Presenting the ScanNet200 Benchmark

We present the ScanNet200 benchmark, which studies an order of magnitude more class categories than previous version of ScanNet. The scene geometry is shared within the two tasks, but the parsing of surface annotation allows for a larger vocabulary and more realistic setting for in the wild 3D understanding methods.

The ScanNet200 benchmark includes both finer-grained categories as well as a large number of previously unaddressed classes. This induces a much more challenging setting regarding the diversity of naturally observed semantic classes seen in the raw ScanNet RGB-D observations, where the data also reflects naturally encountered class imbalances. The difference in category frequencies between ScanNet and ScanNet200 can be seen in the Figure above.

ScanNet200 Benchmark

This table lists the benchmark results for the ScanNet200 3D semantic label scenario.




Method Infoavg iouhead ioucommon ioutail iouwallchairfloortabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OctFormer ScanNet200permissive0.326 120.539 90.265 90.131 110.806 80.670 120.943 90.535 110.662 40.705 150.423 80.407 50.505 120.003 100.765 120.582 70.686 140.227 150.680 70.943 100.601 30.854 100.892 50.335 50.417 160.357 90.724 90.453 100.632 60.596 40.432 30.783 100.512 150.021 120.244 140.637 10.000 10.787 110.873 90.743 100.000 160.000 70.534 80.110 30.499 60.289 90.626 60.620 110.168 140.204 20.849 90.679 70.117 40.633 110.684 30.650 70.552 50.684 80.312 30.000 30.175 100.429 100.865 40.413 40.837 110.000 60.145 90.626 80.451 70.487 110.513 30.000 10.529 70.613 120.000 40.033 60.000 10.000 50.828 40.871 30.622 80.587 80.411 70.137 100.645 130.343 110.000 30.000 70.000 10.022 110.000 30.026 160.829 100.000 10.022 70.089 60.842 30.253 140.318 100.296 30.178 100.291 30.224 20.584 20.200 130.132 80.000 40.128 100.227 130.000 30.230 120.047 100.149 70.331 90.412 90.618 60.164 90.102 100.522 10.000 10.655 40.378 120.469 140.000 10.000 100.000 110.105 80.000 70.000 80.483 30.000 110.000 70.028 70.000 10.000 40.906 10.000 10.339 140.000 10.000 120.457 80.000 10.612 70.000 10.000 10.408 30.000 140.900 100.000 90.000 100.000 10.029 60.000 10.074 130.455 140.479 50.427 60.079 80.140 90.496 70.414 130.022 60.000 10.471 130.000 20.000 20.000 110.722 60.000 20.000 10.000 10.138 130.000 80.000 30.000 100.000 1
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
CeCo0.340 60.551 80.247 120.181 50.784 120.661 130.939 120.564 50.624 120.721 110.484 40.429 40.575 40.027 80.774 110.503 130.753 50.242 120.656 100.945 90.534 70.865 60.860 100.177 160.616 80.400 40.818 20.579 10.615 100.367 130.408 60.726 140.633 40.162 10.360 80.619 20.000 10.828 80.873 90.924 20.109 110.083 30.564 50.057 140.475 120.266 100.781 10.767 70.257 60.100 100.825 100.663 90.048 140.620 130.551 110.595 120.532 70.692 70.246 50.000 30.213 50.615 10.861 60.376 70.900 70.000 60.102 150.660 70.321 140.547 40.226 120.000 10.311 120.742 50.011 30.006 80.000 10.000 50.546 140.824 80.345 130.665 30.450 50.435 10.683 70.411 70.338 10.000 70.000 10.030 80.000 30.068 70.892 70.000 10.063 40.000 100.257 120.304 130.387 50.079 130.228 50.190 100.000 130.586 10.347 40.133 70.000 40.037 120.377 90.000 30.384 80.006 150.003 120.421 30.410 100.643 50.171 80.121 80.142 110.000 10.510 120.447 110.474 130.000 10.000 100.286 30.083 100.000 70.000 80.603 10.096 70.063 40.000 100.000 10.000 40.898 30.000 10.429 60.000 10.400 10.550 30.000 10.633 60.000 10.000 10.377 40.000 140.916 50.000 90.000 100.000 10.000 70.000 10.102 100.499 90.296 130.463 50.089 50.304 10.740 20.401 150.010 70.000 10.560 30.000 20.000 20.709 20.652 90.000 20.000 10.000 10.143 70.000 80.000 30.609 30.000 1
Zhisheng Zhong, Jiequan Cui, Yibo Yang, Xiaoyang Wu, Xiaojuan Qi, Xiangyu Zhang, Jiaya Jia: Understanding Imbalanced Semantic Segmentation Through Neural Collapse. CVPR 2023
AWCS0.305 130.508 130.225 130.142 100.782 130.634 160.937 130.489 140.578 130.721 110.364 140.355 100.515 110.023 90.764 130.523 100.707 130.264 100.633 130.922 130.507 120.886 10.804 140.179 140.436 150.300 110.656 150.529 20.501 140.394 120.296 150.820 50.603 80.131 40.179 160.619 20.000 10.707 150.865 130.773 60.171 70.010 60.484 130.063 120.463 130.254 120.332 150.649 100.220 100.100 100.729 140.613 140.071 120.582 140.628 70.702 40.424 140.749 20.137 140.000 30.142 130.360 120.863 50.305 130.877 90.000 60.173 50.606 110.337 130.478 120.154 140.000 10.253 130.664 80.000 40.000 90.000 10.000 50.626 120.782 100.302 150.602 60.185 120.282 60.651 120.317 120.000 30.000 70.000 10.022 110.000 30.154 10.876 80.000 10.014 80.063 90.029 160.553 70.467 30.084 120.124 130.157 150.049 110.373 130.252 90.097 140.000 40.219 60.542 30.000 30.392 70.172 70.000 140.339 80.417 80.533 130.093 140.115 90.195 80.000 10.516 110.288 150.741 60.000 10.001 90.233 70.056 130.000 70.159 50.334 80.077 90.000 70.000 100.000 10.000 40.749 120.000 10.411 70.000 10.008 110.452 90.000 10.595 90.000 10.000 10.220 90.006 100.894 120.006 80.000 100.000 10.000 70.000 10.112 50.504 80.404 90.551 10.093 40.129 140.484 80.381 160.000 120.000 10.396 140.000 20.000 20.620 30.402 160.000 20.000 10.000 10.142 80.000 80.000 30.512 70.000 1
PTv3 ScanNet2000.393 30.592 30.330 20.216 20.851 20.687 60.971 20.586 20.755 10.752 70.505 10.404 60.575 40.000 120.848 20.616 40.761 30.349 10.738 20.978 20.546 60.860 80.926 20.346 30.654 30.384 60.828 10.523 30.699 30.583 50.387 70.822 30.688 20.118 50.474 20.603 40.000 10.832 70.903 20.753 80.140 90.000 70.650 30.109 40.520 30.457 10.497 90.871 40.281 30.192 30.887 40.748 30.168 10.727 70.733 20.740 10.644 10.714 40.190 120.000 30.256 30.449 90.914 10.514 30.759 140.337 20.172 60.692 60.617 20.636 10.325 70.000 10.641 20.782 10.000 40.065 30.000 10.000 50.842 30.903 20.661 40.662 40.612 10.405 20.731 30.566 30.000 30.000 70.000 10.017 140.301 10.088 50.941 20.000 10.077 30.000 100.717 70.790 20.310 110.026 160.264 40.349 10.220 30.397 120.366 20.115 120.000 40.337 10.463 60.000 30.531 50.218 30.593 20.455 20.469 10.708 30.210 30.592 20.108 150.000 10.728 10.682 30.671 80.000 10.000 100.407 10.136 30.022 30.575 10.436 50.259 30.428 10.048 50.000 10.000 40.879 50.000 10.480 20.000 10.133 90.597 10.000 10.690 20.000 10.000 10.009 150.000 140.921 40.000 90.151 40.000 10.000 70.000 10.109 70.494 110.622 20.394 80.073 100.141 80.798 10.528 70.026 50.000 10.551 40.000 20.000 20.134 60.717 70.000 20.000 10.000 10.188 30.000 80.000 30.791 20.000 1
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
OA-CNN-L_ScanNet2000.333 100.558 40.269 80.124 120.821 50.703 30.946 60.569 40.662 40.748 80.487 30.455 30.572 60.000 120.789 90.534 80.736 80.271 70.713 40.949 60.498 130.877 30.860 100.332 60.706 10.474 20.788 60.406 120.637 50.495 100.355 110.805 70.592 110.015 130.396 70.602 50.000 10.799 100.876 70.713 120.276 20.000 70.493 120.080 80.448 140.363 40.661 40.833 60.262 50.125 60.823 110.665 80.076 80.720 80.557 100.637 80.517 80.672 90.227 70.000 30.158 110.496 70.843 100.352 90.835 120.000 60.103 140.711 50.527 30.526 50.320 80.000 10.568 60.625 110.067 10.000 90.000 10.001 40.806 50.836 70.621 90.591 70.373 80.314 50.668 90.398 80.003 20.000 70.000 10.016 150.024 20.043 120.906 60.000 10.052 50.000 100.384 110.330 120.342 70.100 110.223 60.183 120.112 60.476 50.313 70.130 90.196 30.112 110.370 100.000 30.234 110.071 80.160 60.403 40.398 130.492 140.197 50.076 120.272 40.000 10.200 160.560 100.735 70.000 10.000 100.000 110.110 70.002 60.021 70.412 60.000 110.000 70.000 100.000 10.000 40.794 100.000 10.445 50.000 10.022 100.509 60.000 10.517 120.000 10.000 10.001 160.245 50.915 60.024 60.089 60.000 10.262 20.000 10.103 90.524 70.392 100.515 20.013 160.251 40.411 110.662 20.001 110.000 10.473 120.000 20.000 20.150 50.699 80.000 20.000 10.000 10.166 50.000 80.024 20.000 100.000 1
IMFSegNet0.334 80.532 120.251 100.179 60.799 100.683 80.940 100.555 70.631 110.740 100.406 90.336 120.560 80.062 40.795 70.518 110.733 90.274 50.646 120.947 80.458 160.848 130.862 90.305 90.649 40.284 120.713 120.495 70.626 70.527 80.363 90.820 50.574 120.010 140.411 40.597 60.000 10.842 30.873 90.704 130.246 40.000 70.495 100.041 150.486 90.305 60.444 110.604 140.134 150.055 150.852 80.633 120.076 80.792 40.612 80.573 160.484 110.668 110.216 110.000 30.197 80.518 50.784 120.344 110.908 60.283 30.190 40.599 120.439 90.496 100.569 20.000 10.392 80.776 20.000 40.064 40.000 10.000 50.710 80.756 120.508 100.512 150.159 140.034 130.773 10.363 90.000 30.000 70.000 10.032 60.000 30.029 150.648 150.000 10.000 90.000 100.830 50.595 40.274 140.228 70.206 70.188 110.000 130.425 90.237 110.123 110.000 40.277 50.214 140.003 10.610 20.044 110.124 90.320 130.408 110.594 90.196 60.213 60.139 120.000 10.615 60.618 60.839 30.000 10.014 50.260 40.080 110.025 20.000 80.139 110.135 50.035 60.000 100.000 10.793 10.799 80.000 10.357 120.000 10.369 40.359 120.000 10.512 140.000 10.000 10.120 110.424 10.903 80.027 50.091 50.000 10.245 40.000 10.073 140.457 130.340 110.191 140.021 140.009 160.322 140.608 50.060 30.000 10.494 90.000 20.000 20.068 100.624 100.000 20.000 10.000 10.139 100.047 40.000 30.561 50.000 1
PPT-SpUNet-F.T.0.332 110.556 50.270 60.123 130.816 60.682 90.946 60.549 90.657 80.756 50.459 60.376 80.550 100.001 110.807 40.616 40.727 110.267 80.691 50.942 110.530 90.872 50.874 70.330 70.542 130.374 70.792 40.400 130.673 40.572 60.433 20.793 80.623 60.008 160.351 90.594 70.000 10.783 120.876 70.833 40.213 60.000 70.537 70.091 60.519 40.304 70.620 70.942 10.264 40.124 70.855 60.695 50.086 70.646 100.506 150.658 60.535 60.715 30.314 20.000 30.241 40.608 20.897 20.359 80.858 100.000 60.076 160.611 100.392 110.509 70.378 60.000 10.579 40.565 150.000 40.000 90.000 10.000 50.755 60.806 90.661 40.572 120.350 90.181 70.660 110.300 130.000 30.000 70.000 10.023 100.000 30.042 130.930 40.000 10.000 90.077 70.584 80.392 100.339 80.185 90.171 110.308 20.006 120.563 30.256 80.150 40.000 40.002 150.345 110.000 30.045 130.197 40.063 100.323 100.453 30.600 70.163 100.037 140.349 30.000 10.672 30.679 40.753 50.000 10.000 100.000 110.117 50.000 70.000 80.291 90.000 110.000 70.039 60.000 10.000 40.899 20.000 10.374 100.000 10.000 120.545 40.000 10.634 50.000 10.000 10.074 120.223 60.914 70.000 90.021 80.000 10.000 70.000 10.112 50.498 100.649 10.383 90.095 20.135 120.449 90.432 110.008 90.000 10.518 60.000 20.000 20.000 110.796 40.000 20.000 10.000 10.138 130.000 80.000 30.000 100.000 1
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
GSTran0.334 90.533 110.250 110.179 70.799 100.684 70.940 100.554 80.633 100.741 90.405 100.337 110.560 80.060 50.794 80.517 120.732 100.274 50.647 110.948 70.459 150.849 110.864 80.306 80.648 50.282 130.717 110.496 60.624 80.533 70.363 90.821 40.573 130.009 150.411 40.593 80.000 10.841 40.873 90.704 130.242 50.000 70.495 100.041 150.487 80.304 70.439 120.613 120.133 160.055 150.853 70.634 110.075 110.791 50.601 90.574 150.483 120.669 100.217 90.000 30.198 70.518 50.782 130.345 100.914 50.273 40.193 30.598 130.440 80.499 80.570 10.000 10.381 100.775 30.000 40.063 50.000 10.000 50.712 70.752 130.507 110.512 150.158 150.036 120.773 10.361 100.000 30.000 70.000 10.032 60.000 30.032 140.651 140.000 10.000 90.000 100.831 40.595 40.273 150.229 60.200 80.191 80.000 130.425 90.233 120.125 100.000 40.279 40.213 150.003 10.608 30.044 110.138 80.321 110.408 110.593 100.198 40.205 70.139 120.000 10.614 70.609 70.838 40.000 10.014 50.260 40.080 110.010 50.000 80.136 120.136 40.047 50.000 100.000 10.787 20.797 90.000 10.354 130.000 10.372 30.357 130.000 10.507 150.000 10.000 10.121 100.423 20.903 80.028 40.089 60.000 10.252 30.000 10.072 150.465 120.340 110.189 150.020 150.011 150.320 150.606 60.060 30.000 10.496 80.000 20.000 20.070 90.618 120.000 20.000 10.000 10.139 100.047 40.000 30.558 60.000 1
