2421 49 | 0.4538 43 | 0.3046 48 | |
SAVG | 0.7758 33 | 0.5664 40 | 0.4236 30 | 0.2826 39 | 0.5026 30 | 0.3462 42 | |
HGT | 0.7692 36 | 0.5886 32 | 0.4141 33 | 0.2924 36 | 0.4937 33 | 0.3588 39 | |
BEAUTY-DETR | ![]() | 0.7848 22 | 0.5499 46 | 0.3934 35 | 0.2480 47 | 0.4811 34 | 0.3157 47 |
Ayush Jain, Nikolaos Gkanatsios, Ishita Mediratta, Katerina Fragkiadaki: Looking Outside the Box to Ground Language in 3D Scenes. | |||||||
Clip-pre | 0.7766 31 | 0.6843 11 | 0.3617 49 | 0.2904 38 | 0.4547 41 | 0.3787 26 | |
Clip | 0.7733 34 | 0.6810 13 | 0.3619 47 | 0.2919 37 | 0.4542 42 | 0.3791 25 | |
FE-3DGQA | 0.7857 21 | 0.5862 33 | 0.4317 29 | 0.2935 33 | 0.5111 29 | 0.3592 37 | |
3DInsVG | 0.8170 8 | 0.6925 8 | 0.4582 13 | 0.3617 11 | 0.5386 11 | 0.4359 11 | |
ContraRefer | 0.7832 24 | 0.6801 14 | 0.3850 37 | 0.2947 32 | 0.4743 36 | 0.3811 22 | |
D3Net | ![]() | 0.7923 18 | 0.6843 11 | 0.3905 36 | 0.3074 30 | 0.4806 35 | 0.3919 19 |
Dave Zhenyu Chen, Qirui Wu, Matthias Niessner, Angel X. Chang: D3Net: A Unified Speaker-Listener Architecture for 3D Dense Captioning and Visual Grounding. 17th European Conference on Computer Vision (ECCV), 2022 | |||||||
D3Net - Pretrained | ![]() | 0.7659 38 | 0.6579 19 | 0.3619 47 | 0.2726 41 | 0.4525 44 | 0.3590 38 |
Dave Zhenyu Chen, Qirui Wu, Matthias Niessner, Angel X. Chang: D3Net: A Unified Speaker-Listener Architecture for 3D Dense Captioning and Visual Grounding. 17th European Conference on Computer Vision (ECCV), 2022 | |||||||
TransformerRefer | 0.6010 57 | 0.4658 52 | 0.2540 63 | 0.1730 59 | 0.3318 63 | 0.2386 55 | |
SR-GAB | 0.7016 49 | 0.5202 49 | 0.3233 57 | 0.1959 53 | 0.4081 55 | 0.2686 51 | |
pairwisemethod | 0.5779 58 | 0.3603 59 | 0.2792 62 | 0.1746 58 | 0.3462 61 | 0.2163 59 | |
PointGroup_MCAN | 0.7510 41 | 0.6397 21 | 0.3271 55 | 0.2535 45 | 0.4222 50 | 0.3401 43 | |
3DJCG(Grounding) | ![]() | 0.7675 37 | 0.6059 27 | 0.4389 27 | 0.3117 28 | 0.5126 27 | 0.3776 27 |
Daigang Cai, Lichen Zhao, Jing Zhang†, Lu Sheng, Dong Xu: 3DJCG: A Unified Framework for Joint Dense Captioning and Visual Grounding on 3D Point Clouds. CVPR2022 Oral | |||||||
3DVG-Transformer | ![]() | 0.7576 39 | 0.5515 45 | 0.4224 31 | 0.2933 34 | 0.4976 31 | 0.3512 41 |
Lichen Zhao∗, Daigang Cai∗, Lu Sheng†, Dong Xu: 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds. ICCV2021 | |||||||