BFANet ScanNet200permissive0.360 40.553 60.293 40.193 40.827 40.689 40.970 30.528 120.661 60.753 60.436 70.378 70.469 140.042 70.810 30.654 10.760 40.266 90.659 90.973 30.574 40.849 110.897 40.382 20.546 120.372 80.698 130.491 80.617 90.526 90.436 10.764 130.476 160.101 60.409 60.585 90.000 10.835 50.901 30.810 50.102 120.000 70.688 20.096 50.483 100.264 110.612 80.591 150.358 20.161 50.863 50.707 40.128 20.814 20.669 50.629 90.563 40.651 130.258 40.000 30.194 90.494 80.806 110.394 60.953 40.000 60.233 10.757 40.508 50.556 30.476 50.000 10.573 50.741 60.000 40.000 90.000 10.000 50.000 160.852 50.678 30.616 50.460 40.338 30.710 40.534 40.000 30.025 40.000 10.043 20.000 30.056 100.493 160.000 10.000 90.109 40.785 60.590 60.298 120.282 40.143 120.262 40.053 100.526 40.337 50.215 10.000 40.135 80.510 40.000 30.596 40.043 130.511 30.321 110.459 20.772 20.124 120.060 130.266 50.000 10.574 90.568 90.653 100.000 10.093 10.298 20.239 20.000 70.516 20.129 130.284 20.000 70.431 10.000 10.000 40.848 60.000 10.492 10.000 10.376 20.522 50.000 10.469 160.000 10.000 10.330 60.151 80.875 140.000 90.254 30.000 10.000 70.000 10.088 110.661 10.481 40.255 110.105 10.139 100.666 40.641 30.000 120.000 10.614 20.000 20.000 20.000 110.921 10.000 20.000 10.000 10.497 10.000 80.000 30.000 100.000 1
L3DETR-ScanNet_2000.336 70.533 100.279 50.155 90.801 90.689 40.946 60.539 100.660 70.759 40.380 130.333 130.583 30.000 120.788 100.529 90.740 70.261 110.679 80.940 120.525 100.860 80.883 60.226 120.613 90.397 50.720 100.512 40.565 110.620 30.417 50.775 120.629 50.158 20.298 110.579 100.000 10.835 50.883 50.927 10.114 100.079 40.511 90.073 100.508 50.312 50.629 50.861 50.192 130.098 120.908 30.636 100.032 160.563 160.514 140.664 50.505 90.697 60.225 80.000 30.264 20.411 110.860 70.321 120.960 20.058 50.109 130.776 30.526 40.557 20.303 90.000 10.339 110.712 70.000 40.014 70.000 10.000 50.638 110.856 40.641 70.579 100.107 160.119 110.661 100.416 60.000 30.000 70.000 10.007 160.000 30.067 80.910 50.000 10.000 90.000 100.463 100.448 80.294 130.324 20.293 20.211 60.108 70.448 80.068 160.141 60.000 40.330 20.699 10.000 30.256 100.192 50.000 140.355 70.418 70.209 160.146 110.679 10.101 160.000 10.503 140.687 20.671 80.000 10.000 100.174 90.117 50.000 70.122 60.515 20.104 60.259 20.312 30.000 10.000 40.765 110.000 10.369 110.000 10.183 80.422 100.000 10.646 30.000 10.000 10.565 20.001 130.125 160.010 70.002 90.000 10.487 10.000 10.075 120.548 40.420 80.233 130.082 70.138 110.430 100.427 120.000 120.000 10.549 50.000 20.000 20.074 80.409 150.000 20.000 10.000 10.152 60.051 30.000 30.598 40.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, Jian Zhang: Language-Assisted 3D Scene Understanding. arXiv23.12
DITR0.409 20.616 10.351 10.215 30.831 30.791 10.947 50.619 10.730 20.762 20.494 20.571 10.597 20.000 120.853 10.625 30.796 20.301 30.723 30.959 40.617 20.862 70.917 30.573 10.562 100.591 10.784 70.504 50.757 10.737 20.429 40.853 10.662 30.135 30.459 30.558 110.000 10.913 10.878 60.687 150.008 150.000 70.615 40.238 10.651 10.370 30.742 20.925 20.360 10.167 40.938 10.752 20.118 30.827 10.670 40.723 20.614 30.628 140.372 10.000 30.143 120.175 160.873 30.652 10.991 10.340 10.148 80.814 10.656 10.524 60.491 40.000 10.743 10.752 40.000 40.000 90.000 10.399 10.865 20.953 10.833 10.694 20.444 60.000 160.688 60.609 20.000 30.053 20.000 10.022 110.000 30.053 110.940 30.000 10.186 10.093 50.854 20.877 10.534 20.404 10.270 30.191 80.198 40.461 70.375 10.152 30.921 10.132 90.235 120.000 30.617 10.330 10.896 10.399 50.431 50.597 80.759 10.554 30.400 20.000 10.559 100.699 10.852 20.000 10.000 100.091 100.385 10.000 70.000 80.478 40.077 90.000 70.140 40.000 10.000 40.670 130.000 10.452 40.000 10.263 50.361 110.000 10.643 40.000 10.000 10.357 50.005 110.928 20.362 10.496 10.000 10.000 70.000 10.072 150.585 20.587 30.476 40.037 130.191 50.410 120.629 40.118 10.000 10.479 110.000 20.000 20.107 70.839 30.000 20.000 10.000 10.139 100.036 60.000 30.247 90.000 1
PonderV2 ScanNet2000.346 50.552 70.270 70.175 80.810 70.682 90.950 40.560 60.641 90.761 30.398 120.357 90.570 70.113 20.804 50.603 60.750 60.283 40.681 60.952 50.548 50.874 40.852 120.290 110.700 20.356 100.792 40.445 110.545 120.436 110.351 120.787 90.611 70.050 80.290 130.519 120.000 10.825 90.888 40.842 30.259 30.100 20.558 60.070 110.497 70.247 130.457 100.889 30.248 80.106 90.817 120.691 60.094 60.729 60.636 60.620 110.503 100.660 120.243 60.000 30.212 60.590 40.860 70.400 50.881 80.000 60.202 20.622 90.408 100.499 80.261 100.000 10.385 90.636 100.000 40.000 90.000 10.000 50.433 150.843 60.660 60.574 110.481 30.336 40.677 80.486 50.000 30.030 30.000 10.034 50.000 30.080 60.869 90.000 10.000 90.000 100.540 90.727 30.232 160.115 100.186 90.193 70.000 130.403 110.326 60.103 130.000 40.290 30.392 80.000 30.346 90.062 90.424 40.375 60.431 50.667 40.115 130.082 110.239 60.000 10.504 130.606 80.584 110.000 10.002 80.186 80.104 90.000 70.394 40.384 70.083 80.000 70.007 80.000 10.000 40.880 40.000 10.377 90.000 10.263 50.565 20.000 10.608 80.000 10.000 10.304 70.009 90.924 30.000 90.000 100.000 10.000 70.000 10.128 30.584 30.475 60.412 70.076 90.269 30.621 50.509 80.010 70.000 10.491 100.063 10.000 20.472 40.880 20.000 20.000 10.000 10.179 40.125 20.000 30.441 80.000 1
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
ALS-MinkowskiNetcopyleft0.414 10.610 20.322 30.271 10.852 10.710 20.973 10.572 30.719 30.795 10.477 50.506 20.601 10.000 120.804 50.646 20.804 10.344 20.777 10.984 10.671 10.879 20.936 10.342 40.632 70.449 30.817 30.475 90.723 20.798 10.376 80.832 20.693 10.031 90.564 10.510 130.000 10.893 20.905 10.672 160.314 10.000 70.718 10.153 20.542 20.397 20.726 30.752 80.252 70.226 10.916 20.800 10.047 150.807 30.769 10.709 30.630 20.769 10.217 90.000 30.285 10.598 30.846 90.535 20.956 30.000 60.137 110.784 20.464 60.463 130.230 110.000 10.598 30.662 90.000 40.087 20.000 10.135 20.900 10.780 110.703 20.741 10.571 20.149 90.697 50.646 10.000 30.076 10.000 10.025 90.000 30.106 40.981 10.000 10.043 60.113 30.888 10.248 150.404 40.252 50.314 10.220 50.245 10.466 60.366 20.159 20.000 40.149 70.690 20.000 30.531 50.253 20.285 50.460 10.440 40.813 10.230 20.283 50.159 100.000 10.728 10.666 50.958 10.000 10.021 40.252 60.118 40.000 70.445 30.223 100.285 10.194 30.390 20.000 10.475 30.842 70.000 10.455 30.000 10.250 70.458 70.000 10.865 10.000 10.000 10.635 10.359 40.972 10.087 30.447 20.000 10.000 70.000 10.129 20.532 60.446 70.503 30.071 110.135 120.699 30.717 10.097 20.000 10.665 10.000 20.000 21.000 10.752 50.000 20.000 10.000 10.142 80.200 10.259 11.000 10.000 1
CSC-Pretrainpermissive0.249 160.455 160.171 150.079 160.766 160.659 140.930 160.494 130.542 160.700 160.314 160.215 160.430 160.121 10.697 160.441 150.683 150.235 130.609 160.895 150.476 140.816 150.770 160.186 130.634 60.216 160.734 80.340 150.471 150.307 150.293 160.591 160.542 140.076 70.205 150.464 140.000 10.484 160.832 160.766 70.052 140.000 70.413 150.059 130.418 150.222 150.318 160.609 130.206 120.112 80.743 130.625 130.076 80.579 150.548 120.590 130.371 150.552 160.081 150.003 20.142 130.201 150.638 160.233 150.686 160.000 60.142 100.444 160.375 120.247 160.198 130.000 10.128 160.454 160.019 20.097 10.000 10.000 50.553 130.557 150.373 120.545 130.164 130.014 150.547 150.174 140.000 30.002 50.000 10.037 30.000 30.063 90.664 130.000 10.000 90.130 20.170 130.152 160.335 90.079 130.110 140.175 130.098 80.175 160.166 140.045 160.207 20.014 130.465 50.000 30.001 160.001 160.046 110.299 140.327 150.537 120.033 150.012 160.186 90.000 10.205 150.377 130.463 150.000 10.058 30.000 110.055 140.041 10.000 80.105 150.000 110.000 70.000 100.000 10.000 40.398 140.000 10.308 160.000 10.000 120.319 140.000 10.543 110.000 10.000 10.062 140.004 120.862 150.000 90.000 100.000 10.000 70.000 10.123 40.316 150.225 140.250 120.094 30.180 60.332 130.441 100.000 120.000 10.310 160.000 20.000 20.000 110.592 130.000 20.000 10.000 10.203 20.000 80.000 30.000 100.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
LGroundpermissive0.272 140.485 140.184 140.106 140.778 140.676 110.932 140.479 160.572 140.718 130.399 110.265 140.453 150.085 30.745 140.446 140.726 120.232 140.622 140.901 140.512 110.826 140.786 150.178 150.549 110.277 140.659 140.381 140.518 130.295 160.323 130.777 110.599 90.028 100.321 100.363 150.000 10.708 140.858 140.746 90.063 130.022 50.457 140.077 90.476 110.243 140.402 130.397 160.233 90.077 140.720 160.610 150.103 50.629 120.437 160.626 100.446 130.702 50.190 120.005 10.058 150.322 130.702 150.244 140.768 130.000 60.134 120.552 140.279 150.395 140.147 150.000 10.207 140.612 130.000 40.000 90.000 10.000 50.658 100.566 140.323 140.525 140.229 110.179 80.467 160.154 150.000 30.002 50.000 10.051 10.000 30.127 20.703 110.000 10.000 90.216 10.112 150.358 110.547 10.187 80.092 150.156 160.055 90.296 140.252 90.143 50.000 40.014 130.398 70.000 30.028 150.173 60.000 140.265 150.348 140.415 150.179 70.019 150.218 70.000 10.597 80.274 160.565 120.000 10.012 70.000 110.039 150.022 30.000 80.117 140.000 110.000 70.000 100.000 10.000 40.324 150.000 10.384 80.000 10.000 120.251 160.000 10.566 100.000 10.000 10.066 130.404 30.886 130.199 20.000 100.000 10.059 50.000 10.136 10.540 50.127 160.295 100.085 60.143 70.514 60.413 140.000 120.000 10.498 70.000 20.000 20.000 110.623 110.000 20.000 10.000 10.132 150.000 80.000 30.000 100.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild. arXiv
Minkowski 34Dpermissive0.253 150.463 150.154 160.102 150.771 150.650 150.932 140.483 150.571 150.710 140.331 150.250 150.492 130.044 60.703 150.419 160.606 160.227 150.621 150.865 160.531 80.771 160.813 130.291 100.484 140.242 150.612 160.282 160.440 160.351 140.299 140.622 150.593 100.027 110.293 120.310 160.000 10.757 130.858 140.737 110.150 80.164 10.368 160.084 70.381 160.142 160.357 140.720 90.214 110.092 130.724 150.596 160.056 130.655 90.525 130.581 140.352 160.594 150.056 160.000 30.014 160.224 140.772 140.205 160.720 150.000 60.159 70.531 150.163 160.294 150.136 160.000 10.169 150.589 140.000 40.000 90.000 10.002 30.663 90.466 160.265 160.582 90.337 100.016 140.559 140.084 160.000 30.000 70.000 10.036 40.000 30.125 30.670 120.000 10.102 20.071 80.164 140.406 90.386 60.046 150.068 160.159 140.117 50.284 150.111 150.094 150.000 40.000 160.197 160.000 30.044 140.013 140.002 130.228 160.307 160.588 110.025 160.545 40.134 140.000 10.655 40.302 140.282 160.000 10.060 20.000 110.035 160.000 70.000 80.097 160.000 110.000 70.005 90.000 10.000 40.096 160.000 10.334 150.000 10.000 120.274 150.000 10.513 130.000 10.000 10.280 80.194 70.897 110.000 90.000 100.000 10.000 70.000 10.108 80.279 160.189 150.141 160.059 120.272 20.307 160.445 90.003 100.000 10.353 150.000 20.026 10.000 110.581 140.001 10.000 10.000 10.093 160.002 70.000 30.000 100.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019


This table lists the benchmark results for the ScanNet200 3D semantic instance scenario.




Method Infoavg aphead apcommon aptail apchairtabledoorcouchcabinetshelfdeskoffice chairbedpillowsinkpicturewindowtoiletbookshelfmonitorcurtainbookarmchaircoffee tableboxrefrigeratorlampkitchen cabinettowelclothestvnightstandcounterdresserstoolcushionplantceilingbathtubend tabledining tablekeyboardbagbackpacktoilet paperprintertv standwhiteboardblanketshower curtaintrash canclosetstairsmicrowavestoveshoecomputer towerbottlebinottomanbenchboardwashing machinemirrorcopierbasketsofa chairfile cabinetfanlaptopshowerpaperpersonpaper towel dispenserovenblindsrackplateblackboardpianosuitcaserailradiatorrecycling bincontainerwardrobesoap dispensertelephonebucketclockstandlightlaundry basketpipeclothes dryerguitartoilet paper holderseatspeakercolumnbicycleladderbathroom stallshower wallcupjacketstorage bincoffee makerdishwasherpaper towel rollmachinematwindowsillbartoasterbulletin boardironing boardfireplacesoap dishkitchen counterdoorframetoilet paper dispensermini fridgefire extinguisherballhatshower curtain rodwater coolerpaper cuttertrayshower doorpillarledgetoaster ovenmousetoilet seat cover dispenserfurniturecartstorage containerscaletissue boxlight switchcratepower outletdecorationsignprojectorcloset doorvacuum cleanercandleplungerstuffed animalheadphonesdish rackbroomguitar caserange hooddustpanhair dryerwater bottlehandicap barpurseventshower floorwater pitchermailboxbowlpaper bagalarm clockmusic standprojector screendividerlaundry detergentbathroom counterobjectbathroom vanitycloset walllaundry hamperbathroom stall doorceiling lighttrash bindumbbellstair railtubebathroom cabinetcd casecloset rodcoffee kettlestructureshower headkeyboard pianocase of water bottlescoat rackstorage organizerfolded chairfire alarmpower stripcalendarposterpotted plantluggagemattress
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Minkowski 34D Inst.permissive0.130 40.246 40.083 40.043 50.547 50.236 40.415 40.672 20.141 50.133 30.067 40.000 30.521 20.114 50.238 40.289 20.232 40.883 20.182 50.373 50.486 10.076 30.488 40.022 40.529 40.199 50.110 40.217 40.100 20.460 40.319 40.000 30.025 50.472 10.000 30.394 30.210 40.537 40.004 40.000 30.083 50.000 50.299 40.061 50.201 50.761 40.084 40.008 30.720 30.557 50.000 20.317 50.280 30.094 50.020 50.564 50.000 40.000 30.400 30.048 40.259 40.101 31.000 10.000 10.190 30.142 50.094 50.137 30.089 30.000 20.101 10.355 50.000 30.000 20.000 10.000 20.000 30.444 20.082 50.384 20.000 50.000 30.334 50.004 50.000 20.000 10.000 30.041 40.000 10.000 30.026 50.000 30.000 30.000 40.000 20.082 50.022 30.000 50.021 40.088 40.000 10.241 40.033 40.000 20.000 10.067 30.000 50.000 10.000 30.000 30.000 10.000 40.026 40.262 20.016 40.000 40.278 10.000 10.500 40.394 10.028 50.000 10.000 30.000 30.000 30.000 20.000 30.019 40.000 30.000 30.000 30.000 30.000 10.156 50.000 10.032 50.000 10.000 30.194 50.000 10.248 40.000 10.000 10.099 40.019 40.308 20.000 10.000 30.000 10.000 20.000 10.007 40.122 20.000 30.175 30.063 20.000 40.271 10.000 50.000 20.000 10.000 50.000 10.000 10.000 20.278 20.000 10.000 20.000 20.111 30.000 20.000 20.000 20.000 1
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
TD3D Scannet200permissive0.211 20.332 20.177 20.103 20.662 10.413 20.463 20.705 10.192 30.145 10.266 20.215 10.452 40.209 20.222 50.219 50.315 20.893 10.380 20.617 20.439 20.047 40.646 10.080 20.610 30.253 10.237 20.293 20.135 10.379 50.494 20.048 10.252 20.451 20.184 20.483 10.395 20.852 10.083 20.551 20.278 20.036 20.337 20.266 20.544 10.963 10.079 50.039 10.740 20.604 20.000 20.586 10.283 20.282 20.059 20.633 30.028 20.004 20.559 20.309 20.420 20.028 51.000 10.000 10.456 10.411 10.372 10.060 40.046 40.000 20.040 40.694 10.083 20.000 20.000 10.000 20.000 30.083 40.252 20.260 50.200 10.160 10.669 20.111 20.000 20.000 10.006 20.169 20.000 10.007 10.296 20.032 10.074 10.139 30.000 20.321 20.031 10.108 20.088 20.157 10.000 10.231 50.026 50.000 20.000 10.356 20.052 20.000 10.240 10.147 10.000 10.015 20.046 30.144 30.073 30.414 10.222 40.000 10.806 10.343 30.486 30.000 10.008 10.038 20.083 10.002 10.028 20.074 20.032 20.150 20.039 20.008 10.000 10.250 40.000 10.125 40.000 10.052 20.260 30.000 10.143 50.000 10.000 10.543 20.207 20.404 10.000 10.003 20.000 10.000 20.000 10.037 20.093 40.272 20.342 10.039 40.281 20.249 30.224 10.000 20.000 10.074 10.000 10.000 10.000 20.278 20.000 10.000 20.889 10.323 10.000 20.014 10.000 20.000 1
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
CSC-Pretrain Inst.permissive0.123 50.223 50.082 50.046 40.564 40.152 50.394 50.578 50.235 20.116 50.034 50.000 30.348 50.119 40.297 20.285 30.202 50.838 40.323 40.407 40.184 50.037 50.516 20.013 50.424 50.214 30.093 50.105 50.078 50.542 30.250 50.000 30.064 40.444 30.000 30.224 50.231 30.537 40.001 50.000 30.126 40.004 30.308 30.193 30.244 40.343 50.228 20.000 50.441 40.588 30.000 20.338 40.275 40.189 40.030 40.600 40.000 40.000 30.378 40.000 50.108 50.098 41.000 10.000 10.096 50.172 40.144 30.011 50.125 20.000 20.000 50.376 40.000 30.000 20.000 10.000 20.000 30.042 50.141 40.377 30.051 20.000 30.483 30.017 40.000 20.000 10.000 30.022 50.000 10.000 30.065 30.000 30.000 30.000 40.000 20.094 40.000 50.042 30.000 50.064 50.000 10.259 30.089 30.000 20.000 10.000 40.022 40.000 10.000 30.000 30.000 10.000 40.018 50.111 50.000 50.000 40.278 10.000 10.444 50.333 40.333 40.000 10.000 30.000 30.000 30.000 20.000 30.000 50.000 30.000 30.000 30.000 30.000 10.267 30.000 10.184 30.000 10.000 30.211 40.000 10.378 20.000 10.000 10.063 50.000 50.275 30.000 10.000 30.000 10.000 20.000 10.007 50.105 30.000 30.032 50.045 30.198 30.171 40.028 20.000 20.000 10.006 30.000 10.000 10.000 20.278 20.000 10.000 20.000 20.044 40.000 20.000 20.000 20.000 1
Ji Hou, Benjamin Graham, Matthias Nießner, Saining Xie: Exploring Data-Efficient 3D Scene Understanding with Contrastive Scene Contexts. CVPR 2021
LGround Inst.permissive0.154 30.275 30.108 30.060 30.573 30.381 30.434 30.654 40.190 40.141 20.097 30.000 30.503 30.180 30.252 30.242 40.242 30.881 30.448 10.494 30.429 30.078 20.364 50.024 30.654 20.213 40.222 30.239 30.099 30.616 20.363 30.000 30.092 30.444 30.000 30.383 40.209 50.815 20.030 30.000 30.166 30.002 40.295 50.099 40.364 20.778 20.177 30.001 40.427 50.585 40.000 20.470 30.268 50.205 30.045 30.642 20.007 30.000 30.333 50.148 30.407 30.130 21.000 10.000 10.156 40.189 30.097 40.169 20.000 50.000 20.056 20.400 30.000 30.000 20.000 10.000 20.556 10.278 30.203 30.323 40.019 40.000 30.402 40.026 30.000 20.000 10.000 30.044 30.000 10.000 30.037 40.000 30.000 30.181 20.000 20.127 30.006 40.028 40.023 30.115 20.000 10.327 20.267 20.000 20.000 10.000 40.028 30.000 10.000 30.000 30.000 10.003 30.048 20.135 40.222 20.089 20.278 10.000 10.514 30.333 40.611 20.000 10.000 30.000 30.000 30.000 20.000 30.037 30.000 30.000 30.000 30.000 30.000 10.322 20.000 10.209 20.000 10.000 30.278 20.000 10.302 30.000 10.000 10.143 30.148 30.000 50.000 10.000 30.000 10.000 20.000 10.015 30.064 50.000 30.272 20.031 50.000 40.257 20.028 20.000 20.000 10.041 20.000 10.000 10.000 20.222 50.000 10.000 20.000 20.000 50.000 20.000 20.000 20.000 1
David Rozenberszki, Or Litany, Angela Dai: Language-Grounded Indoor 3D Semantic Segmentation in the Wild.
Mask3D Scannet2000.278 10.383 10.263 10.168 10.661 20.465 10.572 10.665 30.391 10.121 40.304 10.015 20.647 10.349 10.474 10.489 10.321 10.816 50.351 30.722 10.402 40.195 10.515 30.082 10.795 10.215 20.396 10.377 10.082 40.724 10.586 10.015 20.277 10.377 50.201 10.475 20.572 10.778 30.089 10.759 10.556 10.068 10.506 10.467 10.323 30.778 20.427 10.027 20.789 10.744 10.003 10.570 20.561 10.337 10.265 10.711 10.258 10.031 10.569 10.311 10.441 10.179 11.000 10.000 10.233 20.411 20.283 20.380 10.667 10.016 10.048 30.418 20.139 10.173 10.000 10.086 10.014 20.500 10.384 10.497 10.044 30.032 20.752 10.287 10.003 10.000 10.007 10.208 10.000 10.001 20.349 10.008 20.014 20.509 10.500 10.323 10.023 20.176 10.107 10.105 30.000 10.605 10.378 10.016 10.000 10.400 10.192 10.000 10.048 20.037 20.000 10.275 10.119 10.810 10.258 10.006 30.083 50.000 10.568 20.377 20.708 10.000 10.005 20.147 10.014 20.000 20.556 10.085 10.325 10.500 10.083 10.004 20.000 10.590 10.000 10.365 10.000 10.116 10.491 10.000 10.626 10.000 10.000 10.579 10.391 10.050 40.000 10.028 10.000 10.222 10.000 10.063 10.302 10.356 10.149 40.573 10.415 10.013 50.002 40.004 10.000 10.005 40.000 10.000 10.444 10.514 10.000 10.028 10.000 20.156 20.267 10.000 21.000 10.000 1
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023