3DVG-Trans + | ![]() | 0.7733 34 | 0.5787 38 | 0.4370 28 | 0.3102 29 | 0.5124 28 | 0.3704 32 |
Lichen Zhao∗, Daigang Cai∗, Lu Sheng†, Dong Xu: 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds. ICCV2021 | |||||||
SRGA | 0.7494 43 | 0.5128 51 | 0.3631 46 | 0.2218 50 | 0.4497 46 | 0.2871 50 | |
InstanceRefer | ![]() | 0.7782 30 | 0.6669 17 | 0.3457 52 | 0.2688 43 | 0.4427 47 | 0.3580 40 |
Zhihao Yuan, Xu Yan, Yinghong Liao, Ruimao Zhang, Zhen Li*, Shuguang Cui: InstanceRefer: Cooperative Holistic Understanding for Visual Grounding on Point Clouds through Instance Multi-level Contextual Referring. ICCV 2021 | |||||||
ScanRefer Baseline | 0.6422 54 | 0.4196 57 | 0.3090 59 | 0.1832 55 | 0.3837 58 | 0.2362 56 | |
TGNN | 0.6834 52 | 0.5894 31 | 0.3312 53 | 0.2526 46 | 0.4102 54 | 0.3281 46 | |
Pin-Hao Huang, Han-Hung Lee, Hwann-Tzong Chen, Tyng-Luh Liu: Text-Guided Graph Neural Network for Referring 3D Instance Segmentation. AAAI 2021 | |||||||
M3DRef-CLIP | ![]() | 0.7980 14 | 0.7085 5 | 0.4692 10 | 0.3807 9 | 0.5433 10 | 0.4545 9 |
Yiming Zhang, ZeMing Gong, Angel X. Chang: Multi3DRefer: Grounding Text Description to Multiple 3D Objects. ICCV 2023 | |||||||
Co3d | 0.0000 65 | 0.0000 65 | 0.0000 65 | 0.0000 65 | 0.0000 65 | 0.0000 65 | |
3dvlp-with-judge | 0.7807 27 | 0.6472 20 | 0.4498 24 | 0.3407 14 | 0.5240 24 | 0.4094 14 | |
TFVG3D ++ | ![]() | 0.7453 45 | 0.5458 48 | 0.3793 41 | 0.2690 42 | 0.4614 37 | 0.3311 45 |
Ali Solgi, Mehdi Ezoji: A Transformer-based Framework for Visual Grounding on 3D Point Clouds. AISP 2024 | |||||||
3dvlp-judge-h | 0.7552 40 | 0.6051 28 | 0.4458 26 | 0.3340 16 | 0.5152 26 | 0.3948 18 | |
ScanRefer-3dvlp-test | 0.7824 25 | 0.6298 24 | 0.4532 22 | 0.3405 15 | 0.5270 23 | 0.4054 15 | |
ScanRefer-test | 0.6999 50 | 0.4361 54 | 0.3274 54 | 0.1725 60 | 0.4109 53 | 0.2316 57 | |
3DVLP | 0.0038 64 | 0.0019 64 | 0.0049 64 | 0.0023 64 | 0.0047 64 | 0.0022 64 | |
UniVLG | 0.8895 1 | 0.8236 1 | 0.5921 1 | 0.5030 1 | 0.6588 1 | 0.5749 1 | |
GALA-Grounder-D3 | 0.7939 17 | 0.5952 30 | 0.4625 11 | 0.3229 20 | 0.5368 12 | 0.3839 20 | |
LAG-3D-3 | 0.7815 26 | 0.5837 34 | 0.4556 18 | 0.3219 21 | 0.5287 22 | 0.3806 23 | |
LAG-3D-2 | 0.7964 15 | 0.5812 36 | 0.4572 15 | 0.3245 19 | 0.5333 15 | 0.3821 21 | |