ScanNet Benchmark

This table lists the benchmark results for the 3D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PTv3-PPT-ALCcopyleft0.798 10.911 100.812 210.854 70.770 130.856 150.555 150.943 10.660 250.735 20.979 10.606 70.492 10.792 40.934 30.841 20.819 50.716 80.947 100.906 10.822 1
PTv3 ScanNet0.794 20.941 30.813 200.851 100.782 60.890 30.597 10.916 50.696 90.713 50.979 10.635 20.384 30.793 30.907 100.821 50.790 340.696 140.967 30.903 20.805 2
Xiaoyang Wu, Li Jiang, Peng-Shuai Wang, Zhijian Liu, Xihui Liu, Yu Qiao, Wanli Ouyang, Tong He, Hengshuang Zhao: Point Transformer V3: Simpler, Faster, Stronger. CVPR 2024 (Oral)
DITR ScanNet0.793 30.811 400.852 20.889 10.774 100.907 10.592 20.927 30.719 10.718 30.961 170.652 10.348 120.817 10.927 50.795 100.824 20.749 10.948 90.887 70.771 11
PonderV20.785 40.978 10.800 300.833 270.788 40.853 200.545 190.910 80.713 20.705 60.979 10.596 90.390 20.769 160.832 440.821 50.792 330.730 20.975 10.897 50.785 6
Haoyi Zhu, Honghui Yang, Xiaoyang Wu, Di Huang, Sha Zhang, Xianglong He, Tong He, Hengshuang Zhao, Chunhua Shen, Yu Qiao, Wanli Ouyang: PonderV2: Pave the Way for 3D Foundataion Model with A Universal Pre-training Paradigm.
Mix3Dpermissive0.781 50.964 20.855 10.843 190.781 70.858 130.575 70.831 370.685 150.714 40.979 10.594 100.310 300.801 20.892 180.841 20.819 50.723 50.940 150.887 70.725 28
Alexey Nekrasov, Jonas Schult, Or Litany, Bastian Leibe, Francis Engelmann: Mix3D: Out-of-Context Data Augmentation for 3D Scenes. 3DV 2021 (Oral)
Swin3Dpermissive0.779 60.861 220.818 150.836 240.790 30.875 50.576 60.905 90.704 60.739 10.969 110.611 30.349 110.756 260.958 10.702 500.805 170.708 90.916 370.898 40.801 3
TTT-KD0.773 70.646 960.818 150.809 390.774 100.878 40.581 30.943 10.687 130.704 70.978 50.607 60.336 180.775 120.912 80.838 40.823 30.694 150.967 30.899 30.794 5
Lisa Weijler, Muhammad Jehanzeb Mirza, Leon Sick, Can Ekkazan, Pedro Hermosilla: TTT-KD: Test-Time Training for 3D Semantic Segmentation through Knowledge Distillation from Foundation Models.
ResLFE_HDS0.772 80.939 40.824 70.854 70.771 120.840 350.564 110.900 110.686 140.677 140.961 170.537 350.348 120.769 160.903 120.785 140.815 80.676 260.939 160.880 130.772 10
OctFormerpermissive0.766 90.925 70.808 260.849 120.786 50.846 300.566 100.876 190.690 110.674 160.960 190.576 210.226 710.753 280.904 110.777 160.815 80.722 60.923 320.877 160.776 9
Peng-Shuai Wang: OctFormer: Octree-based Transformers for 3D Point Clouds. SIGGRAPH 2023
PPT-SpUNet-Joint0.766 90.932 50.794 360.829 290.751 260.854 180.540 230.903 100.630 380.672 180.963 150.565 250.357 90.788 50.900 140.737 300.802 180.685 200.950 70.887 70.780 7
Xiaoyang Wu, Zhuotao Tian, Xin Wen, Bohao Peng, Xihui Liu, Kaicheng Yu, Hengshuang Zhao: Towards Large-scale 3D Representation Learning with Multi-dataset Point Prompt Training. CVPR 2024
OccuSeg+Semantic0.764 110.758 610.796 340.839 220.746 300.907 10.562 120.850 290.680 170.672 180.978 50.610 40.335 200.777 100.819 480.847 10.830 10.691 170.972 20.885 100.727 26
CU-Hybrid Net0.764 110.924 80.819 130.840 210.757 210.853 200.580 40.848 300.709 40.643 280.958 230.587 150.295 380.753 280.884 220.758 230.815 80.725 40.927 280.867 260.743 19
O-CNNpermissive0.762 130.924 80.823 80.844 180.770 130.852 220.577 50.847 320.711 30.640 320.958 230.592 110.217 770.762 210.888 190.758 230.813 120.726 30.932 260.868 250.744 18
Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, Xin Tong: O-CNN: Octree-based Convolutional Neural Networks for 3D Shape Analysis. SIGGRAPH 2017
DiffSegNet0.758 140.725 780.789 410.843 190.762 170.856 150.562 120.920 40.657 280.658 220.958 230.589 130.337 170.782 60.879 230.787 120.779 400.678 220.926 300.880 130.799 4
DTC0.757 150.843 280.820 110.847 150.791 20.862 110.511 370.870 220.707 50.652 240.954 390.604 80.279 480.760 220.942 20.734 310.766 490.701 130.884 590.874 220.736 20
OA-CNN-L_ScanNet200.756 160.783 470.826 60.858 50.776 80.837 380.548 180.896 150.649 300.675 150.962 160.586 160.335 200.771 150.802 530.770 190.787 360.691 170.936 200.880 130.761 13
PNE0.755 170.786 450.835 50.834 260.758 190.849 250.570 90.836 360.648 310.668 200.978 50.581 200.367 70.683 390.856 320.804 70.801 220.678 220.961 50.889 60.716 34
P. Hermosilla: Point Neighborhood Embeddings.
ConDaFormer0.755 170.927 60.822 90.836 240.801 10.849 250.516 340.864 260.651 290.680 130.958 230.584 180.282 450.759 240.855 340.728 330.802 180.678 220.880 640.873 230.756 15
Lunhao Duan, Shanshan Zhao, Nan Xue, Mingming Gong, Guisong Xia, Dacheng Tao: ConDaFormer : Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding. Neurips, 2023
DMF-Net0.752 190.906 130.793 380.802 450.689 440.825 510.556 140.867 230.681 160.602 490.960 190.555 310.365 80.779 90.859 290.747 260.795 300.717 70.917 360.856 350.764 12
C.Yang, Y.Yan, W.Zhao, J.Ye, X.Yang, A.Hussain, B.Dong, K.Huang: Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. ICONIP 2023
PointTransformerV20.752 190.742 680.809 250.872 20.758 190.860 120.552 160.891 170.610 450.687 80.960 190.559 290.304 330.766 190.926 60.767 200.797 260.644 370.942 130.876 190.722 30
Xiaoyang Wu, Yixing Lao, Li Jiang, Xihui Liu, Hengshuang Zhao: Point Transformer V2: Grouped Vector Attention and Partition-based Pooling. NeurIPS 2022
BPNetcopyleft0.749 210.909 110.818 150.811 370.752 240.839 370.485 520.842 330.673 200.644 270.957 280.528 410.305 320.773 130.859 290.788 110.818 70.693 160.916 370.856 350.723 29
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia, Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
PointConvFormer0.749 210.793 430.790 390.807 410.750 280.856 150.524 300.881 180.588 570.642 310.977 90.591 120.274 510.781 80.929 40.804 70.796 270.642 380.947 100.885 100.715 35
Wenxuan Wu, Qi Shan, Li Fuxin: PointConvFormer: Revenge of the Point-based Convolution.
MSP0.748 230.623 990.804 280.859 40.745 310.824 530.501 410.912 70.690 110.685 100.956 300.567 240.320 270.768 180.918 70.720 380.802 180.676 260.921 340.881 120.779 8
StratifiedFormerpermissive0.747 240.901 140.803 290.845 170.757 210.846 300.512 360.825 400.696 90.645 260.956 300.576 210.262 620.744 340.861 280.742 280.770 470.705 110.899 490.860 320.734 21
Xin Lai*, Jianhui Liu*, Li Jiang, Liwei Wang, Hengshuang Zhao, Shu Liu, Xiaojuan Qi, Jiaya Jia: Stratified Transformer for 3D Point Cloud Segmentation. CVPR 2022
Virtual MVFusion0.746 250.771 550.819 130.848 140.702 420.865 100.397 890.899 120.699 70.664 210.948 600.588 140.330 220.746 330.851 380.764 210.796 270.704 120.935 210.866 270.728 24
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
VMNetpermissive0.746 250.870 200.838 30.858 50.729 360.850 240.501 410.874 200.587 580.658 220.956 300.564 260.299 350.765 200.900 140.716 410.812 130.631 430.939 160.858 330.709 36
Zeyu HU, Xuyang Bai, Jiaxiang Shang, Runze Zhang, Jiayu Dong, Xin Wang, Guangyuan Sun, Hongbo Fu, Chiew-Lan Tai: VMNet: Voxel-Mesh Network for Geodesic-Aware 3D Semantic Segmentation. ICCV 2021 (Oral)
DiffSeg3D20.745 270.725 780.814 190.837 230.751 260.831 450.514 350.896 150.674 190.684 110.960 190.564 260.303 340.773 130.820 470.713 440.798 250.690 190.923 320.875 200.757 14
Retro-FPN0.744 280.842 290.800 300.767 590.740 320.836 400.541 210.914 60.672 210.626 370.958 230.552 320.272 530.777 100.886 210.696 510.801 220.674 290.941 140.858 330.717 32
Peng Xiang*, Xin Wen*, Yu-Shen Liu, Hui Zhang, Yi Fang, Zhizhong Han: Retrospective Feature Pyramid Network for Point Cloud Semantic Segmentation. ICCV 2023
EQ-Net0.743 290.620 1000.799 330.849 120.730 350.822 550.493 490.897 130.664 220.681 120.955 330.562 280.378 40.760 220.903 120.738 290.801 220.673 300.907 410.877 160.745 16
Zetong Yang*, Li Jiang*, Yanan Sun, Bernt Schiele, Jiaya JIa: A Unified Query-based Paradigm for Point Cloud Understanding. CVPR 2022
MVF-GNN0.743 290.731 730.810 240.726 660.775 90.843 330.528 290.897 130.679 180.674 160.954 390.583 190.322 260.782 60.720 680.802 90.785 370.707 100.935 210.863 290.745 16
SAT0.742 310.860 230.765 540.819 320.769 150.848 270.533 250.829 380.663 230.631 360.955 330.586 160.274 510.753 280.896 160.729 320.760 550.666 320.921 340.855 370.733 22
LRPNet0.742 310.816 370.806 270.807 410.752 240.828 490.575 70.839 350.699 70.637 340.954 390.520 440.320 270.755 270.834 420.760 220.772 440.676 260.915 390.862 300.717 32
LargeKernel3D0.739 330.909 110.820 110.806 430.740 320.852 220.545 190.826 390.594 560.643 280.955 330.541 340.263 610.723 370.858 310.775 180.767 480.678 220.933 240.848 420.694 41
Yukang Chen*, Jianhui Liu*, Xiangyu Zhang, Xiaojuan Qi, Jiaya Jia: LargeKernel3D: Scaling up Kernels in 3D Sparse CNNs. CVPR 2023
RPN0.736 340.776 510.790 390.851 100.754 230.854 180.491 510.866 240.596 550.686 90.955 330.536 360.342 150.624 540.869 250.787 120.802 180.628 440.927 280.875 200.704 38
MinkowskiNetpermissive0.736 340.859 240.818 150.832 280.709 400.840 350.521 320.853 280.660 250.643 280.951 500.544 330.286 430.731 350.893 170.675 590.772 440.683 210.874 700.852 400.727 26
C. Choy, J. Gwak, S. Savarese: 4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks. CVPR 2019
IPCA0.731 360.890 160.837 40.864 30.726 370.873 60.530 280.824 410.489 910.647 250.978 50.609 50.336 180.624 540.733 620.758 230.776 420.570 690.949 80.877 160.728 24
online3d0.727 370.715 830.777 470.854 70.748 290.858 130.497 460.872 210.572 640.639 330.957 280.523 420.297 370.750 310.803 520.744 270.810 140.587 650.938 180.871 240.719 31
SparseConvNet0.725 380.647 950.821 100.846 160.721 380.869 70.533 250.754 620.603 510.614 410.955 330.572 230.325 240.710 380.870 240.724 360.823 30.628 440.934 230.865 280.683 44
PointTransformer++0.725 380.727 770.811 230.819 320.765 160.841 340.502 400.814 460.621 410.623 390.955 330.556 300.284 440.620 560.866 260.781 150.757 590.648 350.932 260.862 300.709 36
MatchingNet0.724 400.812 390.812 210.810 380.735 340.834 420.495 480.860 270.572 640.602 490.954 390.512 460.280 470.757 250.845 400.725 350.780 390.606 540.937 190.851 410.700 40
INS-Conv-semantic0.717 410.751 640.759 580.812 360.704 410.868 80.537 240.842 330.609 470.608 450.953 440.534 380.293 390.616 570.864 270.719 400.793 310.640 390.933 240.845 460.663 49
PointMetaBase0.714 420.835 300.785 420.821 300.684 460.846 300.531 270.865 250.614 420.596 530.953 440.500 490.246 670.674 400.888 190.692 520.764 510.624 460.849 860.844 470.675 46
contrastBoundarypermissive0.705 430.769 580.775 480.809 390.687 450.820 580.439 770.812 470.661 240.591 550.945 680.515 450.171 960.633 510.856 320.720 380.796 270.668 310.889 560.847 430.689 42
Liyao Tang, Yibing Zhan, Zhe Chen, Baosheng Yu, Dacheng Tao: Contrastive Boundary Learning for Point Cloud Segmentation. CVPR2022
ClickSeg_Semantic0.703 440.774 530.800 300.793 500.760 180.847 290.471 560.802 500.463 980.634 350.968 130.491 520.271 550.726 360.910 90.706 460.815 80.551 810.878 650.833 480.570 81
RFCR0.702 450.889 170.745 680.813 350.672 490.818 630.493 490.815 450.623 390.610 430.947 620.470 610.249 660.594 600.848 390.705 470.779 400.646 360.892 540.823 540.611 64
Jingyu Gong, Jiachen Xu, Xin Tan, Haichuan Song, Yanyun Qu, Yuan Xie, Lizhuang Ma: Omni-Supervised Point Cloud Segmentation via Gradual Receptive Field Component Reasoning. CVPR2021
One Thing One Click0.701 460.825 340.796 340.723 670.716 390.832 440.433 790.816 430.634 360.609 440.969 110.418 870.344 140.559 720.833 430.715 420.808 160.560 750.902 460.847 430.680 45
JSENetpermissive0.699 470.881 190.762 550.821 300.667 500.800 750.522 310.792 530.613 430.607 460.935 880.492 510.205 820.576 650.853 360.691 530.758 570.652 340.872 730.828 510.649 53
Zeyu HU, Mingmin Zhen, Xuyang BAI, Hongbo Fu, Chiew-lan Tai: JSENet: Joint Semantic Segmentation and Edge Detection Network for 3D Point Clouds. ECCV 2020
One-Thing-One-Click0.693 480.743 670.794 360.655 900.684 460.822 550.497 460.719 720.622 400.617 400.977 90.447 740.339 160.750 310.664 800.703 490.790 340.596 580.946 120.855 370.647 54
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
PicassoNet-IIpermissive0.692 490.732 720.772 490.786 510.677 480.866 90.517 330.848 300.509 840.626 370.952 480.536 360.225 730.545 780.704 710.689 560.810 140.564 740.903 450.854 390.729 23
Huan Lei, Naveed Akhtar, Mubarak Shah, and Ajmal Mian: Geometric feature learning for 3D meshes.
Feature_GeometricNetpermissive0.690 500.884 180.754 620.795 480.647 570.818 630.422 810.802 500.612 440.604 470.945 680.462 640.189 900.563 710.853 360.726 340.765 500.632 420.904 430.821 570.606 68
Kangcheng Liu, Ben M. Chen: https://arxiv.org/abs/2012.09439. arXiv Preprint
FusionNet0.688 510.704 850.741 720.754 630.656 520.829 470.501 410.741 670.609 470.548 620.950 540.522 430.371 50.633 510.756 570.715 420.771 460.623 470.861 810.814 600.658 50
Feihu Zhang, Jin Fang, Benjamin Wah, Philip Torr: Deep FusionNet for Point Cloud Semantic Segmentation. ECCV 2020
Feature-Geometry Netpermissive0.685 520.866 210.748 650.819 320.645 590.794 780.450 670.802 500.587 580.604 470.945 680.464 630.201 850.554 740.840 410.723 370.732 700.602 560.907 410.822 560.603 71
DGNet0.684 530.712 840.784 430.782 550.658 510.835 410.499 450.823 420.641 330.597 520.950 540.487 540.281 460.575 660.619 840.647 720.764 510.620 490.871 760.846 450.688 43
VACNN++0.684 530.728 760.757 610.776 560.690 430.804 730.464 610.816 430.577 630.587 560.945 680.508 480.276 500.671 410.710 690.663 640.750 630.589 630.881 620.832 500.653 52
KP-FCNN0.684 530.847 270.758 600.784 530.647 570.814 660.473 550.772 560.605 490.594 540.935 880.450 720.181 930.587 610.805 510.690 540.785 370.614 500.882 610.819 580.632 60
H. Thomas, C. Qi, J. Deschaud, B. Marcotegui, F. Goulette, L. Guibas.: KPConv: Flexible and Deformable Convolution for Point Clouds. ICCV 2019
Superpoint Network0.683 560.851 260.728 760.800 470.653 540.806 710.468 580.804 480.572 640.602 490.946 650.453 710.239 700.519 840.822 450.689 560.762 540.595 600.895 520.827 520.630 61
PointContrast_LA_SEM0.683 560.757 620.784 430.786 510.639 610.824 530.408 840.775 550.604 500.541 640.934 920.532 390.269 570.552 750.777 550.645 750.793 310.640 390.913 400.824 530.671 47
VI-PointConv0.676 580.770 570.754 620.783 540.621 650.814 660.552 160.758 600.571 670.557 600.954 390.529 400.268 590.530 810.682 750.675 590.719 730.603 550.888 570.833 480.665 48
Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, Li Fuxin: The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions.
ROSMRF3D0.673 590.789 440.748 650.763 610.635 630.814 660.407 860.747 640.581 620.573 570.950 540.484 550.271 550.607 580.754 580.649 690.774 430.596 580.883 600.823 540.606 68
SALANet0.670 600.816 370.770 520.768 580.652 550.807 700.451 640.747 640.659 270.545 630.924 990.473 600.149 1060.571 680.811 500.635 780.746 640.623 470.892 540.794 720.570 81
O3DSeg0.668 610.822 350.771 510.496 1100.651 560.833 430.541 210.761 590.555 730.611 420.966 140.489 530.370 60.388 1030.580 870.776 170.751 610.570 690.956 60.817 590.646 55
PointConvpermissive0.666 620.781 480.759 580.699 750.644 600.822 550.475 540.779 540.564 700.504 810.953 440.428 810.203 840.586 630.754 580.661 650.753 600.588 640.902 460.813 620.642 56
Wenxuan Wu, Zhongang Qi, Li Fuxin: PointConv: Deep Convolutional Networks on 3D Point Clouds. CVPR 2019
PointASNLpermissive0.666 620.703 860.781 450.751 650.655 530.830 460.471 560.769 570.474 940.537 660.951 500.475 590.279 480.635 490.698 740.675 590.751 610.553 800.816 930.806 640.703 39
Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, Shuguang Cui: PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks with Adaptive Sampling. CVPR 2020
PPCNN++permissive0.663 640.746 650.708 790.722 680.638 620.820 580.451 640.566 1000.599 530.541 640.950 540.510 470.313 290.648 460.819 480.616 830.682 880.590 620.869 770.810 630.656 51
Pyunghwan Ahn, Juyoung Yang, Eojindl Yi, Chanho Lee, Junmo Kim: Projection-based Point Convolution for Efficient Point Cloud Segmentation. IEEE Access
DCM-Net0.658 650.778 490.702 820.806 430.619 660.813 690.468 580.693 800.494 870.524 730.941 800.449 730.298 360.510 860.821 460.675 590.727 720.568 720.826 910.803 660.637 58
Jonas Schult*, Francis Engelmann*, Theodora Kontogianni, Bastian Leibe: DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes. CVPR 2020 [Oral]
HPGCNN0.656 660.698 880.743 700.650 910.564 830.820 580.505 390.758 600.631 370.479 850.945 680.480 570.226 710.572 670.774 560.690 540.735 680.614 500.853 850.776 870.597 74
Jisheng Dang, Qingyong Hu, Yulan Guo, Jun Yang: HPGCNN.
SAFNet-segpermissive0.654 670.752 630.734 740.664 880.583 780.815 650.399 880.754 620.639 340.535 680.942 780.470 610.309 310.665 420.539 900.650 680.708 780.635 410.857 840.793 740.642 56
Linqing Zhao, Jiwen Lu, Jie Zhou: Similarity-Aware Fusion Network for 3D Semantic Segmentation. IROS 2021
RandLA-Netpermissive0.645 680.778 490.731 750.699 750.577 790.829 470.446 690.736 680.477 930.523 750.945 680.454 680.269 570.484 930.749 610.618 810.738 650.599 570.827 900.792 770.621 63
PointConv-SFPN0.641 690.776 510.703 810.721 690.557 860.826 500.451 640.672 860.563 710.483 840.943 770.425 840.162 1010.644 470.726 630.659 660.709 770.572 680.875 680.786 820.559 87
MVPNetpermissive0.641 690.831 310.715 770.671 850.590 740.781 840.394 900.679 830.642 320.553 610.937 850.462 640.256 630.649 450.406 1030.626 790.691 850.666 320.877 660.792 770.608 67
Maximilian Jaritz, Jiayuan Gu, Hao Su: Multi-view PointNet for 3D Scene Understanding. GMDL Workshop, ICCV 2019
PointMRNet0.640 710.717 820.701 830.692 780.576 800.801 740.467 600.716 730.563 710.459 910.953 440.429 800.169 980.581 640.854 350.605 840.710 750.550 820.894 530.793 740.575 79
FPConvpermissive0.639 720.785 460.760 570.713 730.603 690.798 760.392 910.534 1050.603 510.524 730.948 600.457 660.250 650.538 790.723 660.598 880.696 830.614 500.872 730.799 670.567 84
Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang Liu, Shuguang Cui, Xiaoguang Han: FPConv: Learning Local Flattening for Point Convolution. CVPR 2020
PD-Net0.638 730.797 420.769 530.641 960.590 740.820 580.461 620.537 1040.637 350.536 670.947 620.388 940.206 810.656 430.668 780.647 720.732 700.585 660.868 780.793 740.473 107
PointSPNet0.637 740.734 710.692 900.714 720.576 800.797 770.446 690.743 660.598 540.437 960.942 780.403 900.150 1050.626 530.800 540.649 690.697 820.557 780.846 870.777 860.563 85
SConv0.636 750.830 320.697 860.752 640.572 820.780 860.445 710.716 730.529 770.530 690.951 500.446 750.170 970.507 880.666 790.636 770.682 880.541 880.886 580.799 670.594 75
Supervoxel-CNN0.635 760.656 930.711 780.719 700.613 670.757 950.444 740.765 580.534 760.566 580.928 970.478 580.272 530.636 480.531 920.664 630.645 980.508 960.864 800.792 770.611 64
joint point-basedpermissive0.634 770.614 1010.778 460.667 870.633 640.825 510.420 820.804 480.467 960.561 590.951 500.494 500.291 400.566 690.458 980.579 950.764 510.559 770.838 880.814 600.598 73
Hung-Yueh Chiang, Yen-Liang Lin, Yueh-Cheng Liu, Winston H. Hsu: A Unified Point-Based Framework for 3D Segmentation. 3DV 2019
PointMTL0.632 780.731 730.688 930.675 820.591 730.784 830.444 740.565 1010.610 450.492 820.949 580.456 670.254 640.587 610.706 700.599 870.665 940.612 530.868 780.791 800.579 78
APCF-Net0.631 790.742 680.687 950.672 830.557 860.792 810.408 840.665 870.545 740.508 780.952 480.428 810.186 910.634 500.702 720.620 800.706 790.555 790.873 710.798 690.581 77
Haojia, Lin: Adaptive Pyramid Context Fusion for Point Cloud Perception. GRSL
3DSM_DMMF0.631 790.626 980.745 680.801 460.607 680.751 960.506 380.729 710.565 690.491 830.866 1130.434 760.197 880.595 590.630 830.709 450.705 800.560 750.875 680.740 980.491 102
PointNet2-SFPN0.631 790.771 550.692 900.672 830.524 910.837 380.440 760.706 780.538 750.446 930.944 740.421 860.219 760.552 750.751 600.591 910.737 660.543 870.901 480.768 900.557 88