LAG-3D | 0.7881 19 | 0.5606 43 | 0.4579 14 | 0.3169 24 | 0.5320 17 | 0.3715 31 | |
Graph-VG-4 | 0.7848 22 | 0.5631 42 | 0.4560 17 | 0.3164 26 | 0.5298 19 | 0.3717 30 | |
Graph-VG-3 | 0.8038 11 | 0.5812 36 | 0.4515 23 | 0.3169 24 | 0.5305 18 | 0.3762 28 | |
Graph-VG-2 | 0.8021 12 | 0.5829 35 | 0.4546 19 | 0.3217 22 | 0.5325 16 | 0.3802 24 | |
GALA-Grounder-D1 | 0.8104 10 | 0.5754 39 | 0.4479 25 | 0.3176 23 | 0.5292 20 | 0.3754 29 | |
Chat-Scene | ![]() | 0.8887 2 | 0.8005 2 | 0.5421 2 | 0.4861 2 | 0.6198 2 | 0.5566 2 |
Haifeng Huang, Yilun Chen, Zehan Wang, et al.: Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers. NeurIPS 2024 | |||||||
Co3d2 | 0.5070 62 | 0.1195 63 | 0.3569 50 | 0.1511 62 | 0.3906 56 | 0.1440 62 | |
D-LISA | 0.8195 7 | 0.6900 9 | 0.4975 4 | 0.3967 6 | 0.5697 4 | 0.4625 5 | |
Haomeng Zhang, Chiao-An Yang, Raymond A. Yeh: Multi-Object 3D Grounding with Dynamic Modules and Language-Informed Spatial Attention. NeurIPS 2024 | |||||||
M3DRef-test | 0.7865 20 | 0.6793 15 | 0.4963 5 | 0.3977 5 | 0.5614 6 | 0.4608 6 | |
RG-SAN | 0.7964 15 | 0.6785 16 | 0.4591 12 | 0.3600 12 | 0.5348 14 | 0.4314 12 | |
SAF | 0.6348 55 | 0.5647 41 | 0.3726 42 | 0.3009 31 | 0.4314 48 | 0.3601 36 | |
M3DRef-SCLIP | 0.7997 13 | 0.7123 4 | 0.4708 9 | 0.3805 10 | 0.5445 9 | 0.4549 8 | |
cus3d | 0.8384 5 | 0.7073 7 | 0.4908 6 | 0.4000 4 | 0.5688 5 | 0.4689 4 | |
pointclip | 0.8211 6 | 0.7082 6 | 0.4803 7 | 0.3884 7 | 0.5567 8 | 0.4601 7 | |
Se2d | 0.7799 28 | 0.6628 18 | 0.3636 45 | 0.2823 40 | 0.4569 39 | 0.3677 34 | |
secg | 0.7288 47 | 0.6175 26 | 0.3696 44 | 0.2933 34 | 0.4501 45 | 0.3660 35 | |
CORE-3DVG | 0.8557 4 | 0.6867 10 | 0.5275 3 | 0.3850 8 | 0.6011 3 | 0.4527 10 | |
bo3d-1 | 0.7469 44 | 0.5606 43 | 0.4539 21 | 0.3124 27 | 0.5196 25 | 0.3680 33 | |
Co3d3 | 0.5326 61 | 0.1369 61 | 0.3848 38 | 0.1651 61 | 0.4179 51 | 0.1588 61 | |
bo3d0 | 0.4823 63 | 0.1278 62 | 0.3271 55 | 0.1394 63 | 0.3619 60 | 0.1368 63 | |
bo3d | 0.5400 60 | 0.1550 60 | 0.3817 40 | 0.1785 56 | 0.4172 52 | 0.1732 60 | |
ScanRefer | ![]() | 0.6859 51 | 0.4353 55 | 0.3488 51 | 0.2097 51 | 0.4244 49 | 0.2603 53 |
Dave Zhenyu Chen, Angel X. Chang, Matthias Nießner: ScanRefer: 3D Object Localization in RGB-D Scans using Natural Language. 16th European Conference on Computer Vision (ECCV), 2020 |