FusionAwareConv0.630 820.604 1030.741 720.766 600.590 740.747 970.501 410.734 690.503 860.527 710.919 1030.454 680.323 250.550 770.420 1020.678 580.688 860.544 850.896 510.795 710.627 62
Jiazhao Zhang, Chenyang Zhu, Lintao Zheng, Kai Xu: Fusion-Aware Point Convolution for Online Semantic 3D Scene Segmentation. CVPR 2020
DenSeR0.628 830.800 410.625 1050.719 700.545 880.806 710.445 710.597 950.448 1010.519 760.938 840.481 560.328 230.489 920.499 970.657 670.759 560.592 610.881 620.797 700.634 59
SegGroup_sempermissive0.627 840.818 360.747 670.701 740.602 700.764 920.385 950.629 920.490 890.508 780.931 960.409 890.201 850.564 700.725 640.618 810.692 840.539 890.873 710.794 720.548 91
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
SIConv0.625 850.830 320.694 880.757 620.563 840.772 900.448 680.647 900.520 800.509 770.949 580.431 790.191 890.496 900.614 850.647 720.672 920.535 910.876 670.783 830.571 80
dtc_net0.625 850.703 860.751 640.794 490.535 890.848 270.480 530.676 850.528 780.469 880.944 740.454 680.004 1180.464 950.636 820.704 480.758 570.548 840.924 310.787 810.492 101
HPEIN0.618 870.729 750.668 960.647 930.597 720.766 910.414 830.680 820.520 800.525 720.946 650.432 770.215 780.493 910.599 860.638 760.617 1030.570 690.897 500.806 640.605 70
Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-Wing Fu, Jiaya Jia: Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation. ICCV 2019
SPH3D-GCNpermissive0.610 880.858 250.772 490.489 1110.532 900.792 810.404 870.643 910.570 680.507 800.935 880.414 880.046 1150.510 860.702 720.602 860.705 800.549 830.859 820.773 880.534 94
Huan Lei, Naveed Akhtar, and Ajmal Mian: Spherical Kernel for Efficient Graph Convolution on 3D Point Clouds. TPAMI 2020
AttAN0.609 890.760 600.667 970.649 920.521 920.793 790.457 630.648 890.528 780.434 980.947 620.401 910.153 1040.454 960.721 670.648 710.717 740.536 900.904 430.765 910.485 103
Gege Zhang, Qinghua Ma, Licheng Jiao, Fang Liu and Qigong Sun: AttAN: Attention Adversarial Networks for 3D Point Cloud Semantic Segmentation. IJCAI2020
Weakly-Openseg v30.604 900.901 140.762 550.627 980.478 980.820 580.346 1010.689 810.353 1110.528 700.933 930.217 1160.172 950.530 810.725 640.593 900.737 660.515 930.858 830.772 890.515 97
wsss-transformer0.600 910.634 970.743 700.697 770.601 710.781 840.437 780.585 980.493 880.446 930.933 930.394 920.011 1170.654 440.661 810.603 850.733 690.526 920.832 890.761 930.480 104
LAP-D0.594 920.720 800.692 900.637 970.456 1020.773 890.391 930.730 700.587 580.445 950.940 820.381 950.288 410.434 990.453 1000.591 910.649 960.581 670.777 970.749 970.610 66
DPC0.592 930.720 800.700 840.602 1020.480 970.762 940.380 960.713 760.585 610.437 960.940 820.369 970.288 410.434 990.509 960.590 930.639 1010.567 730.772 980.755 950.592 76
Francis Engelmann, Theodora Kontogianni, Bastian Leibe: Dilated Point Convolutions: On the Receptive Field Size of Point Convolutions on 3D Point Clouds. ICRA 2020
CCRFNet0.589 940.766 590.659 1000.683 800.470 1010.740 990.387 940.620 940.490 890.476 860.922 1010.355 1000.245 680.511 850.511 950.571 960.643 990.493 1000.872 730.762 920.600 72
ROSMRF0.580 950.772 540.707 800.681 810.563 840.764 920.362 980.515 1060.465 970.465 900.936 870.427 830.207 800.438 970.577 880.536 990.675 910.486 1010.723 1040.779 840.524 96
SD-DETR0.576 960.746 650.609 1090.445 1150.517 930.643 1100.366 970.714 750.456 990.468 890.870 1120.432 770.264 600.558 730.674 760.586 940.688 860.482 1020.739 1020.733 1000.537 93
SQN_0.1%0.569 970.676 900.696 870.657 890.497 940.779 870.424 800.548 1020.515 820.376 1030.902 1100.422 850.357 90.379 1040.456 990.596 890.659 950.544 850.685 1070.665 1110.556 89
TextureNetpermissive0.566 980.672 920.664 980.671 850.494 950.719 1000.445 710.678 840.411 1070.396 1010.935 880.356 990.225 730.412 1010.535 910.565 970.636 1020.464 1040.794 960.680 1080.568 83
Jingwei Huang, Haotian Zhang, Li Yi, Thomas Funkerhouser, Matthias Niessner, Leonidas Guibas: TextureNet: Consistent Local Parametrizations for Learning from High-Resolution Signals on Meshes. CVPR
DVVNet0.562 990.648 940.700 840.770 570.586 770.687 1040.333 1030.650 880.514 830.475 870.906 1070.359 980.223 750.340 1060.442 1010.422 1100.668 930.501 970.708 1050.779 840.534 94
Pointnet++ & Featurepermissive0.557 1000.735 700.661 990.686 790.491 960.744 980.392 910.539 1030.451 1000.375 1040.946 650.376 960.205 820.403 1020.356 1060.553 980.643 990.497 980.824 920.756 940.515 97
GMLPs0.538 1010.495 1110.693 890.647 930.471 1000.793 790.300 1060.477 1070.505 850.358 1050.903 1090.327 1030.081 1120.472 940.529 930.448 1080.710 750.509 940.746 1000.737 990.554 90
PanopticFusion-label0.529 1020.491 1120.688 930.604 1010.386 1070.632 1110.225 1170.705 790.434 1040.293 1110.815 1150.348 1010.241 690.499 890.669 770.507 1010.649 960.442 1100.796 950.602 1150.561 86
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
subcloud_weak0.516 1030.676 900.591 1120.609 990.442 1030.774 880.335 1020.597 950.422 1060.357 1060.932 950.341 1020.094 1110.298 1080.528 940.473 1060.676 900.495 990.602 1130.721 1030.349 115
Online SegFusion0.515 1040.607 1020.644 1030.579 1040.434 1040.630 1120.353 990.628 930.440 1020.410 990.762 1180.307 1050.167 990.520 830.403 1040.516 1000.565 1060.447 1080.678 1080.701 1050.514 99
Davide Menini, Suryansh Kumar, Martin R. Oswald, Erik Sandstroem, Cristian Sminchisescu, Luc van Gool: A Real-Time Learning Framework for Joint 3D Reconstruction and Semantic Segmentation. Robotics and Automation Letters Submission
3DMV, FTSDF0.501 1050.558 1070.608 1100.424 1170.478 980.690 1030.246 1130.586 970.468 950.450 920.911 1050.394 920.160 1020.438 970.212 1130.432 1090.541 1110.475 1030.742 1010.727 1010.477 105
PCNN0.498 1060.559 1060.644 1030.560 1060.420 1060.711 1020.229 1150.414 1080.436 1030.352 1070.941 800.324 1040.155 1030.238 1130.387 1050.493 1020.529 1120.509 940.813 940.751 960.504 100
3DMV0.484 1070.484 1130.538 1150.643 950.424 1050.606 1150.310 1040.574 990.433 1050.378 1020.796 1160.301 1060.214 790.537 800.208 1140.472 1070.507 1150.413 1130.693 1060.602 1150.539 92
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
PointCNN with RGBpermissive0.458 1080.577 1050.611 1080.356 1190.321 1150.715 1010.299 1080.376 1120.328 1150.319 1090.944 740.285 1080.164 1000.216 1160.229 1110.484 1040.545 1100.456 1060.755 990.709 1040.475 106
Yangyan Li, Rui Bu, Mingchao Sun, Baoquan Chen: PointCNN. NeurIPS 2018
FCPNpermissive0.447 1090.679 890.604 1110.578 1050.380 1080.682 1050.291 1090.106 1190.483 920.258 1170.920 1020.258 1120.025 1160.231 1150.325 1070.480 1050.560 1080.463 1050.725 1030.666 1100.231 119
Dario Rethage, Johanna Wald, Jürgen Sturm, Nassir Navab, Federico Tombari: Fully-Convolutional Point Networks for Large-Scale Point Clouds. ECCV 2018
DGCNN_reproducecopyleft0.446 1100.474 1140.623 1060.463 1130.366 1100.651 1080.310 1040.389 1110.349 1130.330 1080.937 850.271 1100.126 1080.285 1090.224 1120.350 1150.577 1050.445 1090.625 1110.723 1020.394 111
Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, Justin M. Solomon: Dynamic Graph CNN for Learning on Point Clouds. TOG 2019
PNET20.442 1110.548 1080.548 1140.597 1030.363 1110.628 1130.300 1060.292 1140.374 1090.307 1100.881 1110.268 1110.186 910.238 1130.204 1150.407 1110.506 1160.449 1070.667 1090.620 1140.462 109
SurfaceConvPF0.442 1110.505 1100.622 1070.380 1180.342 1130.654 1070.227 1160.397 1100.367 1100.276 1130.924 990.240 1130.198 870.359 1050.262 1090.366 1120.581 1040.435 1110.640 1100.668 1090.398 110
Hao Pan, Shilin Liu, Yang Liu, Xin Tong: Convolutional Neural Networks on 3D Surfaces Using Parallel Frames.
Tangent Convolutionspermissive0.438 1130.437 1160.646 1020.474 1120.369 1090.645 1090.353 990.258 1160.282 1180.279 1120.918 1040.298 1070.147 1070.283 1100.294 1080.487 1030.562 1070.427 1120.619 1120.633 1130.352 114
Maxim Tatarchenko, Jaesik Park, Vladlen Koltun, Qian-Yi Zhou: Tangent convolutions for dense prediction in 3d. CVPR 2018
3DWSSS0.425 1140.525 1090.647 1010.522 1070.324 1140.488 1190.077 1200.712 770.353 1110.401 1000.636 1200.281 1090.176 940.340 1060.565 890.175 1190.551 1090.398 1140.370 1200.602 1150.361 113
SPLAT Netcopyleft0.393 1150.472 1150.511 1160.606 1000.311 1160.656 1060.245 1140.405 1090.328 1150.197 1180.927 980.227 1150.000 1200.001 1210.249 1100.271 1180.510 1130.383 1160.593 1140.699 1060.267 117
Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang, Jan Kautz: SPLATNet: Sparse Lattice Networks for Point Cloud Processing. CVPR 2018
ScanNet+FTSDF0.383 1160.297 1180.491 1170.432 1160.358 1120.612 1140.274 1110.116 1180.411 1070.265 1140.904 1080.229 1140.079 1130.250 1110.185 1160.320 1160.510 1130.385 1150.548 1150.597 1180.394 111
PointNet++permissive0.339 1170.584 1040.478 1180.458 1140.256 1180.360 1200.250 1120.247 1170.278 1190.261 1160.677 1190.183 1170.117 1090.212 1170.145 1180.364 1130.346 1200.232 1200.548 1150.523 1190.252 118
Charles R. Qi, Li Yi, Hao Su, Leonidas J. Guibas: pointnet++: deep hierarchical feature learning on point sets in a metric space.
GrowSP++0.323 1180.114 1200.589 1130.499 1090.147 1200.555 1160.290 1100.336 1130.290 1170.262 1150.865 1140.102 1200.000 1200.037 1190.000 1210.000 1210.462 1170.381 1170.389 1190.664 1120.473 107
SSC-UNetpermissive0.308 1190.353 1170.290 1200.278 1200.166 1190.553 1170.169 1190.286 1150.147 1200.148 1200.908 1060.182 1180.064 1140.023 1200.018 1200.354 1140.363 1180.345 1180.546 1170.685 1070.278 116
ScanNetpermissive0.306 1200.203 1190.366 1190.501 1080.311 1160.524 1180.211 1180.002 1210.342 1140.189 1190.786 1170.145 1190.102 1100.245 1120.152 1170.318 1170.348 1190.300 1190.460 1180.437 1200.182 120
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17
ERROR0.054 1210.000 1210.041 1210.172 1210.030 1210.062 1210.001 1210.035 1200.004 1210.051 1210.143 1210.019 1210.003 1190.041 1180.050 1190.003 1200.054 1210.018 1210.005 1210.264 1210.082 121


This table lists the benchmark results for the 3D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
PointRel0.622 10.926 80.710 30.541 100.502 20.772 60.314 40.598 110.425 80.504 90.565 10.650 60.716 20.809 70.476 110.747 40.618 10.963 30.364 19
: Relation3D (PointRel): Enhancing Relation Modeling for Point Cloud Instance Segmentation.
Competitor-MAFT0.618 20.866 150.724 10.628 10.484 30.803 10.300 70.509 320.496 10.539 10.547 50.703 10.668 80.708 300.463 160.708 160.595 30.959 50.418 7
SIM3D0.617 30.952 40.629 160.539 110.426 150.768 100.302 60.681 20.425 90.473 150.511 150.701 20.717 10.821 60.467 140.774 10.559 140.914 170.448 2
Spherical Mask(CtoF)0.616 40.946 50.654 120.555 60.434 120.769 90.271 110.604 80.447 50.505 70.549 20.698 30.716 20.775 150.480 80.747 50.575 100.925 130.436 4
EV3D0.615 50.946 50.652 130.555 60.433 130.773 50.271 120.604 80.447 50.506 60.544 60.698 30.716 20.775 150.480 80.747 50.572 120.925 130.435 5
ExtMask3D0.598 60.852 160.692 70.433 300.461 70.791 30.264 130.488 350.493 20.508 50.528 140.594 120.706 60.791 90.483 60.734 90.595 40.911 190.437 3
MAFT0.596 70.889 130.721 20.448 230.460 80.768 110.251 150.558 210.408 100.504 80.539 80.616 100.618 110.858 30.482 70.684 190.551 170.931 120.450 1
UniPerception0.588 80.963 30.667 100.493 150.472 60.750 140.229 180.528 270.468 40.498 120.542 70.643 70.530 200.661 370.463 150.695 180.599 20.972 10.420 6
MG-Former0.587 90.852 160.639 150.454 220.393 200.758 130.338 20.572 160.480 30.527 30.491 210.671 50.527 210.867 10.485 50.601 300.590 70.938 110.390 11
InsSSM0.586 101.000 10.593 200.440 260.480 40.771 70.345 10.437 390.444 70.495 130.548 40.579 150.621 100.720 270.409 220.712 110.593 50.960 40.395 9
Lei Yao, Yi Wang, Moyun Liu, Lap-Pui Chau: SGIFormer: Semantic-guided and Geometric-enhanced Interleaving Transformer for 3D Instance Segmentation. TCSVT, 2024
Queryformer0.583 110.926 80.702 50.393 360.504 10.733 200.276 100.527 280.373 160.479 140.534 100.533 220.697 70.720 280.436 200.745 70.592 60.958 60.363 20
KmaxOneFormerNetpermissive0.581 120.745 270.692 80.551 80.458 90.798 20.264 140.531 260.369 180.513 40.531 130.632 80.494 240.798 80.567 20.648 230.558 160.950 80.362 21
Competitor-SPFormer0.580 130.721 330.705 40.593 40.444 110.786 40.286 80.564 190.376 150.498 110.534 110.546 200.390 430.785 110.577 10.708 150.579 90.954 70.388 12
PBNetpermissive0.573 140.926 80.575 250.619 20.472 50.736 180.239 170.487 360.383 140.459 180.506 180.533 210.585 130.767 170.404 230.717 100.559 150.969 20.381 15
W.Zhao, Y.Yan, C.Yang, J.Ye,X.Yang,K.Huang: Divide and Conquer: 3D Instance Segmentation With Point-Wise Binarization. ICCV 2023
TST3D0.569 150.778 240.675 90.598 30.451 100.727 210.280 90.476 380.395 110.472 160.457 270.583 130.580 150.777 120.462 180.735 80.547 190.919 160.333 27
Duc Tran Dang Trung, Byeongkeun Kang, Yeejin Lee: MSTA3D: Multi-scale Twin-attention for 3D Instance Segmentation. ACM Multimedia 2024
Mask3D0.566 160.926 80.597 190.408 330.420 170.737 170.239 160.598 110.386 130.458 190.549 20.568 180.716 20.601 430.480 80.646 240.575 100.922 150.364 18
Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, Bastian Leibe: Mask3D for 3D Semantic Instance Segmentation. ICRA 2023
OneFormer3Dcopyleft0.566 160.781 230.697 60.562 50.431 140.770 80.331 30.400 450.373 170.529 20.504 190.568 170.475 270.732 250.470 120.762 20.550 180.871 340.379 16
Maxim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: OneFormer3D: One Transformer for Unified Point Cloud Segmentation.
ISBNetpermissive0.559 180.939 70.655 110.383 390.426 160.763 120.180 200.534 250.386 120.499 100.509 170.621 90.427 370.704 320.467 130.649 220.571 130.948 90.401 8
Tuan Duc Ngo, Binh-Son Hua, Khoi Nguyen: ISBNet: a 3D Point Cloud Instance Segmentation Network with Instance-aware Sampling and Box-aware Dynamic Convolution. CVPR 2023
GraphCut0.552 191.000 10.611 180.438 270.392 210.714 220.139 230.598 130.327 210.389 220.510 160.598 110.427 380.754 200.463 170.761 30.588 80.903 220.329 28
SPFormerpermissive0.549 200.745 270.640 140.484 160.395 190.739 160.311 50.566 180.335 200.468 170.492 200.555 190.478 260.747 220.436 190.712 120.540 200.893 260.343 26
Sun Jiahao, Qing Chunmei, Tan Junpeng, Xu Xiangmin: Superpoint Transformer for 3D Scene Instance Segmentation. AAAI 2023 [Oral]
DKNet0.532 210.815 200.624 170.517 120.377 230.749 150.107 250.509 310.304 230.437 200.475 220.581 140.539 180.775 140.339 280.640 260.506 230.901 230.385 14
Yizheng Wu, Min Shi, Shuaiyuan Du, Hao Lu, Zhiguo Cao, Weicai Zhong: 3D Instances as 1D Kernels. ECCV 2022
IPCA-Inst0.520 220.889 130.551 290.548 90.418 180.665 320.064 340.585 140.260 310.277 360.471 240.500 230.644 90.785 100.369 240.591 330.511 210.878 310.362 22
SoftGroup++0.513 230.704 350.578 240.398 350.363 290.704 230.061 350.647 50.297 280.378 250.537 90.343 260.614 120.828 50.295 330.710 140.505 250.875 330.394 10
SSTNetpermissive0.506 240.738 310.549 300.497 140.316 340.693 260.178 210.377 480.198 370.330 270.463 260.576 160.515 220.857 40.494 30.637 270.457 290.943 100.290 37
Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui Jia: Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks. ICCV2021
SoftGrouppermissive0.504 250.667 420.579 220.372 410.381 220.694 250.072 310.677 30.303 240.387 230.531 120.319 300.582 140.754 190.318 290.643 250.492 260.907 210.388 13
Thang Vu, Kookhoi Kim, Tung M. Luu, Xuan Thanh Nguyen, Chang D. Yoo: SoftGroup for 3D Instance Segmentaiton on Point Clouds. CVPR 2022 [Oral]
DANCENET0.504 250.926 80.579 210.472 180.367 260.626 420.165 220.432 400.221 330.408 210.449 290.411 240.564 160.746 230.421 210.707 170.438 320.846 420.288 38
TD3Dpermissive0.489 270.852 160.511 390.434 280.322 330.735 190.101 280.512 300.355 190.349 260.468 250.283 340.514 230.676 360.268 380.671 200.510 220.908 200.329 29
Maksim Kolodiazhnyi, Anna Vorontsova, Anton Konushin, Danila Rukhovich: Top-Down Beats Bottom-Up in 3D Instance Segmentation. WACV 2024
OccuSeg+instance0.486 280.802 220.536 320.428 310.369 250.702 240.205 190.331 530.301 250.379 240.474 230.327 270.437 320.862 20.485 40.601 310.394 400.846 440.273 41
Lei Han, Tian Zheng, Lan Xu, Lu Fang: OccuSeg: Occupancy-aware 3D Instance Segmentation. CVPR2020
TopoSeg0.479 290.704 350.564 260.467 200.366 270.633 400.068 320.554 220.262 300.328 280.447 300.323 280.534 190.722 260.288 350.614 280.482 270.912 180.358 24
DualGroup0.469 300.815 200.552 280.398 340.374 240.683 280.130 240.539 240.310 220.327 290.407 330.276 350.447 310.535 470.342 270.659 210.455 300.900 250.301 33
SSEC0.465 310.667 420.578 230.502 130.362 300.641 390.035 440.605 70.291 290.323 300.451 280.296 320.417 410.677 350.245 420.501 510.506 240.900 240.366 17
HAISpermissive0.457 320.704 350.561 270.457 210.364 280.673 290.046 430.547 230.194 380.308 310.426 310.288 330.454 300.711 290.262 390.563 410.434 340.889 280.344 25
Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang: Hierarchical Aggregation for 3D Instance Segmentation. ICCV 2021
DD-UNet+Group0.436 330.630 500.508 420.480 170.310 360.624 440.065 330.638 60.174 390.256 400.384 370.194 470.428 350.759 180.289 340.574 380.400 380.849 410.291 36
H. Liu, R. Liu, K. Yang, J. Zhang, K. Peng, R. Stiefelhagen: HIDA: Towards Holistic Indoor Understanding for the Visually Impaired via Semantic Instance Segmentation with a Wearable Solid-State LiDAR Sensor. ICCVW 2021
INS-Conv-instance0.435 340.716 340.495 440.355 430.331 310.689 270.102 270.394 470.208 360.280 340.395 350.250 380.544 170.741 240.309 310.536 470.391 410.842 470.258 45
Mask-Group0.434 350.778 240.516 370.471 190.330 320.658 330.029 460.526 290.249 320.256 390.400 340.309 310.384 460.296 630.368 250.575 370.425 350.877 320.362 23
Min Zhong, Xinghao Chen, Xiaokang Chen, Gang Zeng, Yunhe Wang: MaskGroup: Hierarchical Point Grouping and Masking for 3D Instance Segmentation. ICME 2022
Box2Mask0.433 360.741 290.463 490.433 290.283 390.625 430.103 260.298 580.125 480.260 380.424 320.322 290.472 280.701 330.363 260.711 130.309 570.882 290.272 43
Julian Chibane, Francis Engelmann, Tuan Anh Tran, Gerard Pons-Moll: Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation Using Bounding Boxes. ECCV 2022
RPGN0.428 370.630 500.508 410.367 420.249 460.658 340.016 540.673 40.131 460.234 430.383 380.270 360.434 330.748 210.274 370.609 290.406 370.842 460.267 44
Shichao Dong, Guosheng Lin, Tzu-Yi Hung: Learning Regional Purity for Instance Segmentation on 3D Point Clouds. ECCV 2022
DENet0.413 380.741 290.520 340.237 540.284 380.523 530.097 290.691 10.138 430.209 530.229 550.238 410.390 440.707 310.310 300.448 580.470 280.892 270.310 31
PointGroup0.407 390.639 490.496 430.415 320.243 480.645 380.021 510.570 170.114 490.211 510.359 400.217 450.428 360.660 380.256 400.562 420.341 490.860 370.291 35
Li Jiang, Hengshuang Zhao, Shaoshuai Shi, Shu Liu, Chi-Wing Fu, Jiaya Jia: PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation. CVPR 2020 [oral]
CSC-Pretrained0.405 400.738 310.465 480.331 470.205 520.655 350.051 390.601 100.092 530.211 520.329 430.198 460.459 290.775 130.195 490.524 490.400 390.878 300.184 54
PE0.396 410.667 420.467 470.446 250.243 470.624 450.022 500.577 150.106 500.219 460.340 410.239 400.487 250.475 540.225 440.541 460.350 470.818 490.273 42
Biao Zhang, Peter Wonka: Point Cloud Instance Segmentation using Probabilistic Embeddings. CVPR 2021
Dyco3Dcopyleft0.395 420.642 480.518 360.447 240.259 450.666 310.050 400.251 630.166 400.231 440.362 390.232 420.331 490.535 460.229 430.587 340.438 330.850 390.317 30
Tong He; Chunhua Shen; Anton van den Hengel: DyCo3D: Robust Instance Segmentation of 3D Point Clouds through Dynamic Convolution. CVPR2021
OSIS0.392 430.778 240.530 330.220 560.278 400.567 500.083 300.330 540.299 260.270 370.310 460.143 530.260 530.624 410.277 360.568 400.361 450.865 360.301 32
AOIA0.387 440.704 350.515 380.385 380.225 510.669 300.005 610.482 370.126 470.181 560.269 520.221 440.426 390.478 530.218 450.592 320.371 430.851 380.242 47
SSEN0.384 450.852 160.494 450.192 570.226 500.648 370.022 490.398 460.299 270.277 350.317 450.231 430.194 600.514 500.196 470.586 350.444 310.843 450.184 53
Dongsu Zhang, Junha Chun, Sang Kyun Cha, Young Min Kim: Spatial Semantic Embedding Network: Fast 3D Instance Segmentation with Deep Metric Learning. Arxiv
Mask3D_evaluation0.382 460.593 520.520 350.390 370.314 350.600 460.018 530.287 610.151 420.281 330.387 360.169 510.429 340.654 390.172 530.578 360.384 420.670 600.278 40
PCJC0.375 470.704 350.542 310.284 510.197 540.649 360.006 580.426 410.138 440.242 410.304 470.183 500.388 450.629 400.141 600.546 450.344 480.738 550.283 39
ClickSeg_Instance0.366 480.654 460.375 530.184 580.302 370.592 480.050 410.300 570.093 520.283 320.277 490.249 390.426 400.615 420.299 320.504 500.367 440.832 480.191 52
SphereSeg0.357 490.651 470.411 510.345 440.264 440.630 410.059 360.289 600.212 340.240 420.336 420.158 520.305 500.557 440.159 560.455 570.341 500.726 570.294 34
3D-MPA0.355 500.457 620.484 460.299 490.277 410.591 490.047 420.332 510.212 350.217 470.278 480.193 480.413 420.410 570.195 480.574 390.352 460.849 400.213 50
Francis Engelmann, Martin Bokeloh, Alireza Fathi, Bastian Leibe, Matthias Nießner: 3D-MPA: Multi Proposal Aggregation for 3D Semantic Instance Segmentation. CVPR 2020
NeuralBF0.353 510.593 520.511 400.375 400.264 430.597 470.008 560.332 520.160 410.229 450.274 510.000 740.206 570.678 340.155 570.485 530.422 360.816 500.254 46
Weiwei Sun, Daniel Rebain, Renjie Liao, Vladimir Tankovich, Soroosh Yazdani, Kwang Moo Yi, Andrea Tagliasacchi: NeuralBF: Neural Bilateral Filtering for Top-down Instance Segmentation on Point Clouds. WACV 2023
RWSeg0.348 520.475 590.456 500.320 480.275 420.476 550.020 520.491 340.056 600.212 500.320 440.261 370.302 510.520 480.182 510.557 430.285 590.867 350.197 51
GICN0.341 530.580 540.371 540.344 450.198 530.469 560.052 380.564 200.093 510.212 490.212 570.127 550.347 480.537 450.206 460.525 480.329 520.729 560.241 48
One_Thing_One_Clickpermissive0.326 540.472 600.361 550.232 550.183 550.555 510.000 670.498 330.038 620.195 540.226 560.362 250.168 610.469 550.251 410.553 440.335 510.846 430.117 62
Zhengzhe Liu, Xiaojuan Qi, Chi-Wing Fu: One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. CVPR 2021
Occipital-SCS0.320 550.679 410.352 560.334 460.229 490.436 570.025 470.412 440.058 580.161 610.240 540.085 570.262 520.496 520.187 500.467 550.328 530.775 510.231 49
Sparse R-CNN0.292 560.704 350.213 660.153 600.154 570.551 520.053 370.212 640.132 450.174 580.274 500.070 590.363 470.441 560.176 520.424 600.234 610.758 530.161 58
MTML0.282 570.577 550.380 520.182 590.107 630.430 580.001 640.422 420.057 590.179 570.162 600.070 600.229 550.511 510.161 540.491 520.313 540.650 630.162 56
Jean Lahoud, Bernard Ghanem, Marc Pollefeys, Martin R. Oswald: 3D Instance Segmentation via Multi-task Metric Learning. ICCV 2019 [oral]
SALoss-ResNet0.262 580.667 420.335 570.067 670.123 610.427 590.022 480.280 620.058 570.216 480.211 580.039 630.142 630.519 490.106 640.338 640.310 560.721 580.138 59
Zhidong Liang, Ming Yang, Hao Li, Chunxiang Wang: 3D Instance Embedding Learning With a Structure-Aware Loss Function for Point Cloud Segmentation. IEEE Robotics and Automation Letters (IROS2020)
MASCpermissive0.254 590.463 610.249 650.113 610.167 560.412 610.000 660.374 490.073 540.173 590.243 530.130 540.228 560.368 590.160 550.356 620.208 620.711 590.136 60
Chen Liu, Yasutaka Furukawa: MASC: Multi-scale Affinity with Sparse Convolution for 3D Instance Segmentation.
3D-BoNet0.253 600.519 570.324 600.251 530.137 600.345 660.031 450.419 430.069 550.162 600.131 620.052 610.202 590.338 610.147 590.301 670.303 580.651 620.178 55
Bo Yang, Jianan Wang, Ronald Clark, Qingyong Hu, Sen Wang, Andrew Markham, Niki Trigoni: Learning Object Bounding Boxes for 3D Instance Segmentation on Point Clouds. NeurIPS 2019 Spotlight
SPG_WSIS0.251 610.380 640.274 630.289 500.144 580.413 600.000 670.311 550.065 560.113 630.130 630.029 660.204 580.388 580.108 630.459 560.311 550.769 520.127 61
SegGroup_inspermissive0.246 620.556 560.335 580.062 690.115 620.490 540.000 670.297 590.018 660.186 550.142 610.083 580.233 540.216 650.153 580.469 540.251 600.744 540.083 65
An Tao, Yueqi Duan, Yi Wei, Jiwen Lu, Jie Zhou: SegGroup: Seg-Level Supervision for 3D Instance and Semantic Segmentation. TIP 2022
PanopticFusion-inst0.214 630.250 690.330 590.275 520.103 640.228 720.000 670.345 500.024 640.088 650.203 590.186 490.167 620.367 600.125 610.221 700.112 720.666 610.162 57
Gaku Narita, Takashi Seno, Tomoya Ishikawa, Yohsuke Kaji: PanopticFusion: Online Volumetric Semantic Mapping at the Level of Stuff and Things. IROS 2019 (to appear)
UNet-backbone0.161 640.519 570.259 640.084 630.059 660.325 680.002 620.093 690.009 680.077 670.064 660.045 620.044 700.161 670.045 660.331 650.180 640.566 640.033 74
3D-SISpermissive0.161 640.407 630.155 710.068 660.043 700.346 650.001 630.134 660.005 690.088 640.106 650.037 640.135 650.321 620.028 700.339 630.116 710.466 670.093 64
Ji Hou, Angela Dai, Matthias Niessner: 3D-SIS: 3D Semantic Instance Segmentation of RGB-D Scans. CVPR 2019
R-PointNet0.158 660.356 650.173 690.113 620.140 590.359 620.012 550.023 720.039 610.134 620.123 640.008 700.089 660.149 680.117 620.221 690.128 690.563 650.094 63
Region-18class0.146 670.175 730.321 610.080 640.062 650.357 630.000 670.307 560.002 710.066 680.044 680.000 740.018 720.036 730.054 650.447 590.133 670.472 660.060 69
SemRegionNet-20cls0.121 680.296 670.203 670.071 650.058 670.349 640.000 670.150 650.019 650.054 700.034 710.017 690.052 680.042 720.013 730.209 710.183 630.371 680.057 70
3D-BEVIS0.117 690.250 690.308 620.020 730.009 750.269 710.006 590.008 730.029 630.037 730.014 740.003 720.036 710.147 690.042 680.381 610.118 700.362 690.069 68
Cathrin Elich, Francis Engelmann, Jonas Schult, Theodora Kontogianni, Bastian Leibe: 3D-BEVIS: Birds-Eye-View Instance Segmentation.
Hier3Dcopyleft0.117 690.222 710.161 700.054 710.027 720.289 690.000 670.124 670.001 730.079 660.061 670.027 670.141 640.240 640.005 740.310 660.129 680.153 740.081 66
Tan: HCFS3D: Hierarchical Coupled Feature Selection Network for 3D Semantic and Instance Segmentation.
tmp0.113 710.333 660.151 720.056 700.053 680.344 670.000 670.105 680.016 670.049 710.035 700.020 680.053 670.048 710.013 720.183 730.173 650.344 710.054 71
Sem_Recon_ins0.098 720.295 680.187 680.015 740.036 710.213 730.005 600.038 710.003 700.056 690.037 690.036 650.015 730.051 700.044 670.209 720.098 730.354 700.071 67
ASIS0.085 730.037 740.080 740.066 680.047 690.282 700.000 670.052 700.002 720.047 720.026 720.001 730.046 690.194 660.031 690.264 680.140 660.167 730.047 73
Sgpn_scannet0.049 740.023 750.134 730.031 720.013 740.144 740.006 570.008 740.000 740.028 740.017 730.003 710.009 750.000 740.021 710.122 740.095 740.175 720.054 72
MaskRCNN 2d->3d Proj0.022 750.185 720.000 750.000 750.015 730.000 750.000 650.006 750.000 740.010 750.006 750.107 560.012 740.000 740.002 750.027 750.004 750.022 750.001 75


This table lists the benchmark results for the 2D semantic label scenario.


Method Infoavg ioubathtubbedbookshelfcabinetchaircountercurtaindeskdoorfloorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwallwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
Virtual MVFusion (R)0.745 10.861 10.839 10.881 10.672 20.512 10.422 170.898 10.723 10.714 10.954 20.454 10.509 10.773 10.895 10.756 10.820 10.653 10.935 10.891 10.728 1
Abhijit Kundu, Xiaoqi Yin, Alireza Fathi, David Ross, Brian Brewington, Thomas Funkhouser, Caroline Pantofaru: Virtual Multi-view Fusion for 3D Semantic Segmentation. ECCV 2020
BPNet_2Dcopyleft0.670 20.822 30.795 30.836 20.659 30.481 20.451 130.769 40.656 30.567 40.931 30.395 60.390 50.700 40.534 40.689 100.770 20.574 30.865 90.831 30.675 5
Wenbo Hu, Hengshuang Zhao, Li Jiang, Jiaya Jia and Tien-Tsin Wong: Bidirectional Projection Network for Cross Dimension Scene Understanding. CVPR 2021 (Oral)
MVF-GNN(2D)0.636 30.606 140.794 40.434 160.688 10.337 80.464 120.798 30.632 50.589 30.908 80.420 20.329 120.743 20.594 20.738 20.676 50.527 40.906 20.818 60.715 3
CU-Hybrid-2D Net0.636 30.825 20.820 20.179 230.648 40.463 30.549 20.742 70.676 20.628 20.961 10.420 20.379 60.684 80.381 180.732 30.723 30.599 20.827 160.851 20.634 7
CMX0.613 50.681 80.725 120.502 120.634 60.297 180.478 100.830 20.651 40.537 70.924 40.375 70.315 140.686 70.451 140.714 50.543 210.504 60.894 70.823 50.688 4
DMMF_3d0.605 60.651 90.744 100.782 30.637 50.387 40.536 30.732 80.590 70.540 60.856 210.359 110.306 150.596 140.539 30.627 200.706 40.497 80.785 210.757 190.476 22
EMSANet0.600 70.716 40.746 90.395 180.614 90.382 50.523 40.713 110.571 110.503 100.922 60.404 50.397 40.655 90.400 160.626 210.663 60.469 130.900 40.827 40.577 14
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
MCA-Net0.595 80.533 200.756 80.746 40.590 100.334 100.506 70.670 150.587 80.500 120.905 100.366 100.352 90.601 130.506 80.669 160.648 90.501 70.839 150.769 150.516 21
RFBNet0.592 90.616 110.758 70.659 50.581 110.330 110.469 110.655 180.543 140.524 80.924 40.355 130.336 110.572 170.479 100.671 140.648 90.480 100.814 190.814 70.614 10
FAN_NV_RVC0.586 100.510 210.764 60.079 260.620 80.330 110.494 80.753 50.573 90.556 50.884 160.405 40.303 160.718 30.452 130.672 130.658 70.509 50.898 50.813 80.727 2
DCRedNet0.583 110.682 70.723 130.542 110.510 200.310 150.451 130.668 160.549 130.520 90.920 70.375 70.446 20.528 200.417 150.670 150.577 180.478 110.862 100.806 90.628 9
MIX6D_RVC0.582 120.695 50.687 170.225 210.632 70.328 130.550 10.748 60.623 60.494 150.890 140.350 150.254 230.688 60.454 120.716 40.597 170.489 90.881 80.768 160.575 15
SSMAcopyleft0.577 130.695 50.716 150.439 140.563 140.314 140.444 150.719 90.551 120.503 100.887 150.346 160.348 100.603 120.353 200.709 60.600 150.457 140.901 30.786 110.599 13
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
DMMF0.567 140.623 100.767 50.238 200.571 130.347 60.413 190.719 90.472 200.418 220.895 130.357 120.260 220.696 50.523 70.666 170.642 110.437 180.895 60.793 100.603 12
UNIV_CNP_RVC_UE0.566 150.569 190.686 190.435 150.524 170.294 190.421 180.712 120.543 140.463 170.872 170.320 170.363 80.611 110.477 110.686 110.627 120.443 170.862 100.775 140.639 6
EMSAFormer0.564 160.581 160.736 110.564 100.546 160.219 230.517 50.675 140.486 190.427 210.904 110.352 140.320 130.589 150.528 50.708 70.464 240.413 220.847 140.786 110.611 11
SN_RN152pyrx8_RVCcopyleft0.546 170.572 170.663 210.638 70.518 180.298 170.366 240.633 210.510 170.446 190.864 190.296 200.267 190.542 190.346 210.704 80.575 190.431 190.853 130.766 170.630 8
UDSSEG_RVC0.545 180.610 130.661 220.588 80.556 150.268 210.482 90.642 200.572 100.475 160.836 230.312 180.367 70.630 100.189 230.639 190.495 230.452 150.826 170.756 200.541 17
segfomer with 6d0.542 190.594 150.687 170.146 240.579 120.308 160.515 60.703 130.472 200.498 130.868 180.369 90.282 170.589 150.390 170.701 90.556 200.416 210.860 120.759 180.539 19
FuseNetpermissive0.535 200.570 180.681 200.182 220.512 190.290 200.431 160.659 170.504 180.495 140.903 120.308 190.428 30.523 210.365 190.676 120.621 140.470 120.762 220.779 130.541 17
Caner Hazirbas, Lingni Ma, Csaba Domokos, Daniel Cremers: FuseNet: Incorporating Depth into Semantic Segmentation via Fusion-based CNN Architecture. ACCV 2016
AdapNet++copyleft0.503 210.613 120.722 140.418 170.358 260.337 80.370 230.479 240.443 220.368 240.907 90.207 230.213 250.464 240.525 60.618 220.657 80.450 160.788 200.721 230.408 25
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. International Journal of Computer Vision, 2019
3DMV (2d proj)0.498 220.481 240.612 230.579 90.456 220.343 70.384 210.623 220.525 160.381 230.845 220.254 220.264 210.557 180.182 240.581 240.598 160.429 200.760 230.661 250.446 24
Angela Dai, Matthias Niessner: 3DMV: Joint 3D-Multi-View Prediction for 3D Semantic Scene Segmentation. ECCV'18
MSeg1080_RVCpermissive0.485 230.505 220.709 160.092 250.427 230.241 220.411 200.654 190.385 260.457 180.861 200.053 260.279 180.503 220.481 90.645 180.626 130.365 240.748 240.725 220.529 20
John Lambert*, Zhuang Liu*, Ozan Sener, James Hays, Vladlen Koltun: MSeg: A Composite Dataset for Multi-domain Semantic Segmentation. CVPR 2020
ILC-PSPNet0.475 240.490 230.581 240.289 190.507 210.067 260.379 220.610 230.417 240.435 200.822 250.278 210.267 190.503 220.228 220.616 230.533 220.375 230.820 180.729 210.560 16
Enet (reimpl)0.376 250.264 260.452 260.452 130.365 240.181 240.143 260.456 250.409 250.346 250.769 260.164 240.218 240.359 250.123 260.403 260.381 260.313 260.571 250.685 240.472 23
Re-implementation of Adam Paszke, Abhishek Chaurasia, Sangpil Kim, Eugenio Culurciello: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.
ScanNet (2d proj)permissive0.330 260.293 250.521 250.657 60.361 250.161 250.250 250.004 260.440 230.183 260.836 230.125 250.060 260.319 260.132 250.417 250.412 250.344 250.541 260.427 260.109 26
Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, Matthias Nießner: ScanNet: Richly-annotated 3D Reconstructions of Indoor Scenes. CVPR'17


This table lists the benchmark results for the 2D semantic instance scenario.




Method Infoavg apbathtubbedbookshelfcabinetchaircountercurtaindeskdoorotherfurniturepicturerefrigeratorshower curtainsinksofatabletoiletwindow
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
EMSANet (Instance)0.241 10.401 10.439 10.085 10.242 10.220 10.081 10.289 20.117 20.121 10.182 10.126 10.346 10.181 20.181 20.358 10.156 10.675 20.131 1
Seichter, Daniel and Fischedick, Söhnke and Köhler, Mona and Gross, Horst-Michael: EMSANet: Efficient Multi-Task RGB-D Scene Analysis for Indoor Environments. IJCNN 2022
UniDet_RVC0.205 20.381 20.323 30.037 30.226 30.177 30.063 20.277 30.120 10.067 30.131 30.074 30.317 20.080 30.235 10.289 30.141 30.678 10.080 3
FKNet0.204 30.334 30.358 20.038 20.234 20.184 20.025 30.318 10.042 40.088 20.141 20.053 40.300 30.207 10.171 30.292 20.149 20.636 30.109 2
MaskRCNN_ScanNetpermissive0.119 40.129 40.212 40.002 40.112 40.148 40.014 40.205 40.044 30.066 40.078 40.095 20.142 40.030 40.128 40.139 40.080 40.459 40.057 4
Re-implementation of Kaiming He, Georgia Gkioxari, Piotr Dollár, Ross Girshick: Mask R-CNN. ICCV'17


This table lists the benchmark results for the scene type classification scenario.




Method Infoavg recallapartmentbathroombedroom / hotelbookstore / libraryconference roomcopy/mail roomhallwaykitchenlaundry roomliving room / loungemiscofficestorage / basement / garage
sorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
LAST-PCL-type0.780 10.250 31.000 11.000 11.000 11.000 11.000 10.500 21.000 10.500 20.889 10.000 21.000 11.000 1
Yanmin Wu, Qiankun Gao, Renrui Zhang, and Jian Zhang: Language-Assisted 3D Scene Understanding. arxiv23.12
multi-taskpermissive0.700 20.500 11.000 10.882 30.500 31.000 11.000 10.500 21.000 11.000 10.778 20.000 20.938 20.000 3
Shengyu Huang, Mikhail Usvyatsov, Konrad Schindler: Indoor Scene Recognition in 3D. IROS 2020
3DASPP-SCE0.691 30.500 10.938 30.824 41.000 11.000 10.500 31.000 10.857 30.500 20.556 40.000 20.812 30.500 2
SE-ResNeXt-SSMA0.498 40.000 50.812 40.941 20.500 30.500 40.500 30.500 20.429 50.500 20.667 30.500 10.625 40.000 3
Abhinav Valada, Rohit Mohan, Wolfram Burgard: Self-Supervised Model Adaptation for Multimodal Semantic Segmentation. arXiv
resnet50_scannet0.353 50.250 30.812 40.529 50.500 30.500 40.000 50.500 20.571 40.000 50.556 40.000 20.375 50.000 3